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Weillustrate thedomaindecompositionConductor-like Screen-
ingModel (ddCOSMO) implementation and how to couple
it with an existing classical or quantum mechanical (QM)
code. We review in detail what input needs to be provided
to ddCOSMO and how to assemble it, describe how the
ddCOSMO equations are solved and how to process the
results in order to assemble the required quantities, such
as Fockmatrix contributions for theQM case, or forces for
the classical one. Throughout the paper, we will make ex-
plicit references to the ddCOSMOmodule, which is an open
source, Fortran 90 implementation of ddCOSMO that can
be downloaded and distributed under the LGPL license.
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1 | INTRODUCTION

Continuum Solvationmodels (CSMs) [1, 2, 3, 4, 5] are nowadays part of the standard toolbox of computational chemists.
Historically, in the quantum chemistry community, polarizable CSMs such as the Polarizable ContinuumModel (PCM)
[1] or the Conductor-like ScreeningModel (COSMO) [6] have been developed as a cheap, but physically sound way,
to include solvation effects in the quantum mechanical (QM) description of a molecule and its properties. As the
computational cost is usually dominated by the solution of theQMequations, the computational performance of CSM
have not been historically taken intomuch consideration, as the setup and solution of the CSMequations, which are
equivalent in someway to solving Poisson’s equation in a heterogeneous dielectric medium, has always been assumed
to be a negligible additional computational cost. Due to advances in hardware, more efficient implementations and the
spread of linear scaling techniques within quantum chemistry, such an assumption started to be less and less true in the
last decade. Further, the diffusion of multiscale methods such as quantummechanics/molecular mechanics (QM/MM)
hasmade large to very large systems accessible to computational chemists. For such systems, the computational cost
associated with continuum solvation, which scales as the second or third power of the size of the system, can easily
become the real bottleneck of the calculation [7]. Nevertheless, polarizable CSM have been used successfully in a
large number of different applications and are a standard feature of most quantum chemistry codes. Polarizable CSM
have not had the same success in Molecular Dynamics (MD) applications, as their computational cost makes them
incompatible with the usual time frame of these simulations. For this reason, the CSMs used in classical MD are usually
additive approximation to Poisson’s equation such as the Generalized Bornmodel [8].

Recently, a new paradigm has been introduced for the solution of the COSMOequations [9, 10]. The new algorithm,
called ddCOSMO, is based on domain decomposition (dd) and exhibits linear scaling and an overall very limited compu-
tational cost [10, 7, 11]. With respect to existing implementations of CSM [12, 7], ddCOSMO is two to three orders
of magnitude faster, effectively allowing the use of a polarizable CSM for large systems. Furthermore, the ddCOSMO
discretization is systematically improvable and controlled by a very limited number of parameters, making it easy to
control and overall rigorous and sound[9]. It also provides for a smooth energy as a function of the nuclear coordinates,
making it suitable for geometry optimization andmolecular dynamics simulation[13, 7]. However, its implementation is
slightly more cumbersome than standard CSM implementations based on the boundary elementmethod (BEM)[14]
or the York-Karplus (YK) method[15, 16, 17]. A stand-alone, opensource, modular implementation of ddCOSMO is
distributed for free under the terms of the version 3 of the GNU Lesser General Public Licence (LGPL) license. It can be
download from https://www.ddpcm.org, or directly fromGitHub[18].

The goal of this communication is to provide the essential knowledge to successfully use and couple the stand-alone
library to the code of choice, or implement themethod from scratch. We provide all necessary technical details and
review the implementation of ddCOSMO and its coupling with an existing QMor classical code in this communication.

This paper is organized as follows. In section 2, the main aspects of the ddCOSMO paradigm are succinctly
presented. In section 3, we will discuss the coupling of ddCOSMO with an existing code and review what are the
quantities that the existing code needs to assemble in order to compute the self-consistent field energy for a QM code
and the energy and forces for a classical code. In section 4, the implementation of ddCOSMO is describedwith explicit
references to the open source ddCOSMOmodule. Finally, wewill provide some conclusion and perspectives in section 5.
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2 | A BRIEF INTRODUCTION TO THE ddCOSMO PARADIGM

The idea of this section is to give a different derivation of the ddCOSMO equations than what was presented in the
original articles [9, 10, 11, 19] that might bemore intuitive to follow. In particular, we refer to the appendix B of [20]
which presents an alternative derivation of the ddCOSMOequations. We start with recalling the Partial Differential
Equation (PDE) associated to the COSMO (model). The reaction potentialW satisfies

−∆W = 0, inΩ = Ω1 ∪ · · · ∪ ΩM ,

W = −Φ, on ∂Ω,

where∆ denotes the Laplacian,Φ the free-space potential generated by the solute’s charge distribution ρ andΩ is the
solute’s cavity consisting of a union of, possibly scaled, Van derWaals ballsΩi , each centered at xi and of radius ri .

The idea of ddCOSMO is to rewrite this problem intoM coupled problems:

−∆Wi = 0, inΩi , (1)
Wi = −Φ, on ∂Ωi ∩ ∂Ω, (2)
Wi =

∑
j ∈Ni ωi jWj , on ∂Ωi ∩ Ω, (3)

where the right hand side of (3) at some point x ∈ ∂Ωi denotes the average value of all neighboring potentialsWj (x )
corresponding to all neighboring spheresΩj intersectingΩi at x , i.e. for all j , i such that x ∈ Ωj . More precisely, we
denote by Ni the set of all spheres intersecting sphere i and the functionωi j denotes the weight function defined by

[x ∈ ∂Ωi : ωi j (x ) =
χj (x )∑

k ∈Ni χk (x )
,

using the convention that 0/0 = 0 and where χj is the characteristics function of Ωj . Therefore, ωi j (x ) can take the
values 0 (exposed to the solvent at x ), 1 (one intersecting sphere at x ), 1/2 (two intersecting spheres at x ), 1/3, 1/4 etc.
Following this construction, we deduce thatUi (x ) = 1 −∑

j ∈Ni ωi j (x ) denotes the characteristics function of the part of
∂Ωi belonging to ∂Ω taking only values 0 (insideΩ) or 1 (on ∂Ω).

On the discrete level, we represent the local approximationsWi toW in eachΩi by

x ∈ Ωi : W |Ωi (x ) ≈Wi (x ) =
∑
`m

4π

2` + 1
[Xi ]m` r

i
` (x )Y

i
` ,m (x ), (4)

with radial scaling r i
`
(x ) :=

(
|x−xi |
ri

)` and angular dependencyY i
` ,m
(x ) :=Y m

`

(
x−xi
|x−xi |

)
relative to the i -th atom. The symbol∑

`m denotes∑`max
`=0

∑`
m=−` representing a truncated series of real spherical harmonicsY m` . SinceWi is by construction

harmonic in Ωi , we only need tomatch the boundary conditions on each ∂Ωi , which is done bymultiplying (2)–(3) on
any ∂Ωi by any spherical harmonicsY i` ,m up to degree `max and integrating over ∂Ωi . However, since exact integration
cannot be carried out, we employed a Lebedev quadrature[21] given byweightsωn ∈ Ò and integration points sn ∈ Ó2
on the unit sphere to provide a (scaled) numerical integration scheme on each ∂Ωi :

〈
f , g

〉
n,i
:=

Ng∑
n=1

ωn f (x in ) g (x in ) ≈
1

r 2
i

∫
∂Ωi

f (s)g (s)ds =
∫
Ó2
f (xi + ri ŝ)g (xi + ri ŝ)d ŝ,
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with x in := xi + ri sn . Then, we require the following equations to hold for all i = 1, . . . ,M , ` = 0, . . . , `max and |m | ≤ ` :〈
Wi ,Y

i
` ,m

〉
n,i
=

〈 ∑
j ∈Ni ωi jWj −UiΦ,Y i` ,m

〉
n,i
. (5)

This results in a linear system

LX = g (6)

which is naturally block-sparse since only intersecting spheres provide non-zero block entries. WhileX is just a vector
containing the coefficients [Xi ]m` , ordered block-wise for all spheres i , thematrix and right hand side coefficients are
given by (for all i = 1, . . . ,M , j ∈ Ni ):

[Li i ]mm
′

``′ = 4π
2`′+1

〈
Y i`′,m′ ,Y

i
` ,m

〉
n,i
= 4π

2`′+1 δ``′δmm′ , (7)

[Li j ]mm
′

``′ = − 4π
2`′+1

〈
ωi j r

j
`′Y

j
`′,m′ ,Y

i
` ,m

〉
n,i
= − 4π

2`′+1

Ng∑
n=1

ωn ωi j (x in ) r
j
`′ (x

i
n )Y

j
`′,m′ (x

i
n )Y m` (sn ), (8)

[gi ]m`′ = −
〈
UiΦ,Y

i
` ,m

〉
n,i
= −

Ng∑
n=1

ωn Ui (x in )Φ(x in )Y m` (sn ). (9)

If this linear system is solved bymeans of any numerical method for non-symmetric matrices such as the generalized
minimal residual (GMRes) method or coupled Jacobi/direct inversion in the iterative subspace[22] (DIIS) iterations[23],
the energy can then be computed following

Es =
1

2
f (εs)

∫
Ω
ρ(x )W (x )dx or, its discrete variant ENs =

1

2
f (εs)

∑
i

∑
`m

[Xi ]m` [Ψi ]
m
` =

1

2
f (εs)〈X ,Ψ〉,

where we introduced the compact notation

〈A,B 〉 =
∑
i

∑
`m

[Ai ]m` [Bi ]
m
`

andwhere the definition of the vectorΨwith coefficients [Ψi ]m` depends on the nature of the solute’s charge, i.e. whether
the COSMO is coupled with a classical, quantummechanical or hybrid model, which will be specified in the next section.

Please also note that in order to achieve a smooth energy while varying nuclear coordinates, the weight functions
ωi j andUi are replaced by smooth approximate functions in practice. To do so, let us first introduce the polynomial of
degree 5 given by

pη (t ) = η−5(1 − t )3(6t 2 + (15 − 12)t + 1 − η2 − 15η + 6),

so that the regularized characteristic function defined by

χη (t ) =


1 if t ≤ 1 − η,
pη (t ) if 1 − η < t < 1,
0 if t ≥ 1,
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is twice continuously differentiable, in order to ensure the continuity of the forces and second-derivatives of the energy.
Finally, the regularized versions ofωi j andUi are provided by the following expressions

ω
i j
η (x ) = d i (x in )χη

(
r
j
1 (x )

) resp. U iη (x ) = 1 −
∑
j ∈Ni

ω
i j
η (x ) with d i (x ) =

min ( ∑
k ∈Ni χη

(
r k1 (x )

)
, 1

)∑
k ∈Ni χη (r

k
1 (x ))

.

Theconstructionof this regularization is adelicate task and its explanationgoesbeyond the scopeof this communication[10].
In order to compute the ddCOSMO forces or other derived quantities, analytical derivatives of the ddCOSMO

energy are required. Differentiating eq .2 with respect to a generic parameter λ we get
dEs
dλ

= E λs =
1

2
f (εs )

(〈
X λ ,Ψ

〉
+

〈
X ,Ψλ

〉)
, (10)

where we denote the derivative with respect to λ with a superscript. Note that the functionΨ depends explicitly on λ,
while the coefficients [X ] depend implicitly on λ. In order to compute the derivatives of the coefficients, we differentiate
the ddCOSMOequation

(LX )λ = LλX + LX λ = gλ ⇒ X λ = L−1(gλ − LλX ). (11)

By substituting eq. 11 into eq. 10, we get

E λs =
1

2
f (εs )

(〈
L−1(gλ − LλX ),Ψ

〉
+

〈
X ,Ψλ

〉)
=
1

2
f (εs )

(〈
gλ − LλX , (L−1)†Ψ

〉
+

〈
X ,Ψλ

〉)
. (12)

If we now introduce the ddCOSMOadjoint equations

L†S = Ψ, (13)

the general expression for the analytical derivative of the ddCOSMOenergy becomes

E λs =
1

2
f (εs )

(〈
gλ − LλX , S

〉
+

〈
X ,Ψλ

〉)
. (14)

In conclusion, in order to realize the ddCOSMO algorithm, one needs to be able to compute the right-hand side
(g , eq. 9) to the ddCOSMO equation (eq. 6) and to solve the linear system. Then, to compute the energy, one has to
assemble the functionΨ (eq. 2). Any further computation requires to solve the ddCOSMO adjoint equation (eq. 13) and
to compute the derivative of the ddCOSMOenergy (eq. 14), which in turn requires the computation of the derivatives
of g andΨ, and the product between the coefficientsX and the differentiated ddCOSMOmatrix. In section 3, all these
termswill be detailed for QM and classical solutes.

3 | COUPLING ddCOSMO TO AN EXISTING CODE
In this section, we discuss how to implement ddCOSMO in an existing code (called the host code in the following) by
coupling such a code to the ddCOSMOmodule1. We recall that the ddCOSMO code can be obtained for free[18] under

1Available at https://github.com/filippolipparini/ddPCM
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the terms of the LGPL license (version 3), which is a weak copyleft license that allows developers and companies to use,
modify, redistribute and integrate the codewith the only constraint that themodified code has to bemade available
under the terms of the same license. If a proprietary code includes ddCOSMO, only themodified ddCOSMO library has
to bemade available with its source code, thus protecting the intellectual property of both the authors of the library
and of the company that produces the proprietary code.

First, we give an overview of themain components of amodular implementation of ddCOSMO. Then, we analyze
more in the specific the quantities that the host code needs to provide to the ddCOSMOmodule and how the host code
has to digest the output of ddCOSMO in order to proceed further. We consider two different cases. First, we analyze
the calculation of the (self-consistent) energy for a solute described at aQM level of theory such as Hartree-Fock or
Kohn-ShamDensity Functional Theory, namely, a method that requires the solution of the self-consistent field (SCF)
equations. Second, we consider the case of a classical force field energy and forces calculation, such as the one required
to perform a step of molecular dynamics.

3.1 | The general picture
Themost modular implementation possible would almost not require any new coding and be based on the input/output
of the host code and of the ddCOSMOmodule, with the only coding required being limited to parsing andwriting input
and output files. While this is in principle possible, it would be terribly inefficient, especially when the solute is described
with aQMmethod, or even a polarizable force field. Wewill therefore adopt the following philosophy. We divide the
code in three sets of routines

• Host software routines. These routines are independent of ddCOSMOand are assumed to be already present in
the host code . They perform general operations such as the evaluation of electrostatic quantities at provided grid
points, the numerical quadrature for density functional theory or one and two electron integrals. Nomodification
to such routines is needed in order to achieve the coupling.

• ddCOSMO routines. These routines are independent of the host code and deal exclusively with ddCOSMO-related
quantities. They include setup routines, the routines needed to solve the ddCOSMO linear equations and routines
that compute differentiated ddCOSMOquantities. Nomodification to such routines is needed in order to achieve
the couplings.

• driver routines. These routines take care of the actual coupling by calling the appropriate host software or
ddCOSMO routines. The implementation of driver routines is therefore the main task to be performed in or-
der to achieve the coupling between ddCOSMOand the host software .

In this contribution, we only describe the functionalities that the host software routines need to provide. As these
routines are strongly code-dependent we cannot provide specific details. Nevertheless, the operations to be performed
are described in detail from an abstract point of view. In the following, we will discuss how to set up a driver. The
ddCOSMO routines will be the subject of section 4.

3.2 | Initializing ddCOSMO
Independent of themethod and level of theory to which ddCOSMO is coupled, any computation involving ddCOSMO
requires some geometrical input data comprising:
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TABLE 1 Suggested default values for the ddCOSMOparameters for QM and classical (MM) applications

Parameter QMdefault MMdefault
`max 10 6
Ng 302 110
η 0.1 0.1
iconv 8 6

• the number of atoms forming themolecule (n);
• the position of the centers of the spheres that make the cavity (x, y, z, arrays of size n);
• the radii of the spheres that make the cavity (rvdw, array of size n) (for instance, the UFF radii scaled by 1.1);

as well as a few scalar parameters

• the order `max of the spherical harmonics expansion used in the discretization (lmax) ;
• the number Ng of Lebedev points to be used for the numerical integration (ngrid);
• the width η of the switching region relative to the radii of the spheres (eta);
• the solvent’s dielectric constant ε (eps);
• the convergence threshold (iconv, the threshold is defined as 10−iconv);
• a flag that, if set to a nonzero value, indicates that the computation of the forces is required (igrad).

The variable names in our implementation of these global variables is emphasized in the parentheses. Such variables
need to be initialized by the user through the host code . With these input, an internal data-structure is built that
comprises

• the list Ni of intersecting spheres for each sphere (nl, see section 4.1 for further detail);
• Lebedev integration points sn andweightsωn (grid and w, arrays of dimension (3,ngrid); and (ngrid), respectively);
• the number and coordinates of the points that lie on a portion of the cavity which is exposed to the solvent (ncav

and ccav, array of dimension (3,ncav));
• several quantities that are precomputed in order to speed up the computation (see section 4.1 ).

In a Fortran 90 implementation, these data as well as the above presented geometrical data and scalar parameters
can be accessed when using our module by including use ddcosmo in the host code . The routine that handles the
computations of this data-structure is called DDINIT and needs to be invoked before any ddCOSMO computation. It can
be invoked as follows:

>> call ddinit(n,x,y,z,rvdw).

In table 1, a suggested set of default parameters is provided for bothQMand classical applications. These parameters
are, in our experience, safe combinations that result in a good compromise between the numerical accuracy and
efficiency of ddCOSMO.
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3.3 | Case 1: SCF energywith ddCOSMO
The coupling of ddCOSMO to the SCF procedure requires, at each SCF iteration, not only to compute the solvation
energy and add it to the total energy, but also to add a contribution to the Fock (or Kohn-Sham) matrix. Both these
contributions can be assembled right after the two-electron contribution to the Fockmatrix has been computed. The
main difficulty introduced by ddCOSMO in aQM computation[11] lies in theway the ddCOSMO solvation energy is
computed. Contrary to the usual discretizations of COSMO, ddCOSMOdoes not give access to an apparent surface
charge, but relies entirely on the reaction potentialW , which can be computed inside each sphere locally starting from
the solution to the ddCOSMOequationsX .

First, one has to assemble the right-hand side for the ddCOSMO linear system, defined in eq. 9. Note that the
potentialΦ is defined, for a QM solute, as

Φ(x in ) =
∑
K

ZK

|xK − x in |
−

∑
µν

Pµν

∫
Ò3

χµ (x )χν (x )
|x − x in |

dx , (15)

wherewe recall that xn
i
= xi + ri sn , ZK is the charge of theK -th nucleus and xK its position, and Pµν is the densitymatrix

in the basis of the atomic orbitals {χµ }. Note that the value of the potential at the internal points is not needed, as the
characteristic function of the external surface appears explicitly in the ddCOSMO right-hand side (eq. 9). The solvation
energy is defined as

Es =
1

2
f (ε)

∫
Ω
ρ(x )W (x )dx , (16)

where for a QM solute the density is given by

ρ(x ) =
∑
K

ZK δ(x − xK ) −
∑
µν

Pµνχµ (x )χν (x ) = ρnuc + ρele . (17)

As seen in eq. 4, the reaction potential can be expressed inside a given sphereΩj as

W |Ωj (x ) ≈Wj (x ) =
∑
`m

4π

2` + 1
[Xj ]m` r

j
`
(x )Y i` ,m (x ).

In order to take advantage of the ddCOSMO local representation ofW , eq. 16 can be rewritten as a sumof contributions
over the spheres. However, in order to avoid double counting contributions arising from the intersection of spheres, a
weight function θj has to be introduced:

Es =
1

2
f (ε)

∑
j

∫
Ωj

ρ(x )θj (x )Wj (x )dx . (18)

The integral in eq. 18 can be evaluated numerically using the same quadrature that is used for the exchange-correlation
(XC) potential in density functional theory (DFT). Such a quadrature[24] is in fact performedwith a set of atom-centered
points and uses weights to avoid double counting. Let {z j g , θj g } be the set of points and weights used for the DFT
quadrature around the j -th atom. We can thenwrite, for the contribution stemming from the electronic density[11]:

Es =
1

2
f (ε)

∑
j

∑
g

θj g ρ
ele(z j g )Wj (z j g ) =

1

2
f (ε)

∑
j

∑
g

θj g ρ(z j g )
∑
`m

4π

2` + 1
r
j
`
(z j g )Y j` ,m (z j g )[Xj ]

m
` . (19)
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If we compare eq. 19with eq. 2, we get

[Ψelej ]m` =
∑
g

θj g ρ
ele(z j g ) 4π

2` + 1
r
j
`
(z j g )Y j` ,m (z j g ). (20)

The vectorΨele can therefore be computed by using the same code that is used for XC quadrature in DFT. Note that
DFT grids are usually built as the product of a radial and an angular grid. As the quantities evaluated at grid points in
eq. 20 can also be clearly separated into a radial and an angular part, it is possible to precompute radial and angular
intermediates and to assemble themwhile evaluating the integral. This makes the additional ddCOSMO cost negligible
with respect to the cost of assembling the grids and evaluating the density at the grid points, two operations that are
anyway needed in a DFT calculation. The nuclear contribution can be computed separately from the electronic one and
added to form the totalΨ. For the nuclear charge, we get

[Ψnucj ]
m
` = 2

√
πZ j δ`0δm0 (21)

A numerical quadrature is also necessary in order to assemble the ddCOSMO contribution to the Fockmatrix, that is
defined as the derivative of the ddCOSMOenergy with respect to the density matrix

F sµν =
dEs
dPµν

=
1

2
f (εs)

(〈
∂g

∂Pµν
, S

〉
+

〈
X ,

∂Ψ

∂Pµν

〉)
, (22)

where we used eq. 14 and the fact that the ddCOSMOmatrix does not depend on the density. The first contribution can
be rearranged as follows:

〈
∂g

∂Pµν
, S

〉
= −

∑
j

∑
n

∑
`m

[Sj ]m` ωnU
j
η (x

j
n )Y m` (sn )

∂Φ(x jn )
∂Pµν

. (23)

The sum over ` andm in eq. 23 can be computed before the evaluation of the integrals. Introducing the new quantities

ξ
j
n = −U

j
η (x

j
n )ωn

∑
`m

[Sj ]m` Y
m
` (sn ), (24)

eq. 23 becomes 〈
∂g

∂Pµν
, S

〉
= −

∑
j

∑
n

ξ
j
n

∫
Ò3

χµ (x )χν (x )
|x jn − x |

dx . (25)

Note that ξn
i
vanishes at points buried inside the cavity, so that it only needs to be evaluated and contractedwith the

integrals at the external points. The second contribution to the Fockmatrix requires a second numerical integration.
We get 〈

X ,
∂Ψ

∂Pµν

〉
= −

∑
j

∑
g

∑
`m

[Xj ]m` θj gχµ (z j g )χν (z j g )
4π

2` + 1
r
j
`
(z j g )Y j` ,m (z j g ). (26)
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Again, the sum over ` andm can be computed before evaluating the integral. By introducing

ηj g =
∑
`m

4π

2` + 1
r
j
`
(z j g )Y j` ,m (z j g )[Xj ]

m
` (27)

we get 〈
X ,

∂Ψ

∂Pµν

〉
= −

∑
j

∑
g

ηj g θj gχµ (z j g )χν (z j g ). (28)

We have now defined all the quantities required for a SCF/ddCOSMO calculation and can describe the structure
of the driver routine. We focus on a single SCF iteration and underline the quantities that can be precomputed at the
beginning. We also provide details on the specific calls to the ddCOSMO routines included in the ddCOSMOmodule,
commenting on the interface.

1. Initial setup, as described in section 3.2.
2. Computation of the solute’s potential at the cavity points. The driver needs to call the appropriate, host code

specific, integral routine to compute the potential (see eq. 15) at the external points (in ccav).

Φi =
∑
K

ZK

|xK − x in |
−

∑
µν

Pµν

∫
Ò3

χµ (x )χν (x )
|x − x in |

dx , (29)

where the potential needs to be computed only at the points xn
i
that lie on the external cavity surface (i.e., the ones

contained in the ccav array). We assume that the potential is stored in an array phi of size ncav.
3. Computation of Ψ: The driver needs to call the quadrature routines to compute the array psi, an array of size

((lmax+ 1)2,n). The details of how this array is assembled are strictly dependent on the host code , but eq. 20 should
be straightforward to implement given the DFT quadrature routines.

4. Solution to the ddCOSMOequation and computation of the ddCOSMOenergy. This operation is easily performed
by calling the COSMO routine from the ddCOSMOmodule. The driver needs to allocate space for theX coefficients,
which are stored in an array xcoef of dimension ((lmax+1)2, n). The COSMO routine can accept as an input either
the ddCOSMO right-hand side (see eq. 9) or the potential at the external points, which is then processed internally.
Assuming the latter case, the routine should be called as follows:
>> call cosmo(.false.,.true.,phi, xx, psi, xcoef, esolv).

The first argument specifies whether the ddCOSMOequation (.false.) or its adjoint (.true.) should be solved.
xx is a dummy array that acts as a placeholder for the ddCOSMO right-hand side and is not referenced when
the second argument is set to .true.. esolv is a real scalar that contains in output the ddCOSMOelectrostatic
solvation energy Es .

5. Solution to the ddCOSMO adjoint equation. Again, this is achieved by calling the COSMO routine from the
ddCOSMOmodule. The driver needs to allocate space for the S coefficients, which are stored in an array scoef of
dimension ((lmax+1)2, n). With respect to the previous call, the only differences are that the first logical has to be
set to .true.and that the output has to be saved in the array scoef:
>> call cosmo(.true.,.true.,phi, xx, psi, scoef, esolv).

6. Computation of the ddCOSMO contributions to the Fockmatrix. The driver needs here to call the proper integral
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and numerical quadrature routines from the host code in order to assemble the contributions in eqs. 23 and 26.
For improved efficiency, the intermediates ξ and η should be precomputed and used as in eqs. 25 and 28. The ξ
intermediate can be computed by invoking the DDMKXI routine from the ddCOSMOmodule, which is invokedwith
the following arguments

>> call ddmkxi(scoef, xi).

Note that an array xi of size ncav should be allocated by the user. The xi array can then be passed to the integrals
evaluation routine. There is no routine to assemble the η intermediate in the ddCOSMOmodule, as it is assumed
that the DFT quadrature points are not easily available in the driver. η can be evaluated on-the-fly inside the
integration routine whenever a batch of integration points is processed. This can be done before the loop over the
basis functions for improved efficiency.

3.4 | Case 2: Energy and forces with aMM force field
Interfacing ddCOSMO to a classical code is overall much simpler than interfacing it to a quantummechanical code.
In this section, we discuss how to compute the ddCOSMO contributions to the energy and forces when the solute is
described with a classical force field. We assume that the electrostatic interactions are modeled by endowing each
atomwith a point charge, as is commonly done in popular force fields such as AMBER[25], CHARMM[26], OPLS[27] and
others. The ddCOSMO contribution to the forces encompasses both ddCOSMO specific quantities and quantities that
depend on the solute and are to be computed by a routine from the host code . Differentiating the ddCOSMOenergy
with respect to the nuclear coordinates of the i -th atom, we get

+iEs = 〈S ,+i g − (+i L)X 〉 , (30)

asΨ does not depends on the position of the nuclei when the solute’s density of charge is a collection of point charges,
as it is apparent from eq. 21. Here, +i denotes the derivative with respect to the nuclear coordinate xi . The terms
stemming from the derivatives of the L matrix are ddCOSMOexclusive quantities. For the derivatives of the right-hand
side, we get

+i [gj ]m` = −
Ng∑
n=1

ωn Y
m
` (sn )

(
+iU

j
η (x

j
n )Φ(x

j
n ) +U

j
η (x

j
n )+iΦ(x

j
n )

)
. (31)

The first contribution is again a ddCOSMO exclusive quantity and originates from the fact that the characteristic
functionUj is regularized byU jη , which is required to have a continuous energy as a function of the nuclear coordinates.
The second term requires to compute the derivatives of the solute’s potential and requires a host code routine that
computes electrostatic quantities.

Let us now describe the structure of aMM/ddCOSMOdriver.

1. Initial setup. This step is identical to the one described in section 3.2 as already mentioned in section 3.3 and is
readily achieved by setting the ddCOSMO scalars and invoking the DDINIT routine from the ddCOSMOmodule.

2. Compute the solute’s potential at the external cavity points. For a set of point charges qK , the electrostatic potential
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is given by

Φ(x in ) =
Na∑
K=1

qK

|xK − x in |
. (32)

For a simple-minded implementation, a naive double-loop routine can be easily written in a few lines of code. An
example of such a naive implementation is provided in the ddCOSMO module (subroutine MKRHS). However,
for molecular systems as large as the ones that are usually treated with classical molecular mechanics (MM), a
fast summation technique is required in order to achieve linear scaling and speed up the computation. Themost
obvious choice is probably to resort to the Fast Multiple Method[28] (FMM), for which many open source and
highly optimized implementations exist. Nevertheless, the result of this step should be, as in section 3.3, an array
phi of size ncav containing the potential at the external points.

3. ComputeΨ. This is trivially done for a classical solute, as only eq. 21 is involved. We get

[Ψj ]m` = 2
√
πq j δ`0δm0 . (33)

TheMKRHS subroutine in the ddCOSMOmodule also computesΨ.
4. Solve the ddCOSMO equations. This step is independent of the level of theory used for the solute and can be

performed as described in section 3.3, by invoking

>> call cosmo(.false.,.true.,phi, xx, psi, xcoef, esolv).

Again, the ddCOSMO contribution to the solvation energy (in atomic units) is given as an output in esolv.
5. Solution to the ddCOSMO adjoint equation. This step is needed if the computation of the forces is required and can

be achieved by calling the COSMO routine

>> call cosmo(.true.,.true.,phi, xx, psi, scoef, esolv).

6. Computation of the forces - ddCOSMO exclusive terms. These contributions stem from the derivatives of the
ddCOSMOLmatrix (see eq. 14) and from the derivatives of the characteristic function (see eq. 31.). The FORCES_DD
subroutine from the ddCOSMOpackage takes care of assembling these terms. The user should allocate a temporary
array for the ddCOSMO forces fx of dimension (3,n) and invoke the FORCES_DD subroutine as follows

>> call forces_dd(n,phi,xcoef,scoef,fx).

7. Computation of the forces - code-specific terms. The remaining contribution to the forces involves the derivatives
of the potential. For the i -th atom, this terms contributes as follows (note that the forces areminus the derivative
of the energy):

F non ddi =
∑
j

∑
`m

[Sj ]m`
∑
n

wnU
j
η (x

j
n )Y m` (sn )+iΦ(x

j
n ). (34)

Let

ζ
j
n = wnU

j
η (x

j
n )

∑
`m

[Sj ]m` Y
m
` (sn ). (35)
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Through simple algebra, we get

F non ddi = −
∑
n

ζin

∑
k

qk (x in − Rk )
|x in − Rk |3

− qi
∑
j

∑
n

ζ
j
n (R i − x

j
n )

|R i − x jn |3
. (36)

The first term can be interpreted as the product of (minus) the electric field produced by the solute’s charges
at the external cavity points interacting with the fictitious charge distribution ζ. The second, on the contrary,
can be seen as the field produced by the distribution ζ at the atoms interacting with theMMcharges. While the
physical interpretation of these two terms is, of course, inessential, it makes the use of standard electrostatics
machinery possible, including taking advantage of linear scaling techniques such as the FMM. A simple-minded
routine (subroutine EFLD) that computes the electric field of a source at a set of target points with a double loop is
included in the ddCOSMOpackage. Furthermore, a subroutine that, given the S coefficients produces the array ζ
(subroutine DDMKZETA) is provided. Note that, due to the presence of the external characteristic function in the
definition of ζ, such a quantity is only nonzero at the external cavity points, that are given in the ccav array. As a
consequence, the two electric fields computations required to evaluate eq. 36 can be restricted to targets (sources)
lying just on such points. Therefore, in order to compute this contribution, the user needs to allocate an array zeta
of dimension ncav and fill it via

>> call ddmkzeta(scoef,zeta).

The appropriate, host code specific routine to compute electric fields are then needed in order to evaluate the
“fields” in eq. 36. Finally, eq. 36 can be evaluated.

This concludes the presentation of theMM/ddCOSMO driver. The ddCOSMO package includes a prototypical
implementation of aMMdriver (programmain, in main.f90), which reads theMMcharges, coordinates and Van der
Waals radii from a text file, initializes the ddCOSMO environment and proceeds with the steps described in this section.
The implementation is extensively commented and can be used as a starting point for interfacing ddCOSMOwith a
classical MM code.

4 | THE ddCOSMO MODULE
In this section, a more detailed description of the implementation of ddCOSMO is provided. Besides providing a
complete description of the existing open source code, this section provides guidelines for a new implementation, which
can be used in alternative to the existing one for better integration in an existing code, in particular when such a code is
written in a language different from Fortran 90.

There are three main operations required in order to perform a ddCOSMO computation. Such operations are
mentioned as the ddCOSMO specific steps in section 3 and can be summarized as follows

1. initial setup;
2. solution to the ddCOSMO linear systems;
3. computation of the ddCOSMO specific contributions to the forces.

In the following, each of these steps is detailed.
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4.1 | Initial setup of a ddCOSMO calculation
The setup of a ddCOSMO calculation requires the computation of several quantities that depend on the geometry of
the solute and on the cavity (i.e., on the van derWaals radii used). Some of the quantities are precomputed for the sake
of efficiency but can be also computed on-the-fly whenever needed. Given the limited amount of memory required to
store such quantities, we believe that it is always worth precomputing them, as they allow for non-negligible savings in
computation time.

Asmentioned in section3, thefirst operation that needs to be performed is to set the ddCOSMOscalars. Wealso set
the number of spheres (nsph) to the number of atoms of the solute and compute nylm=(lmax+1)^2. The first quantity
that needs tobe assembled is the integration grid andweights. This requires to allocate twoarrays, one for the grid (grid)
of size (3,ngrid), andone for theweights (w) of size (ngrid). In our implementation,weuse thepublicly available routines
by Laikov and vanWuellen (see http://www.ccl.net/cca/software/SOURCES/FORTRAN/Lebedev-Laikov-Grids).
We then create two arrays, one for the centers of the sphere (csph) of size (3,nsph), that coincide with the positions of
the atoms, and one for their radii (rsph) of size (nsph).

A neighbor list, defined as the list of spheres that overlap each sphere, is then computed. The neighbor list is of
crucial importance, as only overlapping spheres interact or, in more specific terms, only the off-diagonal blocks of the
ddCOSMOmatrix that correspond to two overlapping spheres are nonzero. Therefore, the neighbor list is also used to
describe the sparsity pattern of the ddCOSMOmatrix. Neighbor lists can be computed using several algorithms. In our
implementation, we use a simple-minded double loop algorithm. This is of course not an efficient choice, which was
made for the sake of simplicity. Routines that assemble neighbor lists with a computational cost that scales linearly
with respect to the number of atoms are commonly available in anyMD code and open source implementations can
be easily found. We store the neighbor list using two integer arrays. The first, inl, of dimension nsph+1, contains a
list of integers that indicate where the list of neighbors of the i -th sphere start. The second array, nl, contains the
actual compressed neighbor list. According to this convention, the neighbors of the i -th sphere are nl(inl(isph)), . . . ,
nl(inl(isph+1))-1.

For the sake of convenience, we also precompute several quantities that are used repeatedly during a ddCOSMO
calculation. We allocate two real arrays, facs and facl, of dimension nylm, that contain the normalization factors for
the spherical harmonics functions (NM

`
, in facs)

Nm` = (−1)m
√
2

√
2` + 1

4π

(` − |m |)!
(` + |m |)!

and the inverse diagonal of the diagonal blocks of the ddCOSMO L matrix (in all blocks are equal)

[Li i ]mm
′

``′ =
2` + 1

4π
δ``′δmm′ .

We then compute the set of spherical harmonics {Y m
`
(sn )}, ` = 0, . . . , `max,m = −`, . . . , ` at the grid points sn for

n = 1, . . . ,Ng , and save it in an array basis of dimension (nylm,ngrid). The computation of spherical harmonics at a
given point on the unit sphere (performed by the subroutine ylmbas) is a key component of the ddCOSMOalgorithm
and a crucial factor in the overall efficiency of the code. The algorithm that we use is described in ref. [10] and is based
on a recursion formula for the generalized Legendre polynomials (subroutine polleg) and on Chebyshev polynomials to
evaluate the trigonometric functions (subroutine trgev).

Finally, we precompute two geometric quantities, that are defined at each grid point for each sphere and saved into
two arrays, ui and fi, of dimension (ngrid,nsph). These arrays are used in order to evaluate the external and internal
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characteristic functions and are defined as follows

f in =
∑
j ∈Ni

χη (r j1 (x
i
n )) and u in = max(1 − f in , 0) = U iη (x in ). (37)

If the forces are to be computed, it is also convenient to assemble

z in =
∑
j ∈Ni

1

rj
χ ′η (r

j
1 (x

i
n ))e j (x in ), (38)

where we introduced the unit vector e i (x ) = x−xi
|x−xi |

and χ ′η denotes the derivative of the one-dimensional switching
function χη . The quantity z in is stored in an array zi of dimension (3,ngrid,nsph).

4.2 | ddCOSMO linear system

Once the setup has been done, and the solute’s potential andψ have been computed, one has to solve the ddCOSMO
linear system. In our implementation, this is done by the cosmo routine, that has been described in section 3. In this
section, we describe such a routine in detail. The first task performed by the cosmo routine is to prepare the right-hand
side, as in eq. 9. The solute’s potential is only computed at the external cavity points, defined as the points for which u in
is nonzero. Therefore, the potential is first decompressed from ncav to (ngrid,nsph) andmultiplied for the external
characteristic function. Then, the numerical integration is carried out and the right-hand side assembled.

The ddCOSMO sparse linear system can be solved using any iterative solver capable of handling non symmetric
linear systems, such as GMRES or the biconjugate gradient method (BCG). The use of a Jacobi solver[23] coupled with
Pulay’s direct inversion in the iterative subspace[22] (DIIS) is a viable alternative to these standard solvers. Such a
strategy has proven to be optimal and is the one that we follow in the ddCOSMOmodule. A Fortran 90 implementation
of the Jacobi/DIIS solver is provided in the ddCOSMOmodule. Independent of the specific solver, we assume that
its implementation requires as an input the name of a subroutine that performs amatrix-vector product y = Lx and
possibly a routine that applies a preconditioner. Both routines are providedwith a standard interface that requires as
argument the length of the x and y vectors and the vectors themselves, i.e., the subroutine is defined as subroutine
matvec(n,x,y). For the Jacobi solver, only the off-diagonal part of the L matrix is relevant for the matrix-vector
product routine, while the preconditioner applies the inverse diagonal of the L matrix to a vector and has the same
interface than thematrix-vector multiplication routine.

Thematrix-vector multiplication routine performs the following operation

[Yi ]m` =
∑
j ∈Ni

∑
`′m′
[Li j ]mm

′
``′ [Xj ]

m′
`′ = −

∑
j ∈Ni

∑
`′m′

4π

2`′ + 1

Ng∑
n=1

ωn Y
m
` (sn )ω

i j
η (x in ) r

j
`′ (x

i
n )Y

j
`′,m′ (x

i
n ) [Xj ]m

′
`′ . (39)

We implement this operation as follows. First, we compute the `′,m′ sum, by defining the intermediate quantity, for a
given pair of spheres i and j ∈ Ni ,

v
i j
n =

∑
`′m′

4π

2`′ + 1
r
j
`′ (x

i
n )Y

j
`′,m′ (x

i
n ) [Xj ]m

′
`′ . (40)
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We accumulate in v in the contributions of all neighbors j :

v in = −
∑
j ∈Ni

v
i j
n ω

i j
η (x in ) (41)

Finally, we take care of the sum over n :

[Yi ]m` =

Ng∑
n=1

ωnY
m
` (sn )v

i
n . (42)

The first operation (eq. 40) is the evaluation of the potential produced by an internal multipolar distribution in the
center of the j -th sphere at the points on the surface of the i -th sphere that are buried inside sphere j . Note that only
these points need to be considered, as in eq. 41, v i jn is multiplied by the internal characteristic function ωi jη (x in ). The
latter is computed as follows

ω
i j
η (x in ) = d i (x in )χη (r

j
1 (x

i
n )), d in =

min(f in , 1)
f in

, (43)

where f in is defined in eq. 37. We note that for each sphere, thematrix vector multiplication requires O((`max + 1)2Ng )
operations, where the prefactor depends on the number of neighbors of the sphere. Therefore, the global cost of the
matrix-vector multiplication is O(N ). Furthermore, thememory requirements for the computation are limited to the v in
intermediate, plus some O((`max + 1)2) scratch space for the spherical harmonics. Thus, memory requirements are
also linear in the size of the system. In our implementation, a loop over the spheres is themost external structure. For
each sphere, a routine (calcv) is called to perform the operations in eqs. 40 and 41, then a second routine (intrhs)
is called to perform the operations in eq. 42. The external loop can be trivially parallelized, as each sphere is treated
independently.

4.3 | ddCOSMOadjoint linear system
The solution to the adjoint linear system can be obtained with the same solver used for the ddCOSMOequation. Again,
the user must supply a routine that performs the matrix-vector multiplication with the transposed matrix, i.e., that
computes

[Yi ]m` =
∑
j ∈Ni

∑
`′m′
[Lj i ]m

′m
`′` [Xj ]

m′
`′ = −

∑
j ∈Ni

∑
`′m′

4π

2` + 1

Ng∑
n=1

ωn Y
m′
`′ (sn )ω

j i
η (x

j
n ) r i` (x

j
n )Y i` ,m (x

j
n ) [Xj ]m

′
`′ . (44)

We proceed as follows. We first carry out the `′,m′ sum, by assembling

a
j
n =

∑
`′m′

Y m
′

`′ (sn ) [Xj ]
m′
`′ . (45)

Then, we take care of the sum over n :

[u i j ]m` = −
∑
n

ωn ω
j i
η (x

j
n ) r i` (x

j
n )Y i` ,m (x

j
n ) a

j
n . (46)
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Finally, we accumulate over the neighbors j ∈ Ni :

[Yi ]m` =
∑
j ∈Ni

4π

2` + 1
[u i j ]m` . (47)

Again, we note that the cost of the operations required to assemble the matrix vector product is, for each sphere,
O((`max + 1)2Ng ) operations, where the prefactor depends on the number of neighbors. Therefore, the overall matrix-
vector multiplication can be performed with O(N ) operations. As for memory, only the intermediates a in and some
scratch space for computing the spherical harmonics are required. The computation is performed via an external loop
over the spheres. For each sphere, the intermediate a is computed and then a second routine (adjrhs) is called to take
care of the operations in eq. 37 and 47. As for the ddCOSMOmatrix-vector multiplication, the external loop is trivially
parallelizable, as each sphere is treated independently

4.4 | ddCOSMO specific contributions to the forces
When computing the ddCOSMO forces, there are two different contributions that are specific to ddCOSMO. The first
stems from the derivatives of the ddCOSMOmatrix, the second from the derivatives of theUi external characteristic
function that appears in the right-hand side of the ddCOSMO equation. The non ddCOSMO-specific contributions have
already been discussed in section 3.4. The contributions to the force on the i -th atom stemming from the gradients of
the ddCOSMOmatrix are

K i =
∑
j

∑
`m

[Sj ]m`
∑
k ∈Nj

∑
`′m′
(+i [Lj k ]mm

′
``′ )[Xk ]

m′
`′ . (48)

We require that j = k or k ∈ Nj as [Lj k ]mm′``′ = 0 otherwise. First, if j = k , the diagonal blocks of the L matrix do not
depend on the positions of the nuclei, so no contribution to the forces arises. Second, for k ∈ Nj , it is convenient to
distinguish three different cases:

• i = j : We refer to this contribution as KA
i
;

• i = k : We refer to this contribution as K B
i
;

• i ∈ Nj but i , k : This last contribution is referred to as KCi .

The derivation is very cumbersome and can be found in ref. [10]. We report here the final expressions. For the first
contribution, we get

KAi = −
∑
`m

[Si ]m`
∑
k ∈Ni

∑
`′m′

4π

2`′ + 1

Ng∑
n=1

ωnY
m
` (sn )

[
1

rk
ωi kη (x in )δl ′≥1r k`′−1(x

i
n )

(
`′Y k`′,m′ (x

i
n )ek (x in ) + +iY k`′,m′ (x

i
n )

)
+

1

rk
r k`′ (x

i
n )Y k`′,m′ (x

i
n )d i (x in )χ ′η (r k1 (x

i
n ))ek (x in ) − δf in >1r

k
`′ (x

i
n )Y k`′,m′ (x

i
n )d i (x in )ωi kη (x in )Z in

]
[Xk ]m

′
`′ , (49)

where we introduced the notation

δx>y =

{
1 x > y ,

0 x ≤ y .
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The second and third contributions read

K Bi =
∑
j ∈Ni

∑
`m

[Sj ]m`
∑
`′m′

4π

2`′ + 1

Ng∑
n=1

ωnY
m
` (sn )

1

ri

[
ω
j i
η (x

j
n )δ`′≥1r i`′−1(x

j
n )

(
`′Y i`′m′ (x

j
n )e i (x

j
n ) + +iY i`′,m′ (x

j
n )

)
+

(
1 − δ

f
j
n >1

ω
j i
η (x

j
n )

)
d j (x jn )χ ′η (r i1(x

j
n ))r i`′ (x

j
n )Y i`′,m′ (x

j
n )e i (x

j
n )

]
[Xi ]m

′
`′ , (50)

KCi = −
∑
j ∈Ni

∑
`m

[Sj ]`m
∑

k ∈Nj \{i }

∑
`′m′

4π

2`′ + 1

Ng∑
n=1

ωnY
m
` (sn )

1

ri
δ
f
j
n >1

d j (x jn )ω
j k
η (x

j
n )r k`′ (x

j
n )Y k`′,m′ (x

j
n )χ ′η (r k1 (x

j
n ))ek (x

j
n )[Xk ]m

′
`′ .

(51)

We implement these contributions as follows. All three terms share the fact that the sum over `,m can be precomputed.
As a consequence, we assemble before the computation of the forces a vector

a in =
∑
`m

[Sj ]m` Y
m
` (sn ).

Weassemble separately the contribution in eq. 49 and the ones from 50 and eq. 51, the latter being treated together.
Let us start with eq. 49. We take care of the `′,m′ sums first, by assembling, for each grid point and each neighbor k of
the i -th sphere,

α i kn =
∑
`′m′

δl ′≥1
4π

2`′ + 1
r k`′−1(x

i
n )

(
`′Y k`′,m′ (x

i
n )ek (x in ) + +iY k`′,m′ (x

i
n )

)
[Xk ]m

′
`′ , (52)

β i kn =
∑
`′m′

4π

2`′ + 1
r k`′ (x

i
n )Y k`′,m′ (x

i
n )[Xk ]m

′
`′ . (53)

All contributions in eq. 52 and 53 contain quantities that have already been used for the computation of a matrix-vector
product for the ddCOSMO linear system, with the exception of the spherical harmonics gradients. We compute all
the (`max + 1)2 spherical harmonics and their gradients at the same time, in order to reuse intermediates as much as
possible, with an algorithm described in ref. [10] and implemented in the dbasis routine. We emphasize again the key
importance of this step for the overall efficiency of the computation, as it has a tremendous impact on the performance
of the implementation. Note that the computation of β corresponds to computing the potential of the multipolar
distribution [Xk ] at the point x in . Such an operation is also required for the ddCOSMOmatrix-vector products. Once
the intermediate quantities α i kn (a vector of dimension 3) and β i kn (a scalar) have been computed, we accumulate over
the neighbors k , introducing the vector (dimension 3) [vA]in defined as follows:

[vA]in =
∑
k ∈Ni

1

rk
ωi kη (x in )[αA]i kn + d i (x in )

(
1

rk
χ ′η (r k1 (x

i
n ))ek (x in ) − δf in >1ω

i k
η (x in )Z in

)
[βA]i kn . (54)

It is particularly important to stress that the contributions in eq. 54 are very often zero. In particular, no contribution
arises for points on sphere i that are not buried in sphere k . Furthermore, the derivative of the χη (t ) switching functions
are nonzero only if 1 − η < t < 1. Therefore, many points in the n loop can be skipped, either by checking whether
0 < u in = U

i
η (x in ) < 1, which is equivalent to requiring that the point is buried, and by checkingwhether r k1 (x in ) is between
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1 − η and 1. Finally, we accumulate over n , skipping the points for which we know a priori that there is no contribution:

KAi = −
Ng∑
n=1

ωn a
i
n [va ]in . (55)

This contribution is handled by the fdoka subroutine in the ddCOSMOmodule. The cost of this contribution is, for each
atom, O((`max + 1)2Ng ), where the prefactor depends on the number of neighbors.

The second and third contributions are handled as follows. First, we assemble the intermediates for all neighbors j
of the i -th sphere,

α
j i
n =

∑
`′m′

δl ′≥1
4π

2`′ + 1
r i`′−1(x

j
n )

(
`′Y i`′,m′ (x

j
n )e i (x

j
n ) + +iY i`′,m′ (x

j
n )

)
[Xi ]m

′
`′ , (56)

β
j i
n =

∑
`′m′

4π

2`′ + 1
r i`′ (x

j
n )Y i`′,m′ (x

j
n )[Xi ]m

′
`′ . (57)

While we are looping over the grid points and the neighbors j to i , we compute f jn . If such a quantity is larger than
one, we loop over the neighbors k to j that are different from i and compute r k1 (x jn ). If 1 − η < r k1 (x jn ) < 1, there is a
contribution from eq. 51. In order to take care of the latter, we assemble the intermediate

β
j k
n =

∑
`′m′

4π

2`′ + 1
r k`′ (x

j
n )Y k`′,m′ (x

j
n )[Xk ]m

′
`′ (58)

andwe accumulate

[vc ]i jn = −δf jn >1
∑

k ∈Nj \{i }

1

ri
d j (x jn )ω

j k
η (x

j
n )χ ′η (r k1 (x

j
n ))ek (x

j
n )β

j k
n . (59)

Then, we accumulate over the neighbors j

[vB ]in =
∑
j ∈Ni

[
1

ri
ω
j i
η (x

j
n )[α

j i
n ] +

(
1 − δ

f
j
n >1

ω
j i
η (x

j
n )

)
d j (x jn )χ ′η (r i1(x

j
n ))e i (x

j
n )β

j i
n + [vc ]

j i
n

]
a
j
n . (60)

Finally, we accumulate over n and get

K Bi + K
C
i =

∑
n

ωn [vB ]in . (61)

Again, it is important to note that many terms vanish and can be skipped using the same arguments used for the first
one. These contributions are computed by the fdokb subroutine in the ddCOSMOmodule. The cost of this contribution
is, for each atom, O((`max + 1)2Ng ) operations, where the prefactor depends on the number of neighbors. This second
computation is overall slightly more expensive than the first one, although it maintains the same scaling. This concludes
the computation of the contribution arising from the derivatives of the ddCOSMOmatrix.

The last contribution to the ddCOSMO forces is

Gi = −
∑
`m

∑
j

Ng∑
n=1

ωn Y
m
` (sn ) (+iU

j
η (x

j
n ))Φ(x

j
n )[Sj ]m` . (62)



20 LIPPARINI ET AL.

Using the same a jn intermediate used for the other contributions to the forces, we get

Gi = −
∑
j

Ng∑
n=1

ωn (+iU jη (x
j
n ))Φ(x

j
n )a

j
n .

The gradient ofU jn is nonzero only if j = i or j ∈ Ni . In the former case, we get

[vD ]i in = −ΦinZ in . (63)

In the latter case, we get

[vD ]i jn =
1

ri
Φ
j
nχ
′
η (r i1(x

j
n ))e i (x

j
n ). (64)

We can now accumulate

[vD ]in = [vD ]i in a in +
∑
j ∈Ni

[vD ]i jn a
j
n . (65)

We finally accumulate over n and get

Gi =
∑
n

ωn [vD ]in . (66)

The computation of this contribution is carried out by the fdoga subroutine. Its computational cost is O(Ng ), with a
proportionality factor that depends on the number of neighbors.

We conclude this section by pointing out that the computation is performed independently for each atom (sphere),
so that it can be trivially parallelized. Furthermore, the overall computation scales linearly with the number of atoms.

5 | CONCLUSIONS AND PERSPECTIVES
In this Software news report, we have briefly recapitulated the derivation and described in detail the implementation of
ddCOSMO, a new paradigm for the solution of the Conductor-like ScreeningModel equations. We have provided a
complete description of our ddCOSMO implementation and commented extensively on efficiency andmemory issues.
Furthermore, bymaking explicit reference to our implementation we have provided an extensive documentation and
guidelines to interface it with an existing code, either for quantum chemistry or classical molecular dynamics simulation.

Themodular ddCOSMO code is written in Fortran 90. Interfacing it with existing Fortran codes is thus straight-
forward and can be done by following the guidelines given in section 3. The same guidelines can be used, with some
additional technical work, to interface the ddCOSMOmodule with codes written in a different language such as C, C++,
python and others. The detailed description of the implementation provided in section 4, together with the existing
Fortran code that can be used as a reference, aremeant to provide a thorough guide in support of a new implementation,
possibly in a different language.

The implementation of ddCOSMO is not a straightforward task. However, the newdomain-decomposition paradigm
offers several advantages with respect to other implementations. First, the discretization is systematically improvable
and controlled by a very limited number of parameters, whichmakes it easy to have a detailed control from a numerical
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F IGURE 1 Timings (in seconds) for the iterative solution of the ddCOSMOequation (direct), adjoint equation
(adjoint) and for the computation of the ddCOSMO contribution to the forces (forces). Computations performed on a
desktop computer equippedwith an Intel i7-Q7700K quad-core processor running at 4.20GHz and 16GB of RAM. The
following discretization parameters have been used: `max = 6,Ngrid = 110, η = 0.2. We used a convergence threshold of
10−7 for the iterative solver.
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point of view. Second, thanks to the regularization adopted, the continuity of the energy and forces with respect to
the position of the nuclei are guaranteed, which allows for energy-conserving molecular dynamics simulations and
smooth geometry optimizations. Third, it is an intrinsically linear-scaling algorithm and does not require the use of
fast summation techniques, that complicate the implementation and introduce a potential source of numerical errors.
Finally, and most importantly, it is overall much faster - up to three orders of magnitude - with respect to any other
existing implementation. While an extensive benchmark of ddCOSMO is beyond the aims of this software review and
can be found elsewhere, we report in figure 1 the timings to solve the ddCOSMOequation and adjoint equation and to
compute the ddCOSMO contribution to the forces for larger and larger systems. For this example, we choose the first
eight chains of the GFP-like fluorescent protein DRONPA (PDB reference 2GX2), which is composed of three tetramers,
each in turnmade of four chains. The calculations have been performed on a desktop computer equippedwith an Intel
Core i7-Q7700K quad-core processor running at 4.20GHz and equippedwith 16GB of RAM.Wewould like to stress
that, to the best of our knowledge, COSMO computations on systems as large as the ones here reported have never
been attempted with any other implementation, as they would be far too expensive and memory demanding. With
ddCOSMO, such computations can be routinely performed on a standard desktop computer.

In conclusion, ddCOSMO is a new, powerful algorithm that extends the applicability of polarizable continuum solva-
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tionmethods to large and very large systems. Currently, it has been implemented for molecular dynamics simulation
with standard and polarizable force fields [13] and for QMandQM/MMcalculations [7, 11] of the energy, structure,
electric response properties and excitation energies. A distributedmemory parallel implementation of ddCOSMO is
available in the highly scalable Tinker HPmolecular dynamics software [29].

The domain decomposition paradigm has recently been extended [19, 20] to the Integral Equation Formalism -
Polarizable ContinuumModel (IEF-PCM) [30] and to the solution of the linearized Poisson-Boltzmann equation [31].
Extensions of the domain decomposition paradigm to the Solvent Excluded Surface (SES) type of molecular surface [32,
33] has also been developed [34].

The extension of ddCOSMOand its generalizations to other molecular properties is being actively investigated in
our groups. Better andmore efficient parallel implementations are also being investigated, including a CPU implementa-
tion based onMPI and a GPU implementation.
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