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Varying couplings in electroweak theory
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We extend the theory of Kimberly and Magueijo for the spacetime variation of the electroweak
couplings in the unified Glashow-Salam-Weinberg model of the electroweak interaction to include
quantum corrections. We derive the effective quantum-corrected dilaton evolution equations in the
presence of a background cosmological matter density that is composed of weakly interacting and
non-weakly-interacting nonrelativistic dark-matter components.
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I. INTRODUCTION

The studies of relativistic fine structure in the absorption
lines of dust clouds around quasars by Webb et al. [1–3]
have led to widespread theoretical interest in the question
of whether the fine structure constant, �em � e2= �hc, has
varied in time and, if so, how to accommodate such a
variation by a minimal perturbation of existing theories
of electromagnetism. These astronomical studies have
proven to be more sensitive than laboratory probes of the
constancy of the fine structure ‘‘constant,’’ which currently
give bounds on the time variation of _�em=�em � �0:4 �
16 � 10�16 yr�1 [4], j _�em=�emj< 1:2 � 10�15 yr�1 [5],
_�em=�em � �0:9 � 2:9 � 10�16 yr�1 [6] by comparing

atomic clock standards based on different sensitive hyper-
fine transition frequencies, and _�em=�em � �0:3 � 2:0 �
10�15 yr�1 from comparing two standards derived from
1S-2S transitions in atomic hydrogen after an interval of
2.8 years [7]. The quasar data analyzed in Refs. [1–3]
consist of three separate samples of Keck-Hires observa-
tions which combine to give a data set of 128 objects at
redshifts 0:5< z< 3. The many-multiplet technique finds
that their absorption spectra are consistent with a shift in
the value of the fine structure constant between these red-
shifts and the present of �em=�em � ��em�z	 �
�em
=�em � �0:57 � 0:10 � 10�5, where �em � �em�0	
is the present value of the fine structure constant [1–3].
Extensive analysis has yet to find a selection effect that can
explain the sense and magnitude of the relativistic line
shifts underpinning these deductions. Further observatio-
nal studies have been published in Refs. [8,9] using a
different but smaller data set of 23 absorption systems in
front of 23 VLT-UVES quasars at 0:4 � z � 2:3 and have
been analyzed using an approximate form of the many-
multiplet analysis techniques introduced in Refs. [1–3].
They obtained �em=�em � �0:6 � 0:6 � 10�6, a figure
that disagrees with the results of Refs. [1–3]. However,
reanalysis is needed in order to understand the accuracy
being claimed. Other observational studies of lower
sensitivity have also been made using OIII emission
lines of galaxies and quasars. The analysis of data sets
of 42 and 165 quasars from the Sloan Digital Sky Survey
gave the constraints �em=�em � 0:51 � 1:26 � 10�4
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and �em=�em � 1:2 � 0:7 � 10�4, respectively, for ob-
jects in the redshift range 0:16 � z � 0:8 [10].
Observations of a single quasar absorption system at z �
1:15 by Quast et al. [11] gave �em=�em � �0:1 � 1:7 �
10�6, and observations of an absorption system at z �
1:839 by Levshakov et al. [12] gave �em=�em � 4:3 �
7:8 � 10�6. A preliminary analysis of constraints derived
from the study of the OH microwave transition from a
quasar at z � 0:2467, a method proposed by Darling
[13], has given �em=�em � 0:51 � 1:26 � 10�4 [14]. A
comparison of redshifts measured using molecules and
atomic hydrogen in two cloud systems by Drinkwater et
al. [15] at z � 0:25 and z � 0:68 gave a bound of
�em=�em < 5 � 10�6 and an upper bound on spatial
variations of 
�em=�em < 3 � 10�6 over 3 Gpc at these
redshifts. A new study comparing UV absorption red-
shifted into the optical with redshifted 21 cm absorption
lines from the same cloud in a sample of 8 quasars
by Tzanavaris et al. [16]. This comparison probes the
constancy of �2gpme=mp and gives �em=�em � 0:18 �

0:55 � 10�5 if we assume that the electron-proton mass
ratio and proton g-factor, gp, are both constant.

Observational bounds derived from the microwave
background radiation structure [17] and big bang nucleo-
synthesis [18] are not competitive at present (giving
�em=�em & 10�2 at best at z� 103 and z� 109–1010)
with those derived from quasar studies, although they
probe much higher redshifts.

Other bounds on the possible variation of the fine struc-
ture constant have been derived from geochemical studies,
although they are subject to awkward environmental un-
certainties. The resonant capture cross section for thermal
neutrons by samarium-149 about two billion years ago (z ’
0:15) in the Oklo natural nuclear reactor has created a
samarium-149:samarium-147 ratio at the reactor site that
is depleted by the capture process 149Sm � n! 150Sm �
� to an observed value of only about 0.02 compared to the
value of about 0.9 found in normal samples of samarium.
The need for this capture resonance to be in place two
billion years ago at an energy level within about 90 meVof
its current value leads to very strong bounds on all inter-
action coupling constants that contribute to the energy
-1  2005 The American Physical Society
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level, as first noticed by Shlyakhter [19,20]. The latest
analyses by Fujii et al. [21] allow two solutions (one
consistent with no variation, the other with a variation)
because of the double-valued form of the capture cross
section’s response to small changes in the resonance en-
ergy over the range of possible reactor temperatures:
�em=�em � �0:8 � 1:0 � 10�8 or �em=�em � 8:8 �
0:7 � 10�8. The latter possibility does not include zero but
might be excluded by further studies of other reactor
abundances. Subsequently, Lamoureaux [22] has argued
that a better (non-Maxwellian) assumption about the
thermal neutron spectrum in the reactor leads to a 6�
lower bound on the variation of �em=�em > 4:5 � 10�8

at z ’ 0:15.
Studies of the effects of varying a fine structure constant

on the�-decay lifetime was first considered by Peebles and
Dicke [23] as a means of constraining allowed variations in
�em by studying the ratio of rhenium to osmium in mete-
orites. The �-decay 187

75 Re ! 187
76 Os � ��e � e� is very sen-

sitive to �em and the analysis of new meteoritic data
together with new laboratory measurements of the decay
rates of long-lived beta isotopes has led to a time-averaged
limit of �em=�em � 8 � 16 � 10�7 [24] for a sample
that spans the age of the solar system (z � 0:45). Both
the Oklo and meteoritic bounds are complicated by the
possibility of simultaneous variations of other constants
which contribute to the energy levels and decay rates (for
reviews, see Refs. [25,26]). They also apply to environ-
ments within virialized structures that do not take part in
the Hubble expansion of the universe and so it is not
advisable to use them in conjunction with astronomical
information from quasars without a theory that links the
values of �em in the two different environments that differ
in density by a factor of O�1030	.

In order to interpret these investigations it is essential to
be in possession of a self-consistent theory of the space-
time variation of �em, analogous to the Brans-Dicke theory
[27] for the variation of G, from which to derive further
observational consequences of any inferred variation. In
the past, in the absence of any such theory, there has been a
tendency to produce limits on variations of couplings other
than �em by simply ‘‘writing in’’ a time variation of the
coupling into the equations that hold when it is constant.
Many of the quoted experimental bounds on the variation
of nongravitational ‘‘constants’’ that appear in the litera-
ture have been arrived at in this way. Also questionable is
the use of laboratory bounds to limit possible variations of
constants on extragalactic scales without any theory of the
link between the two domains of variation. Detailed dis-
cussions of this problem when G and � vary have been
made in Refs. [28,29]. A further problem is the likelihood
that if one coupling constant, like �em, varies then others
will vary also, especially in the presence of any pattern of
unification [15,30]. Most deductions of bounds on con-
stants assume that only one constant is varying.
063525
In order to deal with these problems of simultaneous
variation and spatial variation consistently, it is necessary
to have self-consistent theories in which constants vary
through the dynamics of scalar fields, which gravitate
and conserve energy and momentum. Sandvik, Barrow
and Magueijo (SBM) [31] have extended Bekenstein’s
(B) [32] original generalization of Maxwell’s theory to
include general relativity. This resulting BSBM theory
provides a framework for studying varying �em, and can
be easily generalized to study the simultaneous variation of
�em and G, as in Ref. [33]. A number of detailed cosmo-
logical studies of the behavior of this theory have been
made in Refs. [31,34–38]. A further step has recently been
taken by Kimberly and Magueijo [39] who have extended
the BSBM theory to create a generalization of the
Glashow-Salam-Weinberg theory to allow variation of
the electromagnetic and weak couplings. This allows the
consequences of electroweak unification to be investigated
self-consistently for the first time. This approach has also
been applied to the strong interaction alone by Chamoun et
al. [40] and it is likely that a further step could be taken to
investigate the consequences of the simultaneous variation
of all gauge couplings in a grand unified theory. In this
paper we determine the quantum corrections to the
Kimberly-Magueijo unified electroweak models and for-
mulate the propagation equations for the two scalar fields
that carry the allowed time variations in the electromag-
netic and weak couplings in a universe populated by the
particle spectrum of the standard model.

II. THE SIMPLEST MODEL

There has been strong interest in a class of scalar theo-
ries where �em � e2= �hc can vary [31,32,34–38,41–44].
These theories reduce to Maxwell’s equations and general
relativity in the limiting case of no variation in the fine
structure constant. In order to evaluate the constraints
introduced by a program of unification, it is important to
extend these simple models to include electroweak and
grand unification. Kimberly and Magueijo [39] have pro-
posed an extension to the Glashow-Salam-Weinberg
(GSW) electroweak theory in which the weak couplings
can also vary in space and time and which reduces to the
standard GSW theory in the limit of no variation.

A. A single-dilaton theory
The first model (KM-I) contains a single dilaton and

allows both �W :� g2
W and �em to vary but their ratio, and

hence the mixing angle �W , are true constants. In this
model the electroweak sector of the standard model is
described by the following Lagrangian density:

L KM-I � �
1

4
e�2’�w�� � w�� � y��y

��
 � �D��	y

� �D��	 �
�
4
��y� � v2	2 �

!
2
’;�’

;�;

(1)
-2



VARYING COUPLINGS IN ELECTROWEAK THEORY PHYSICAL REVIEW D 71, 063525 (2005)
where

w �� � 2w��;�
 � gWw� ^ w�; (2)

y�� � 2y��;�
; (3)

D�� �

�
@� �

i
2
gWt � w� �

i
2
gYy�

�
� (4)

and � is the Higgs field. The dilaton field is ’ and ! is a
dimensional parameter with units of �mass	2. Since this
theory is perturbatively nonrenormalizable, we would like
! � O�M2

pl	 so that the dilaton enters at the same level as
gravity, and we are justified in ignoring any quantum
fluctuations of the dilaton field when quantizing with re-
spect to the other fields. The auxiliary gauge fields, w� and
y�, take values in the adjoint representations of su�2	 and
u�1	 respectively. They are not the physical gauge fields,
which will be denoted by capital letters, but are related to
them by the transformations

�gWw� � gWW�; (5)

�g Yy� � gYY�; (6)

gW � �gWe
’; (7)

gY � �gYe
’: (8)

The distinction between the physical and auxiliary fields
will only become important at the quantum level (see
Sec. III below). When written in terms of these auxiliary
gauge fields the covariant derivatives which act upon mat-
ter species are independent of ’. This makes it simpler to
derive the classical field equations. The physical gauge
couplings, gW and gY , are dynamical whereas the auxiliary
couplings, �gW and �gY , are arbitrary constants. At tree-level
the Fermi constant GF and the fermion masses do not vary,
whereas the W and Z boson masses do.

We will also define the physical field strength tensors by

W �� :�
�gW
gW

w��; (9)

Y�� :�
�gY
gY
y��: (10)

These field strengths reduce to the standard definitions of
the weak and hypercharge field strengths with gauge cou-
plings gW and gY , respectively, whenever the dilaton field
’ is constant.

B. A two-dilaton theory

In the second model (KM-II) proposed in Ref. [39] a
second dilaton field is added. This results is the weak
mixing angle �W becoming a dynamical quantity. The
Lagrangian density of the electroweak sector in this model
063525
is

L KM-II � �
1

4
e�2’w�� � w�� �

1

4
e�2&y��y��

� �D��	y�D��	 �
�
4
��y� � v2	2

�
!1

2
’;�’;� �

!2

2
&;�&;�: (11)

The definitions (2)–(4) still hold, as do relationships (5)
and (6), but the physical coupling constants are now related
to their auxiliary values by the transformations

gW � �gWe’; (12)

gY � �gYe
&; (13)

tan�W �

�
�gY
�gW

:� tan ��W

�
e&�’: (14)

The dilaton fields are ’ and & and their respective dimen-
sionful scales are !1 and !2. As remarked above, we
would like !i �O�M2

Pl	. In accord with KM-I, GF and
the fermion masses are constant at tree-level whereas the
boson masses are dynamical.

C. Symmetry breaking

At low energies and temperatures, the most important
feature of the GSW electroweak model is that the
SU�2	L �U�1	Y symmetry of the Lagrangian is spontane-
ously broken to U�1	em via the Higgs doublet �, assuming
a vacuum expectation value �0, which minimizes its po-
tential. At tree-level this value is

�0 �
0
v

� �
: (15)

A perturbative expansion about this vacuum can be written
as

� �
0

v� H�x�	��
2

p

 !
: (16)

Expanding out the kinetic Higgs term gives

�D��	y�D��	 �
1

2
H;�H;� �

v2�gW	
2

4
��w1

�	
2 � �w2

�	
2


�
v2

4
�gWw3

� � gYy�	2: (17)

When written in terms of the physical gauge fields, the
broken-phase boson fields of both KM-I and KM-II are
given by the usual formulas:

W�
� :�

1���
2

p �W1
� � iW2

�	; (18)
-3



DOUGLAS J. SHAW AND JOHN D. BARROW PHYSICAL REVIEW D 71, 063525 (2005)
Z� :�
gWW3

� � gYY��������������������
g2
W � g2

Y

q ; (19)

A� :�
gYW3

� � gWY��������������������
g2
W � g2

Y

q : (20)

Hence, the tree-level boson masses and their dilaton field
dependence can read off from (17):

MW �
v���
2

p gW; (21)

MZ �
v���
2

p
�������������������
g2
W � g2

Y

q
; (22)

MA � 0: (23)
D. Classical field equations

In order to make and test the predictions of these theo-
ries we need to know the field equations. In both KM-I and
KM-II, the Einstein and Yang-Mills equations are

G�� � 8.G
	

�g2
W

g2
W

Tw���
�g2
Y

g2
Y

Ty���T1���Tmatter
�� �Tdilaton

��



;

(24)

D �
�

�g2
W

g2
W

w��

�
� �


Lmatter


w�
; (25)

@�
�

�g2
Y

g2
Y

y��

�
� �


Lmatter


y�
; (26)

where Tw�� and Ty�� are the standard Yang-Mills energy-
momentum tensors written in terms of the auxiliary fields
and couplings. In KM-I the dilaton conservation equation
is

�’ � �
1

2!
e�2’�w�� � w�� � y��y��	

� �
1

2!
�W�� �W�� � Y��Y��	: (27)

and in KM-II we have conservation equations for the two
fields:

�’ � �
1

2!1
e�2’w�� � w�� � �

1

2!1
W�� �W��;

(28)

�& � �
1

2!2
e�2&y�� � y

�� � �
1

2!2
Y��Y

��: (29)

The conservation equations for other matter fields, like
perfect fluids, are unchanged. Although this system repre-
sents the full classical field equations, their current form is
063525
not very useful. In order to do cosmology, and make
experimentally testable predictions, we need to understand
how the right-hand sides of (27)–(29) depend on macro-
scopic quantities such as the background matter density
and the value of the dilaton field. It is this question that we
address in the next section.
III. THE DILATON-TO-MATTER COUPLING

Most tests which we might wish to apply to these, and
other, varying-constant theories require knowledge of how
the dilaton fields will evolve in the presence of some
background matter density 2 and pressure P:

2 :� hT0�matter	
0 i; P :�

1

3
hTi�matter	
i i;

where h�i denotes the quantum expectation. In order to
understand the dilaton evolution, we must therefore evalu-
ate the terms on the right-hand sides of (27)–(29) under
the h�i operation. Those terms all consist of terms quadratic
in the Yang-Mills field strengths, i.e. W�� �W�� and
Y��Y

��; henceforth we refer to them collectively as
F��F�� or F2 terms.

When we quantize this theory (leaving ’ as a classical
field) we must do so with respect to the physical gauge
fields rather than the auxiliary ones, since it is only the
physical fields whose kinetic terms possess the correct
normalization. This feature is important if we want the
renormalization procedure to go through as usual when
’ � const. It is for this reason that we have labeled the
capitalized fields as physical.

While the SU�2	L sector of GSW theory is a non-
Abelian Yang-Mills theory, non-Abelian effects may be
ignored when finding the leading-order g dependence of
the F2 terms so long as perturbative theory holds i.e.
whenever g� 1. When this happens all non-Abelian
Feynman graphs enter with a higher power of g than
does the Abelian single vector boson exchange graph,
and so, provided that perturbative theory is appropriate,
we may ignore the non-Abelian graphs when finding the
leading-order behavior. The non-Abelian effects represent
some of the radiative corrections to the calculated results;
at energies � MZ, these will be small. The running of
gweak means that GSW theory remains in this sense pertur-
bative at all energies. This is not the whole story since the
Higgs couplings also run, and when this is taken into
account nonperturbative behavior will occur at high ener-
gies. The precise energy where the onset of nonperturba-
tive behavior occurs depends on the Higgs mass, MH. For
reasonable values ofMH < 750 GeV, however, this energy
is still >1 TeV and hence well above MZ. Hence our
results are certainly true for all particles, mass m, where
m2 � M2

Z; the m2 * M2
Z is given with the caveat that

perturbation theory should still hold at energies E � m.
For energies E� MH we may also ignore fluctuations in
-4
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the Higgs field, since they are suppressed by factors of the
order of E2

M2
H
.

A. Derivation

We need to understand how these hF2i terms depend, in
a functional sense, on the dilaton fields and the background
matter density 2. For simplicity, we consider the case of a
single Dirac fermion  of massm, coupled to aU�1	 gauge
field A� with Higgs scalar � and dilaton ’. The effective
Lagrangian, including ’t Hooft’s gauge-fixing term, is

L � Lgauge;0 �Lfix �L ;0 �Lint (30)

Lgauge;0 � �
1

4
F��F�� �

�����
�
@� � i

MA

v
A�

�
�

�����2

�
�
4

�
�y� �

v2

2

�
2

(31)

L fix � �
1

25
�@�A� � 5MA Im��		2 (32)

L  ;0 � � �i��@� �m	 (33)

L int � �e�’	 � �� A�: (34)

The ghost fields have been excluded since in this gauge
they decouple from the Abelian sector. By taking a space-
063525
time region R, of volume V and temporal extent T, that is
large compared to the scale of quantum fluctuations of the
matter and gauge fields, and yet small when compared to
the scale over which the dilaton field varies, we can quan-
tize this theory inside R by taking ’ � const and defining
the partition function in the usual manner. For energies far
below the Higgs mass mH, we can ignore quantum Higgs
fluctuations in the first approximation. Doing this and
integrating out the gauge fields we determine that

�
1

4
hF��F��i �

e2�’	
2VT

ZZZ
d4xd4yd4zh@2

xD
gauge
�� �x� y	

� � � �� 	�y	D�
2

gauge�x� z	� � �2 	�z	

� @�xD
gauge
�� �x� y	� � �� 	

� �y	@7xD
gauge
72 �x� z	� � �2 	�z	i,;

(35)

where the gauge-field propagator is given by

D gauge
�� �x	 �

Z d4k

�2.	4
ieikx

�
�g�� �

�1 � 5	k�k�

k2 � 5M2
A

�

�
1

k2 �M2
A

:

The quantum expectation operator h�i,, used in Eq. (35), is
defined thus:
hA� ; � 	i, :�

R
�d � 
�d 
A� ; � 	 exp��i e

2

2

RR
d4xd4yJ��x	Dgauge�x� y	J��y		ei

R
d4xL ;0R

�d � 
�d 
 exp��i e
2

2

RR
d4xd4yJ��x	Dgauge�x� y	J��y		ei

R
d4xL ;0

: (36)
The
R
�d 
 represents a functional integral with respect to

the  -field, and we have defined J��x	 :� � �x	�� �x	.
The term with an exponent that is quadratic in the J’s in
Eq. (36) encodes the self-energy corrections to the fermion
and gauge boson propagators. By writing both the fermion
and gauge boson propagators as full propagators we are
justified in dropping the aforementioned exponential term
because its effect is of subleading order. Finally then, by
writing this expression in momentum space we reduce it to
the more transparent and manifestly gauge invariant form:

�
1

4
hF��F

��i �
e2�’	
2VT

Z d4p

�2.	4
p2��p2 �M2

A�’		g
��

� .��
A �p; e2�’	
	�2h~J��p	~J���p	i,�;

(37)

where ~J� is the momentum space representation of J� and
.��
A is the vacuum polarization of the gauge boson. The

expectation here is defined with respect to the partition
function
Z,� :�
Z
�d � 
�d 
 exp

�
i
Z

d4xd4y � �x	K�x� y	 �y	
�

with K�x� y	 denoting the inverse of the full fermion
propagator.

B. Interpretation

By Wick’s theorem it is apparent that the remaining
quantum expectation in (37) contains two distinct contri-
butions. The first contribution will always involve boson
exchange between two fermionic particles and so is pro-
portional to �2� 3P	2=m2 to leading order. The second
contribution results from a single fermionic particle admit-
ting and reabsorbing a gauge boson (i.e. the process that
results in the fermion’s self-energy). This second term will
clearly be proportional to m2�2� 3P	 to leading order. In
almost all cases of experimental interest �2� 3P	=m4 �
1. Only in objects whose density approaches that of nuclear
matter does it fail to hold and this naive quantization
procedure is not suitable for dealing with such high-density
backgrounds. For this reason we drop the contribution due
to photon exchange.
-5



DOUGLAS J. SHAW AND JOHN D. BARROW PHYSICAL REVIEW D 71, 063525 (2005)
When the perturbation theory holds it is appropriate to expand (37) as a series in the gauge coupling e2�’	, giving

�
1

4
hF��F��i � e2;�’	�2� 3P	�1 �O�e2 lne		

�
1 �O

�
2

m4

��
(38)

where, for this model, ; is a defined by

;�’	�2� 3P	 �
ZZ d4p

�2.	4
d4q

�2.	2
p2

�p2 �M2
A�’		

2 tr
�
��
q � ��m

q2 �m
��

�p� q	 � ��m

�p� q	2 �m

�
: (39)
When interfermion strong interactions are introduced,
confinement may occur. If this happens the trace factor in
(39) will take on a more complicated form. At leading
order, however, it will remain independent of ’ so long as
0QCD is. At densities much lower than the nucleon mass,
the right-hand side will be proportional to the hadronic
energy density.

C. The unbroken symmetry case: MA� 0

It is helpful to have a physical interpretation of the ;
parameter. When dynamical symmetry breaking does not
occur (and so we have M2

A � 0) the right-hand side of (39)
is proportional to the 1-loop fermion field self-energy
resulting from its interaction with the A� gauge field.
Defining this self-energy to be 
m2�’	 we have

; �

m2�’	

e2�’	m2 �

 �m2

�e2m2 � const: (40)

In this case ; is ’-independent at leading order. 
 �m is
defined as the electromagnetic mass-correction when the
electric charge is some value �e � const.

D. The broken symmetry case: MA� 0

When M2
A � 0 the above interpretation of ; in terms of

the self-energy mass-correction will, in general, fail. The
correct physical interpretation will depend heavily on the
size of m

MA�’	
. We consider the three cases:
(i) m
M
A

� 1. The dominant contribution to the ; inte-
gral will come from momenta p2 � M2

A, and so we
can ignore MA at leading order and interpret ; just
as we did in the MA � 0 case. Hence, ; is dilaton
independent to leading order.
(ii) m
M
A

� 1. The dominant contribution to the (39) will
come from momenta p2 � m2. Hence

;�’	 �
�

m
MA�’	

�
4
;0; (41)

where ;0 is of the order the value of ; which
we would have had if MA � 0. In this case ; will
vary with ’ like 1

M4
A

.

(iii) m
MA
� O�1	. This is by far the most difficult case to

analyze. In general, ; will have a leading-order
dependence on the dilaton field through MA�’	,
but the precise form ;�’	 will depend on the nature
of the trace term in Eq. (39). This in turn rests on
063525-6
the precise details of the microscopic physical
model for the matter fields in question. This chain
of complications means that a general prescription
for the dilaton dependence of ; , in this case, is not
possible.
IV. APPLICATIONS TO THE KIMBERLY-
MAGUEIJO MODELS

A. Ultrarelativistic matter

At the very high energies required to restore the broken
gauge symmetry in these theories, most matter species will
be ultrarelativistic and we will assume this to be the case
for all species. We will also assume that there is a discrete
spectrum of spin states. Matter will therefore behave like
blackbody radiation with 2 � 3P. It is clear from Eq. (38)
that these ultrarelativistic species do not contribute to the
hF2i terms which source the dilaton fields’ evolution.

The only uncharged fundamental field is the neutrino,
which we will assume to be so light that it remains rela-
tivistic at experimental and cosmological temperatures.
Such neutrinos make only a very small contribution to
the dilaton source terms. The corollary of this is that,
among the known fundamental matter species, we are
justified in assuming that only those with nonzero charge
contribute to the right-hand sides of Eqs. (27), (29), and
(29).

The seesaw mechanism for neutrino mass-generation
results in three light neutrinos, masses m�i	

� (corresponding
to the currently observed particles) and three very heavy
neutrinos, masses M�i	

N � a few tens of GeV. The light
neutrinos are formed mostly from the weakly interacting
left-handed components, while the heavy neutrinos are
primarily composed of the weak singlet right-handed par-
ticles. Such heavy neutrinos would therefore interact with
the weak bosons much more weakly that other massive
particle species. To zeroth order in m�i	

� =M
�i	
N � 1, we can

assume these heavy neutrinos to be noninteracting with
either electromagnetic or weakly interacting particles.
Their contribution to the hF2i terms will be negligible
compared to that of the other matter species.

B. The top quark

With a mass of about 180 GeV, the top quark is the only
fermionic species present in the standard model that does
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not fall into the m
MW

� 1 category. While in principle its
contribution to the dilaton terms could be calculated, it
would be a difficult procedure which would require ac-
counting for gauge boson self-interactions, Higgs boson
fluctuations, and nonperturbative effects—as well as hav-
ing to do QCD calculations. However, the results would
actually have very little bearing upon most cosmological
tests of this theory, since the background energy density of
top quarks is entirely negligible when compared to that of
all the other forms of matter.

C. ‘‘Light’’ charged matter

We have just argued that, among the standard model
particle species, the only non-negligible contributions to
the dilaton source terms will come from particles with
mass m and charge Q � 0, which are light compared to
MW . We must also require the particles to be relativistic,
allowing us to restrict to the low-energy broken symmetric
phase of the KM electroweak theories. This is appropriate
for energies well below the 100 GeV level. At these
energies, perturbation theory will be appropriate and non-
Abelian effects will be of subleading order. In this case
then, the results of Sec. II should be valid.

Writing the hW�� �W��i and hY�� � Y��i quantities in
terms of the low-energy physical fields, we find

h�1
4W�� �W��i � �h�1

2F
y
W� � FW�i � sin2�Wh�

1
4F

2
emi

� cos2�Wh�
1
4F

2
Zi

� sin�W cos�Wh�
1
2Fem � FZi


� �1 �O�@��W	 �O�gW; gY	
 (42)
h�1
4Y�� � Y

��i � �cos2�Wh�
1
4F

2
emi � sin2�Wh�

1
4F

2
Zi

� sin�W cos�Wh�
1
2Fem � FZi


� �1 �O�@��W	
: (43)

The O�@��W	 terms produce only negligible corrections.
The O�gW; gY	 symbol represents the additional terms that
arise from gauge boson self-interactions; these only con-
tribute at subleading order.

Thus for a nonrelativistic particle species  i
of mass mi � MW , charge Qi � 0, and weak isospin t3i,
we see that only h�1

4F
2
emi will contribute to (42) and (43)

at leading order. The h�1
4F

2
Zi, h�1

4jF
2
W�ji and

h�1
2Fem � FZi terms are suppressed by relative factors

of the order of �g2
W=�Q

2
i e

2cos2�W	
�m
4
i =M

4
Z	�

�t3i � 2Qsin2�W	2, �g2
W=�Q

2
i e

2	
�m4
i =M

4
W	t

2
3i and

�gW=�Qie cos�W	
�m2
i =M

2
Z	�t3i �Qisin

2�W	, respectively.
The leading-order contributions of such a light matter
species to (42) and (43) therefore reduce to
063525
�
�

1

4
W�� �W��

�
i
� sin2�W

e2

�e2


 �m2
i

m2
i

2i;�
�

1

4
Y��Y

��
�
i
� cos2�W

e2

�e2


 �m2
i

m2
i

2i;
(44)

where 
 �m is defined as the electromagnetic mass-
correction when the electric charge is some value �e �
const.
D. Dark matter

There is a great deal of evidence from cosmological and
astronomical data for the existence of dark matter which
contributes about 27% of the gravitating mass density of
the universe. Such matter must be nonbaryonic, electro-
magnetically noninteracting and nonrelativistic (‘‘cold’’).
It appears that the standard model lacks any suitable dark-
matter candidates. Weakly interacting massive particles
(WIMPS), such as the lightest putative supersymmetric
partners in Minimally Supersymmetric Standard Model,
are one possible class of candidates for dark matter. The
masses of these particles tend to be of the order of a few
tens of GeVs and so fall into the m � MW category.
Locally, if dynamically virialized, they will have keV
energies which may allow them to be detected in under-
ground nuclear recoil experiments. They are necessarily
uncharged (Q � 0) but they can however interact weakly
and as such contribute to the h�1

4F
2
Zi and h�1

4jF
2
W�ji terms.

Thus the leading-order contribution from these WIMPs to
(42) and (43) would be given by

�
�

1

4
W�� �W��

�
wimp

�
g2
W

�g2
W

�
FW

�m2
wimp

M2
W

�

�F Z

�mwimp2

M2
Z

��
2wimp;

�
�

1

4
Y��Y

��
�

wimp
�
g2
W

�g2
W

tan2�WF Z

�m2
wimp

M2
Z

�
2wimp;

(45)

where we have defined FW and F Z to be WIMP-model
dependent ‘‘structure’’ functions. These encode precisely
how the WIMP’s ; parameters depend on the gauge boson
masses. We expect jFW j and jF Zj to be � 1. Not much
more can be said about their structure as functions of the
dilaton field without the aid of a microscopic model for
dark matter. We shall therefore leave this discussion for a
separate work. It should be noted also that, if FW and F Z
are no more than an order of magnitude or so smaller than
the ;em parameter of baryonic matter, then WIMP-based
dark matter could well be the dominant factor in the
cosmological evolution of the dilaton fields because the
cosmological dark-matter density in WIMPs is an order of
magnitude greater than that of baryonic matter.
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V. DISCUSSION

In this paper we have derived the form of the effective
dilaton field equations for an electroweak theory with
varying couplings in the presence of a background matter
density. It is this form that is of most use for experimental,
observational and cosmological tests of this theory. We
took particular care in the identification of the physical
gauge fields. In previous work on BSBM theory, the dilaton
dependence of the F2 source term was incorrectly deter-
mined as a result of the auxiliary fields mistakenly taken to
be the physically propagating modes. This error resulted in
the statement:

�e2

e2

�
�

1

4
f��f

��
�
�

�e2

e2


 �m2

m2 � e�2’;2; (46)

where f�� � 2@��a�
 was the auxiliary field strength, and
a� the auxiliary photon field. 
 �m is defined as the electro-
magnetic mass-correction when the electric charge is some
value �e � const. This led to the conclusion that the
leading-order dilaton field dependence went like �e2

e2 �

e�2’. However, it is clear from Eqs. (39) and (40) that in
reality the leading-order dilaton dependence should be
e2

�e2 � e�2’ and Eq. (46) should read�
�

�e2

e2

1

4
f��f��

�
�
e2

�e2


 �m2

m2 2 � e2’;2: (47)

Indeed Eq. (46) is problematic because, in the limit of
zero electric charge, matter decouples from the photon, and
so cannot possibility contribute to the F2

em term. This
situation corresponds to ’! �1. However, in this limit,
the F2

em term as given by the right-hand side of Eq. (46)
grows infinity large. Equation (47) shows the correct be-
havior, and vanishes, as it should, at this limit.

We have also seen that if the gauge bosons become
massive then, for particles which are much lighter than
the gauge boson in question, the leading-order dilaton
dependence of the F2 term changes from g2 (g is the
physical gauge coupling) to g2=M4

gauge �
1
g2 . For particles

that are much heavier than the gauge boson in question,
provided perturbation theory is still valid at energies of the
order of the particle’s mass, the leading-order dilaton
dependence remains as g2. We also briefly discussed the
complication of mparticle � Mgauge, whereby the leading-
order dilaton dependence will be highly susceptible to
the details of the matter model in question, and noted
that this effect might be important in cosmology if dark
matter is weakly interacting.

In all of this analysis we assumed both that perturbation
theory holds and that any non-Abelian effects are negli-
gible. While this is true for electroweak theory at energies
well below the Higgs boson mass, it will not be true for
QCD. If we were to construct a BSBM-like varying
�strong � g2

strong (or equivalently, varying 0QCD) theory,
we would expect the leading-order dilaton dependence of
063525
the F2
strong term to come from a complicated function of

gstrong. Evaluating this function would, at the very least,
require us to be able to predict quark and nucleon masses
accurately via a QCD calculation which is not yet possible.
In the absence of such calculations, varying 0QCD theories
will be difficult to test accurately or make use of in the
early universe except at the very highest energies.
Fortunately, we do not encounter these problems in the
electroweak KM theories.

We conclude with a statement of the effective dilaton
field equations we have derived. In the KM-I theory these
are

�’ �
2

!
e2’

X
i

;i2i �
2

!
e2’

�
FW

� m2
wimp

MW�’	2

�

� sec2�WF Z

� m2
wimp

MZ�’	
2

��
2wimp; (48)

where the sum is over all charged matter species (with
m� MW). The first term is identical to the properly
evaluated source term in BSBM. Hence the effective
KM-I theory differs (at low energies and densities) from
BSBM only in the putative WIMP matter contribution. If
we transform ’! �’ then we can read off the explicit
correspondence with the studies in Refs. [28,29,31,34–
38]. When ;=! < 0 we obtain slow logarithmic growth
of the fine structure constant during the dust dominated era,
as ’ / ln�ln�t� t0	
, t0 constant but constant-’ behavior
during the radiation and dark-energy dominated eras. If
;=! > 0 then the solutions predict a much stronger evo-
lution of � with time that is difficult to reconcile with the
observational constraints. The sign of ;=! is controlled by
the sign of ; 2 ��1; 1
 and of!. Positive ; corresponds to
‘‘normal’’ matter which is dominated by electrostatic con-
tributions, whereas negative ; corresponds to matter (like
superconducting cosmic strings which have ; � �1) that
is dominated by magnetic energy. Positive ! corresponds
to a positive kinetic contribution to the energy by the ’
field while negative ! indicates that it is a ghost field, as in
Ref. [45].

In the KM-II theory the effective dilaton equations are

�’�
2

!1
sin2�W

�em�’;&	
��em

X
i

;i2i

�
2

!1
e2’

�
FW

� m2
wimp

MW�’	
2

�
�F Z

� m2
wimp

MZ�’;&	
2

��
2wimp

(49)

�& �
2

!2
cos2�W�’;&	

�em�’;&	
��em

X
i

;i2i

�
2

!2
e2&tan2 ��WF Z

� m2
wimp

MZ�’;&	
2

�
2wimp: (50)
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A similar menu of possibilities exists for the sign of the
leading term on the right-hand side of the �’ and �&
equations as was the case for the KM-I theory discussed
above. In the absence of the permitted dark-matter contri-
butions, this two-dilaton theory will only reduce to BSBM
when !2sin

2�W � !1cos2�W . In all other cases �W will
vary and lead to an evolution of �em that is different from
063525
that of BSBM theory. Further cosmological consequences
of these results will be explored elsewhere.
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