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Abstract

Bekenstein’s model of a scalar field, φ, that affects the electromagnetic permeability

(usually identified with “changing α”) predicts tiny variations of the effective fine structure

constant up to very high red-shifts, |α(z = 3.5)/α0− 1| < 10−10, when the constraints from

Eötvös-Dicke-Braginsky types of experiments are imposed. We generalize this model by

allowing additional couplings of φ to both a dark matter candidate and to the cosmological

constant. We show that in a supersymmetric generalization of Bekenstein’s model, the

coupling to the LSP, which is assumed to contribute significantly to the dark matter density,

can be up to six orders of magnitude stronger than the coupling to the baryon energy density.

This allows one to evade the present limits on the non-universality of the gravitational

attraction due to φ-exchange and at the same time accommodate the effective shift in α

at the level of α(z = 3.5)/α0 − 1 ∼ 10−5, reported recently from observations of quasar

absorption spectra.

http://arxiv.org/abs/hep-ph/0110377v1


1 Introduction

Speculations that fundamental constants may vary in time and/or space go back to the

original idea of Dirac [1]. Despite the reputable origin, this idea has not received much

attention during the last fifty years for the two following reasons. First, there exist various

sensitive experimental checks that coupling constants do not change (See, e.g. [2]). Second,

for a long time there has not been any credible theoretical framework which would predict

such changes.

Our theoretical mindset, however, has changed since the advent of the string theory.

One of the most interesting low-energy features of string theory is the possible presence

of a massless scalar particle, the dilaton, whose vacuum expectation value defines the size

of the effective gauge coupling constants. A change in the dilaton v.e.v. induces a change

in the fine structure constant as well as the other gauge and Yukawa couplings. The

stabilization of the dilaton v.e.v., which usually renders the dilaton massive, represents one

of the fundamental challenges to be addressed before string theory can aspire to describe

the observable world. Besides the dilaton, string theory often predicts the presence of other

massless or nearly massless moduli fields, whose existence may influence particle physics

and cosmology and may also change the effective values of the coupling constants as well.

Independent of the framework of string theory, Bekenstein [3] formulated a dynamical

model of “changing α”. The model consists of a massless scalar field which has a linear

coupling to the F 2 term of the U(1) gauge field, M−1
∗
φFµνF

µν , where M∗ is an associated

mass scale and thought to be of order the Planck scale. A change in the background

value of φ, can be interpreted as a change of the effective coupling constant. Bekenstein

noticed that F 2 has a non-vanishing matrix element over protons and neutrons, of order

(10−3 − 10−2)mN . This matrix element acts as a source in the φ equation of motion and

naturally leads to the cosmological evolution of the φ field driven by the baryon energy

density. Thus, the change in φ translates into a change in α on a characteristic time scale

comparable to the lifetime of the Universe or larger. However, the presence of a massless

scalar field φ in the theory leads to the existence of an additional attractive force which

does not respect Einstein’s weak universality principle. The extremely accurate checks of

the latter [4] lead to a firm lower limit onM∗, M∗/MPl > 103 that confines possible changes

of α to the range ∆α < 10−10 − 10−9 for 0 < z < 5 [3, 5].

This range is five orders of magnitude tighter than the change ∆α/α ≃ 10−5 indicated

in the observations of quasar absorption spectra at z = 0.5 − 3.5 and recently reported

by Webb et al. [6]. Given the potential fundamental importance of such a result, one

should remain cautious until this result is independently verified. Nevertheless, leaving

aside the issue regarding the reliability of the conclusions reached by Webb et al. [6],

it is interesting to explore the possibility of constructing a dynamical model, including
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modifications of Bekenstein’s model, which could produce a large change in α in the redshift

range z = 0.5 − 3.5 and still be consistent with the constraints on ∆α/α from the results

of high-precision limits on the violation of equivalence principle by a fifth force. It is also

interesting to study whether the range ∆α/α ≃ 10−5 could be made consistent with the

limits on ∆α/α [7]-[10], extracted from the analysis of element abundances from the Oklo

phenomenon, a natural nuclear fission reactor that occurred about 1.8 billion years ago. We

note that while big bang nucleosynthesis provides limits on much longer timescales, these

limits are typically quite weak, ∆α/α ∼ 10−2 [11].

The gap of five orders of magnitude between the desirable range of 10−5 and the bounds

of order 10−10 appear to be insurmountable for any sensible modification of Bekenstein’s

theory1. In this paper, we propose a modification of Bekenstein’s idea consistent with

experimental constraints, but relies on a large coupling between the non-baryonic dark

matter energy density and the φ field.

At first, such a coupling may appear strange. Indeed, why should dark matter interact

with the φ field when it is known that dark matter particles are not charged [13] and their

electromagnetic form-factors are also tightly constrained [14]? It turns out that in certain

classes of models for dark matter, and in supersymmetric models in particular, it is natural

to expect that φ would couple more strongly to dark matter particles than to baryons. It is

easy to demonstrate this idea by a simple supersymmetrization of Bekenstein’s interaction.

In addition to the coupling of φ to the kinetic term, F 2, of the gauge boson, φ will acquire

an additional coupling to the kinetic term of the gaugino, M−1
∗
φχ̄6∂χ. If this gaugino

constitutes a significant fraction of the stable LSP neutralino, as is often the case, the

source of φ due to the energy density of dark matter turns out to be dramatically enhanced

compared to the baryonic source,

Dark matter source

baryonic source
∼ (102 − 103)

Ωmatter

Ωbaryon

∼ 103 − 104. (1.1)

Such an enhancement factor compensates, although not entirely, for the tremendous sup-

pression of ∆α once the Eötvös-Dicke-Braginsky (EDB) limits on M∗ are imposed. It is

then reasonable to study this class of models in further detail as they are numerically much

more promising than the original Bekenstein framework.

We note that there is another possible “strategy” to avoid the EDB constraint. One can

assume the existence of some extremal value φext, in the vicinity of which only (φ− φext)
2

couples to F 2. This type of coupling was advocated in Ref. [15]. If the cosmological

evolution drives φ close to φext now [15], i.e. at z = 0, the EDB constraints will be relaxed.

We organize this paper as follows. In the next section we generalize the original Beken-

stein model. In section 3, we solve the field equation for the scalar field φ and obtain the
1A recent publication claiming that the 10−5 change in α is realistic in this framework [12] does not

impose the limits from Eötvös-Dicke-Braginsky experiments.
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predictions for the change of α. In the same section, we impose experimental constraints

and compare the results for ∆α with the range suggested by Webb et al. [6]. In section

4, we consider predictions for ∆α in some specific models and demonstrate one model that

passes all constraints. In section 5, we analyze the class of models with quadratic couplings

to F 2. Our conclusions are presented in section 6.

2 Generalization of Bekenstein’s model

We start our analysis by formulating a generic action that includes spin-2 gravity, kinetic

and potential terms of a modulus φ, kinetic terms for the electromagnetic field and baryons

as well as the dark matter action,

S =
∫

d4x
√−g

[

−1

2
M2

PlR +
1

2
M2

∗
∂µφ∂

µφ−M2
PlΛ0BΛ(φ)−

1

4
BF (φ)FµνF

µν

+
∑

i=p,n

N̄i(iD/−miBNi(φ))Ni +
1

2
χ̄6∂χ− 1

2
MχBχ(φ)χ

Tχ



+ ... (2.1)

Throughout this paper we assume a + − −− signature for the metric tensor. In (2.1),

MPl = (8πGN)
−1/2 = 2.4 × 1018GeV is the Planck mass and M∗ is its analogue in the

φ sector. Defined this way, φ is dimensionless. Ni stands for neutrons and protons, and

D/ = γµ(∂µ − ie0Aµ) for protons and D/ = γµ∂µ for neutrons. Here e0 is the bare charge

which remains constant throughout the cosmological evolution (modulo the standard RG

evolution of e0 which can be neglected in our analysis). For definiteness, we assume that

the dark matter is predominantly the non-relativistic Majorana fermion χ. While it is clear

that one can associate χ with a neutralino, our approach can be easily generalized to other

forms of cold dark matter. Ellipses stand for the omitted electron and neutrino terms,

as well as for a number of possible interaction terms (i.e. baryon anomalous magnetic

moments, nucleon-nucleon interactions etc.). All mass and kinetic terms are supplied with

φ-dependent factors denoted Bi(φ). In this sense, the cosmological constant term acts as a

potential for φ.

We shall further assume that the change of φ over cosmological scales is small, |∆φ| ≡
|φ(t = t0)− φ(t)| ≪ 1, where t0 is the present age of the universe. As such, we can expand

all couplings around the current value of φ, which we choose to be zero, φ(t = t0) = 0,

BΛ(φ) = 1 + ζΛφ+
1

2
ξΛφ

2

BF (φ) = 1 + ζFφ+
1

2
ξFφ

2 (2.2)

BNi(φ) = 1 + ζiφ+
1

2
ξiφ

2
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Bχ(φ) = 1 + ζχφ+
1

2
ξχφ

2.

The effective fine structure constant depends on the value of φ. As such, φ(t) and ∆α/α

are directly related,

α(φ) =
e20

4πBF (φ)

∆α

α
= ζFφ+

1

2
(ξF − 2ζ2F )φ

2, (2.3)

and we have defined ∆α/α as (α0 − α(t))/α0.

The cosmological evolution of φ follows from the scalar field equation

M2
∗
✷φ = −M2

PlΛ0B
′

Λ − B′

F

1

4
〈FµνF µν〉 − 〈B′

nmnn̄n+B′

pmpp̄p〉 −
1

2
B′

χMχ〈χTχ〉. (2.4)

In this formula, primes denote d/dφ, and the average 〈...〉 denotes a statistical average

over a current state of the Universe. The term with FµνF
µν can be neglected to a good

approximation as its average is zero for photons, and its contribution mediated by the

baryon density,
∑

n,p ni〈i|FµνF µν |i〉, is already included in the terms proportional to B′

n,p.

We further note that for a Dirac fermion ψ, the mass term mψψ̄ψ (and the analogous

combination for a Majorana fermion) coincides with the trace of the ψ-contribution to

stress-energy tensor, or ρψ − 3pψ. Thus, the only term, that drives φ in the radiation

domination epoch when ρ = 3p is Λ0B
′

Λ (see e.g. [16, 17]). One can easily check that the

change of φ induced by this term during radiation domination will be small compared to the

∆φ developed in the subsequent matter domination epoch. Restricting eq. (2.4) to matter

domination, and assuming a linearized regime (2.2), we derive the following equation of

motion in a Robertson-Walker spacetime with scale factor a(t):

M2
∗
(φ̈+ 3Hφ̇) = −ρm (ζm + ξmφ)−M2

PlΛ (ζΛ + ξΛφ) , (2.5)

where H = ȧ/a and ζm is defined as

ρmζm ≡ ρχζχ + ρb(Ypζp + Ynζn). (2.6)

Here, Yp and Yn are the abundances of neutrons and protons in the Universe, including those

bound in nuclei. We also assume that ρm = ρχ+ρb. In a more sophisticated treatment, one

may include the contributions of electrons, the Coulomb energy stored in nuclei and other

minor effects. As discussed in Refs. [3, 5], to good accuracy, ζm remains constant during

the matter dominated epoch.

If the φ-dependent energy density becomes comparable to ρm or ρΛ ≡ M2
PlΛ, eq. (2.5)

must be solved along with Einstein’s equations and energy conservation as a coupled set of

equations. However, the small φ solutions that we are interested in imply that ρφ is small

and (2.5) can be treated separately, with a(t) used as an input function.
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3 Cosmological evolution of the fine structure con-

stant and the EDB constraint

The cosmological evolution of φ can be determined by the ζi terms in eq. (2.5) which

becomes

φ̈+ 3Hφ̇ = − 1

M2
∗

[ζmρm + ζΛρΛ] = − ρc
M2

∗

[

ζmΩm

(

a0
a

)3

+ ζΛΩΛ

]

, (3.1)

Here ρc = 3H2
0M

2
Pl is the critical density of the Universe at t = t0 and Ωi = ρi/ρc. The

solution to this equation can be easily found [5, 10, 12]. Throughout this paper we shall

assume that the Universe is flat and is presently dominated by non-relativistic matter and

a cosmological constant, Ωm+ΩΛ = 1. In this case, the time dependence of the scale factor

is given by

a(t)3 = a30
Ωm
ΩΛ

[

sinh(
3

2
Ω

1/2
Λ H0t)

]2

(3.2)

and eq. (3.1) can be integrated analytically. The first integral is given by

φ̇ = −3ΩmH
2
0

M2
Pl

M2
∗

a30
a3

[

ζmt +
ζΛ
4b

(sinh(2bt)− 2bt)− tc

]

, (3.3)

where b = 3
2
Ω

1/2
Λ H0. In principle, the constant of integration tc could be kept arbitrary.

There is, however, only one natural way of fixing it by imposing initial conditions for φ̇ deep

inside the radiation domination epoch, i.e. at t close to 0. As discussed in the previous

section, during radiation domination, the r.h.s of (3.1) is effectively zero. This leads to a

φ̇ ∼ a−3 scaling behavior and means that any initial value of φ̇ will be efficiently damped

by the Hubble expansion over a few Hubble times. Thus, for the solution in the matter

dominated epoch we can safely take φ̇(t = 0) = 0 or equivalently tc = 0.

Integrating (3.3) gives φ as a function of time,

φ(t) =
4

3

M2
Pl

M2
∗

[

(
ζΛ
2

− ζm)(bt0 coth(bt0)− bt coth(bt))− ζm ln
sinh(bt)

sinh(bt0)

]

. (3.4)

Figure 1 shows three different types of solutions for ∆α/α as a function of the red-shift

z, where 1 + z = a0/a. In this plot, we have chosen ζF = 10−5, ΩΛ = 0.7 and Ωm = 0.3.

Comparing the three curves, one can see that the variation of α at high red-shifts is mostly

determined by ζm. If ζF is negative, one would need to choose negative ζm in order to get

smaller values of α in the past. Opposite signs of ζF and ζm lead to the larger values of α

in the past.

Given the large parameter space, (M∗, ζF , ζm, ζΛ), one could expect that it is easy

to get ∆α(z = 0.5 − 3.5)/α ∼ 10−5 as suggested by the analysis of the quasar absorption

5
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Figure 1: Three qualitatively different types of solutions for ∆α(z)/α0 that give smaller
values of α in the past for positive ζF . They correspond to the choice of ζF = 10−5 and (a)
ζm = 1, ζΛ = 0 (b) ζm = 1, ζΛ = −2 and (c) ζm = 0, ζΛ = 1. The interval of z, considered
by Webb et al., 0.5 ≤ z ≤ 3.5 is shown by two vertical dashed lines.

spectra by Webb et al. [6]. On the other hand, it is clear that the EDB constraints

should severely restrict the parameter space of our model. The differential acceleration of

two elements with different A1,2 and Z1,2 towards a common attractor can be expressed in

terms of ζi and ω =M2
∗
/2M2

Pl (See, e.g. [18, 3]),

∆g

ḡ
= 2

g(A1, Z1)− g(A2, Z2)

g(A1, Z1) + g(A2, Z2)
=

1

ω

(

7× 10−4ζF
Z2/A1/3

Ā
+
Ā− Z̄

Ā
ζn +

Z̄

Ā
ζp

)

×
[

(ζn − ζp)
(

Z1

A1

− Z2

A2

)

+ 7× 10−4ζF

(

Z2
2

A
4/3
2

− Z2
1

A
4/3
2

)]

. (3.5)

where Z̄ and Ā represent average Z and A of the common attractor, Z̄ =
∑

niMiZi/
∑

niMi.

The terms proportional to ζF correspond to the electromagnetic contribution to the total en-

ergy of nuclei. The best constraints on long-range forces are extracted from ∆g/ḡ measured

in experiments that compare the acceleration of light and heavy elements. The differential

acceleration of platinum and aluminium is ≤ 2× 10−12 at the 2σ level (last reference in [4]

as quoted in [3]), and the differential acceleration of the Moon (silica-dominated) and the

Earth (iron-dominated) towards the Sun is ≤ 0.92 × 10−12 [19]. Choosing the appropriate

values of Z and A and retaining only the hydrogen contribution to the mass of the Sun, we

get

1

ω

∣

∣

∣ζp(ζn − ζp + 2.9× 10−2ζF )
∣

∣

∣ < 2.5× 10−11 Al/Pt system

1

ω

∣

∣

∣ζp(ζn − ζp + 1.8× 10−2ζF )
∣

∣

∣ < 2.5× 10−11 Si/Fe system (3.6)
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Figure 2: The (ζm/
√
ω, ζF/

√
ω) parameter space. The dark-shaded (green) region is

consistent with both the EDB constraints and with a possible relative change of α at the
10−5 level, as suggested by Webb et al. [6]. The light shaded (blue) region is excluded by
EDB constraints. ζΛ is set to zero in this plot.

These limits were also considered in a recent paper [20]. ζn − ζp and ζF enter in eqs. (3.6)

in different linear combinations. Thus, it is possible to extract separate limits on ω−1ζpζF
and ω−1ζp(ζn− ζp). Models that have non-zero ζF also have non-vanishing ζp,n unless some

intricate conspiracy of quark, gluon and photon contributions occur. Barring such possible

cancellations, one obtains |ζn,p| >∼ |ζn − ζp| >∼ 10−3|ζF |. Using these relations, we can

combine the preferred range of Ref. [6] with the constraints, imposed by eqs. (3.6).

The region excluded by the EDB constraints in the (ζm/
√
ω, ζF/

√
ω) parameter space

is shown by the light shaded (blue) region in Figure 2. Here we have set ζΛ = 0. The long

negative-sloped band that connects the upper-left and lower-right hand corners is the range

that reproduces ∆α/α = 10−5 in the interval 0.5 ≤ z ≤ 3.5. In the original Bekenstein

model, ζm = (10−4 to 10−3)ζF and corresponds to the positive sloped band close to the

upper-left corner 2. As one can see, the diamond-shaped intersection is deep inside the

range excluded by the EDB experiments. Of course, this is in agreement with conclusions

of [3, 5]. Finally, the dark-shaded (green) area represents the choice of parameters that can

reproduce ∆α/α = 10−5 [6] and still be in agreement with the EDB constraints. For this

region, ζm/
√
ω >∼ 3 × 10−3 and ζF/

√
ω < 10−3, which points towards models in which φ

couples to dark matter and the couplings to baryons and ζF are suppressed.

In addition, we must check whether or not these choices of parameters which satisfy

2ζm = 10−3ζF would require rather “generous” assumptions concerning nucleon matrix elements and/or
Ωb.
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Figure 3: A plot of log10(|∆α(z = 0.07)/∆α(z = 0.5)|) (a) and log10(|∆α(z =
0.07)/∆α(z = 3.5)|) (b) as a function of ζΛ/ζm for the choice of ΩΛ = 0.7 and Ωm = 0.3.
The portion of the curves below the horizontal dashed line are consistent with the Oklo
limits [8] and the Webb et al. suggested change in α.

the EDB constraints are also in agreement with limits on ∆α/α, derived from isotope

abundances in the Oklo natural reactor. Typically, these limits are strong, |∆α/α| <
1.2×10−7 [8] and go back to z ≃ 0.14 3. This seems to be dramatically smaller than the range

suggested by [6]. Moreover, there is no way of suppressing ∆α(z < 0.14)/∆α(0.5 < z < 3.5)

below the 10−2 level using our freedom in ζF or ω, as these parameters cancel in the ratio.

There is, however, an extra free parameter which may be used in an attempt to reconcile

a change of 10−5 at 0.5 ≤ z ≤ 3.5 and the Oklo limit. The behavior of curve (b) in

Figure 1 suggests that ζΛ can be used to make ∆α almost flat at z < 0.2. In order to

determine the requirements on ζΛ, we quantify the comparison between “Oklo change” and

“quasar change” as follows. In the case of the Oklo constraints, in principle, one needs

to average α(t) over the interval 0 < t0 − t <∼ 2 × 109 yr. Since the exact timing of Oklo

event is known only approximately, we choose to quantify it by simply taking α at the

half of the Oklo redshift, ∆α(z = 0.07)/α. This value must be approximately two orders

of magnitude smaller than ∆α/α, suggested by Webb et al. Thus, we consider the ratio,

|∆α(z = 0.07)/|∆α(z = 0.5)| and |∆α(z = 0.07)/|∆α(z = 3.5)| as a function of ζΛ/ζm. The

logarithms of these ratios are plotted in Figure 3. As one can see, these ratios are two funnel-

3The redshift, z = 0.014, corresponds to the choice ΩΛ = 0.7,Ωm = 0.3, h0 = 0.65, and we have assumed
that the Oklo event took place 1.8 Gyr ago.
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like curves and it is possible to choose ζΛ/ζm in such a way that ∆αOklo/∆αquasar < 10−2.

For z = 3.5 this can be done rather easily in the range −2.2 < ζΛ/ζm < −1.2. For z = 0.5

one has to choose this ratio rather carefully, ζΛ/ζm ≃ −1.7, and requires a 5% -10% fine-

tuning. We also note that this specific value of ζΛ/ζm is very sensitive to the choice of ΩΛ

and Ωm and varies significantly when ΩΛ and Ωm are varied within their current error bars.

The use of more restrictive bounds from Oklo by [9] would only worsen the fine tuning.

The above exercise allows us to conclude that in principle a generalized Bekenstein-like

model can yield ∆α/α ∼ 10−5 at 0.5 ≤ z ≤ 3.5 and still be in agreement with the EDB

and Oklo constraints. The limits from non-universality of a fifth force could be evaded in

models with large couplings to dark matter and small couplings to baryons and FµνF
µν .

Also, the Oklo bounds could be avoided or softened if the dark matter provides a negative

push to φ at later epoch. Although such a suppression of ∆αOklo may happen, it would

appear to be highly accidental.

4 Model realizations

It is important to note that neither the original Bekenstein model [3] nor its modifications

discussed here are fully defined at the quantum level. Indeed, the BF (φ)FµνFµν term con-

tains not only the bare QED Lagrangian term but also higher dimensional operators such

as φnFµνFµν . It is clear then that at the loop level this will create all other possible inter-

actions such as φnmeēe, φ
nmq q̄q, etc., generally, with divergent coefficients which cannot

be fixed from first principles. While these terms are not expected to drastically change

the model if one makes some plausible assumptions about the cutoff in the theory, there

is, however, the set of operators contained in BΛ(φ) which are very sensitive to the cutoff

and are very important as they can give rise to the mass of the φ field, an effective cos-

mological constant, etc. Unfortunately, the present status of the underlying theory does

not allow for a meaningful calculation of BΛ(φ). This problem is, of course, tightly related

to the cosmological constant problem [21], and/or to the smallness of the mass term for

the quintessence field. As we have nothing to add to these issues, we must assume that

ζΛ and ξΛ are basically incalculable input parameters and fix Λ to its value implied by the

observation of high z supernovae, the anisotropy of the cosmic microwave background and

large scale structure formation. In what follows, we compile a list of models which predict

certain values for the ζi couplings and/or ω and confront them with the phenomenological

constraints, discussed in the previous section.

1 The Bekenstein model

In this model, one initially introduces the coupling of φ to F 2, BF (φ) = exp(−2φ) or

ζF = −2. BΛ can be set to a constant so that ζΛ = 0. In the original model, ω = 1,

however, we will keep it arbitrary for now. The change of φ is driven by the electromagnetic

9



fraction of the baryon energy density. The coupling of φ to nucleons is given by the same

matrix elements, ζN = m−1
N 〈N | ζF

4
FµνF

µν |N〉 ≃ −m−1
N 〈N | ζF

2
(E2 − B2)|N〉, that determine

the contribution of a “photon cloud” to the nucleon mass. Both the Naive quark model

and dispersion approaches give consistent estimates of these matrix elements [22]. Using

the results of [22], presumably valid to 50% accuracy, we find that ζp ≃ −0.0007ζF and

ζn ≃ 0.00015ζF . Incidentally, these values almost coincide with simple extrapolations of

the nuclear mass formula to Z = 1, 0: ζp ≃ −0.0007, ζn = 0. Since ζb is determined mostly

by ζp, ζm = ζb(Ωb/Ωm) ∼ −10−4ζF . As we have discussed earlier, the constraints from EDB

experiments, as exemplified in Figure 2, do not allow α to change by more than 1 part per

billion at red-shifts z < 3.5.

Restricting our attention to small variations in α, we see from eq. (2.3) that

∆α

α
= ζFφ (4.1)

Then evaluating eq. (3.4) at z = 3.5, we find that

∆α

α
=

1.2

ω
ζF ζm ≃ −10−4ω−1ζ2F (4.2)

Note that in this model ζF and ζm are of opposite sign and the final result does not depend

on the sign of ζF . Thus from eq. (4.2), we see that this model leads to larger values of α in

the past, which is opposite the trend reported by Webb et al. Moreover, from Figure 2, we

see that the EDB constraint requires that ζ2F/ω < 10−6 and thus we see again that |∆α/α|
is limited to O(10−10), in agreement with the results of [5]. These results however, differ

from those of Ref. [12] in both the allowed magnitude and sign of ∆α(z < 3.5)/α.

2 A String-dilaton-type model

The starting point for this class of models is the action

∫

d4x
√
−g exp(−

√
2φ)

(

R + (∂µφ)
2 + Λ + Lmatter

)

. (4.3)

The functions Bi(φ) are easily obtained by making a conformal transformation to the Ein-

stein frame. We find that ζF = −
√
2, ζΛ =

√
2, and ζm =

√
2/2. Furthermore, since there

is only one scale in the theory, the Planck scale, we have ω = 1/2. Therefore, we are able

to obtain a definite value, ∆α/α ≃ −3, (over the redshift range z = 3.5 to 0. Clearly this

is not realistic and is related to the well known problem of a massless runaway dilaton in

string theory. Moreover, such a model is ruled out by the EDB constraints, as it predicts

ζn,p ≃ 1 and ζn − ζp ∼ 10−3. Until more can be said about the function BΛ(φ), there is no

useful way to use string theory to predict changes in α.
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3 A Brans-Dicke model

In a Brans-Dicke model φ is initially coupled only to the gravitational sector of the

theory

SBD =
1

16πGN

∫

d4x
√−g

[

φR +
ω

φ
∂µφ∂

µφ

]

+ Smatter (4.4)

As in the previous example, it is easy to show that after the conformal rescaling of metric

to the standard Einstein frame and a field redefinition for φ, the “new” field φ acquires

a universal coupling ζ to the mass sector of the matter fields which is given in terms of

ω : ζm = −1/
√
4ω + 6. One also obtains ζΛ = −2

√

2/(2ω + 3). As in the Bekenstein model,

all physical results depend only on ζ/
√
ω.

Due to conformal invariance of the action for the gauge field, a tree level coupling of φ to

F 2 is absent yielding ζF = 0. However, the conformal symmetry is anomalous, and at the

one loop level a φF 2 term can be generated. In some sense, the couplings of φ to the quarks

and leptons will be similar (apart from their magnitude) to those of the Higgs boson. It is

then clear that a non-zero value of ζF will be generated through the loops of charged particles

in the same way that the Higgs-γ-γ coupling is generated. For example, the coupling of

the Higgs boson, h, to F 2 due to the top quark loop can be obtained by differentiating

the top quark contribution to the QED β-function, F 2 ln(ΛUV /(mt(1+ h/v))) → −F 2h/v,

where v is the Higgs vacuum expectation value. This assumes that the ultra-violet cutoff

ΛUV is h-independent. In principle, there could be different possibilities with regard to the

φ-dependence of ΛUV . If one assumes that the regulator mass depends on φ in exactly the

same way as an ordinary mass, then φ drops out of the loop amplitude, ζF is not generated

and the Brans-Dicke scalar respects the weak equivalence principle even at the one-loop

level. A different result would arise if we postulate a φ-independent regularization ΛUV . In

this case, a non-zero value for ζF is generated and one would typically have

ζF = −2α

π
ζm

(

−7

4
+ 1 + 2× 5

9

)

≃ −1.5× 10−3ζm. (4.5)

The three terms in parenthesis correspond to the contributions from W -bosons, charged

leptons and quarks from second and third generations. (u and d quarks require a separate

and quite complicated treatment. However, their main contribution is given by the charged

pion loop and turns out to be numerically small compared to the contributions of heavy

quarks.) The couplings of φ to baryons will be simply ζm, and its non-universality appears

at the ζn− ζp ∼ 10−3ζm level. Thus, the bounds (3.6) push the constraints on ζ2mω
−1 to the

level of 10−8 or so and leave no room for a O(10−5) relative change of α at 0.5 ≤ z ≤ 3.5.

The maximum allowed change is not expected to be larger than 10−11. The result of Webb

et al. cannot be accommodated in a Brans-Dicke model.

11



4 A Supersymmetrized Bekenstein model

While there are many different possible supersymmetric generalizations of the original

Bekenstein model, we consider the simplest version which begins by promoting BF (φ)(FF )

to the rank of a superpotential:

−
∫

d4x
1

4
BF (φ)FµνF

µν →
∫

d4xd2θ
1

4
BF (φ̂)WµW

µ + (h.c.).. (4.6)

Here φ̂ denotes a chiral superfield, which has φ as its bosonic component and W is the

supersymmetric field strength. In component notation this interaction can be rewritten as
∫

d4x
(

BF (φ)
[

−1

4
FµνFµν +

1

2
χ̄∂µγ̄µχ

]

− 1

2
B′

F (φ)Fφχ
Tχ
)

... (4.7)

Fφ denotes the F -component of φ̂ and ellipses stand for other terms not relevant for the

present discussion. We see that in addition to the interaction with the gauge boson, φ

acquires a coupling to the gauge fermion or gaugino, χ. Fφ may acquire a v.e.v. which

contributes to the supersymmetry-breaking gaugino mass. There may also be additional

soft-breaking contributions leading to a mass term of the form 1
2
MχTχ. Performing the

rescaling χ→ χ/
√

BF (φ), we arrive at the following Lagrangian in the φ− χ sector,

Lφχ =
1

2
χ̄∂µγ̄µχ− 1

2

B′

F (φ)〈Fφ〉+M

BF (φ)
χTχ (4.8)

In the linearized version of the theory given by eqs. (2.2), we arrive at the following

expression for ζχ,

ζχ =
(ξF − ζ2F )〈Fφ〉 −MζF

Mχ

, (4.9)

where Mχ =M + ζF 〈Fφ〉.
Clearly, ζχ can be O(1), if ζF ∼ O(1), however its sign is not uniquely defined unless

we make some specific assumptions about ζF , ξF , 〈Fφ〉 and M . For example, let us take

BF as in the original Bekenstein model so that ζF = −2. Let us further assume that

supersymmetry breaking occurs outside the φ sector so that Fφ = 0. In this case, Mχ =M

and ζχ = 2. Since the dark matter dominates the energy density of non-relativistic matter,

we have ζm ≃ ζχ. Indeed, it is quite reasonable to expect that in general |ζm| ∼ |ζF | which
leads to the relation between the dark matter and baryonic sources of φ advertized in (1.1).

The final parameter which must be specified in the model is ω. In order to obtain

consistency with the combination of EDB constraints, we must have |ζF/
√
ω| < 10−3 or

ω > 4 × 106. If we again assume ζΛ = 0, we can compute the change in the fine structure

constant (from z = 3.5 to z = 0)

∆α

α
=

1.2

ω
ζF ζm ≃ −5/ω (4.10)
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Type of model ζF ζb ζm
∆g
ḡ

|∆α
α
|max

at 0.5 ≤ z ≤ 3.5

Bekenstein model −2 10−3 10−4 10−6

ω
10−10

“String dilaton”∗ −
√
2 −

√
2/2 −

√
2/2 10−3 1

Brans-Dicke model∗∗ 0 −1/
√
4ω + 6 −1/

√
4ω + 6 10−3

ω2 10−11

SUSY BM 1 10−3 1 10−6

ω
10−6

Mχ-driven 10−4 10−7 − 10−5 0.1 10−12

ω
10−5 − 10−4

Table 1: Order of magnitude model predictions for the set of relevant couplings, non-
universality of φ-exchange, and maximum allowed |∆α/α| at 0.5 ≤ z ≤ 3.5. (*) The
tree-level form of Bi(φ) is assumed. (**) A φ-dependent cutoff is assumed.

Note again the sign of ∆α predicts that α was larger in the past, although this conclusion

could be modified if φ contributes to supersymmetry breaking (so that Fφ 6= 0). Also,

because of the EDB constraint, the relative change of |∆α/α| at z in the interval 0.5− 3.5

would typically be at the level of 10−6, unless some additional fine-tuning is introduced.

(For example, if a partial cancellation between M and ζF 〈Fφ〉 in Mχ occurs, one can get

|ζm| > |ζF | and thus satisfy the constraints shown in Figure 2.)

In contrast with the non-suspersymmetric version of the Bekenstein model, the change

in φ from the time of the radiation domination/matter domination transition to the present

epoch can be of order 1 or even larger. In this case, obviously, the linearized approach to

Bi(φ) may fail for z ≫ 1. Therefore, it is impossible to determine the total change of α from

the BBN epoch, without specifying the complete functional form for both Bχ(φ) and BF (φ).

Nevertheless, it can be shown that if the Bi(φ) are dominated by the few first terms in the

Taylor expansion up to z ∼ 105, the change of α is within the BBN bounds. Large changes

in φ may also entail a non-negligible backreaction of the φ-dependent stress-energy tensor

on Freidman’s equations. In this case, one could get interesting effects in the expansion of

the Universe due to the Bχ(φ)Mχχ̄χ term, which can be interpreted at the same time as

varying mass dark matter [23] or the potential term for φ, that has an overall factor of ρm.

An interesting consequence of models where φ couples to dark matter is the non-

universality of the free fall towards an attractor dominated by dark matter, e.g. the center
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of a galactic halo. The magnitude of differential acceleration of a system of heavy/light

elements towards a dark matter attractor is enhanced compared to the acceleration towards

the Sun by the factor ζm/ζp:

∆g

ḡ
=
ζm
ω

[

(ζn − ζp)
(

Z1

A1

− Z2

A2

)

+ 7× 10−4ζF

(

Z2
2

A
4/3
2

− Z2
1

A
4/3
2

)]

≃ 3× 10−2 ζmζF
ω

(4.11)

Depending on the ratio of ζm/ζp, this effect may be as large as 10−7 − 10−9 when the

usual EDB constraints are satisfied. Unfortunately, this is much lower than the current

experimental sensitivity achieved, ∼ 0(10−3), in tests of differential acceleration towards

galactic center [24].

5 A gaugino driven modulus

It may happen that the modulus field that changes α is coupled primarily to the soft

breaking parameters. Then the coupling to F 2 and baryons may only appear at the loop

level. Let us suppose for simplicity that initially φ couples only to gaugino masses,

L =
∑

i=1,2,3

[

1

2
λ̄i∂µγ

µλi −
1

2
Mi(1 + ζMi

φ)λTλ
]

, (4.12)

where the summation is over the three Standard Model gauge groups (color and weak indices

are suppressed). We assume that the lightest supersymmetric particle is the neutralino χ

which is predominantly the bino. Therefore, Mχ ≃M1 and ζm ≃ ζχ ≃ ζM1
.

We now consider the possibility that all couplings of φ to standard model fields are

induced radiatively. At the one loop level, the couplings with SU(2) and SU(3) gauge

bosons will be generated,

ζW = −2αW
3π

ζM2
(4.13)

ζG = −αs
π
ζM3

(4.14)

The calculation of these couplings is trivial: they are obtained by differentiating gluino and

wino contributions to the corresponding beta functions over Mi. In the derivation of these

couplings we assumed that the cutoff scale is φ-independent.

After the breaking of the SU(2)× U(1) gauge symmetry, ζW induces a contribution to

ζF ,

ζF = sin2 θW ζW ≃ −1.5× 10−3ζM2
. (4.15)

The coupling to baryons is mediated by ζF as before or by ζG or by the φmq q̄q operators,

induced at the supersymmetric threshold. Typically, ζG induces too large a coupling to

baryons, ζn,p ∼ (0.02−0.06)ζM3
, to be consistent with EDB limits and ω = O(1). Therefore,
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one must require ζM3
≪ ζM1

, ζM2
. Wilson coefficients in front of supersymmetric threshold-

induced φmq q̄q operators are expected to be at the level of 10−5 − 10−3 from ζM1
and ζM2

.

This creates a coupling of φ to nucleons at the level ζn,p ∼ (10−6−10−4)ζM2
, which is mostly

due to a large matrix element of the mss̄s operator and/or the two-loop induced Ga
µνG

aµν

operators. muūu and mdd̄d generate the difference between the couplings to neutron and

proton at the level of ζn − ζp ∼ (10−7 − 10−5)ζM2
. Due to the small values of ζp,n, ζp − ζn,

and ζF , the constraints based on the violation of the equivalence principle (3.6) do not lead

to very restrictive bounds,

ζ2M2
/ω <∼ 10−4 − 10−2. (4.16)

The possibility of “choosing” ζM1
, ζM2

and ω creates sufficient freedom to satisfy EDB

constraints and at the same time have ∆α/α at 0.5 ≤ z ≤ 3.5 compatible with the Webb

et al. result. Recall that

∆α

α
=

1.2

ω
ζF ζm ≃ −1.8× 10−3

ω
ζM1

ζM2
(4.17)

Indeed, to satisfy both it is sufficient to take

ζM1√
ω

= −ζM2√
ω

≃ ±0.1; and ζM3 ≪ ζM1, ζM2. (4.18)

To conclude this section, we combine all model predictions in Table 1.

5 Models of an oscillating fine structure constant

Finally, we turn to the case when all of the functions Bi(φ) have a common extremum point

φext. As was shown by Damour and Nordtvedt and Damour and Polyakov [15], the matter

energy density may serve as a cosmological attractor for φ, so that today its value is close

to φext. In our approach, without loosing generality, we choose φext = 0. The requirement

of a common extremum is equivalent to condition that all linear couplings ζi = 0.

The cosmological evolution of φ is now given by the ξi couplings. There are two distinct

regimes to consider: φ(t) = const at early times and an oscillating or runaway regime at

late times. These two regimes are common for cosmological evolution of any quasi-modulus

field, e.g. axion. The transition occurs when the Hubble rate drops below the effective

(time-dependent) mass of φ,

m2
φ =

2

ω

[

Λ0ξΛ +
ρmξm
M2

Pl

]

=
6H2

0

ω

[

ΩΛξΛ + Ωmξm

(

a0
a

)3
]

(5.1)

The sign of m2
φ determines if it is a runaway or oscillatory evolution. Here, we are interested

in the oscillatory regime, and thus assume that m2
φ is positive. The amplitude of these
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oscillations red-shifts as a−κ, where 3/4 < κ < 3/2. κ = 3/2 occurs if (5.1) is dominated by

the first term, i.e. rigid mass, and κ = 3/4 if the second matter-induced term is dominant

[15]. Thus, the effective value of α also oscillates, at twice the frequency, 2mφ, and with

an amplitude decreasing as a−2κ. In this regime, is it possible to satisfy the EDB and Oklo

bounds and have ∆α/α ∼ 10−5 at 0.5 ≤ z ≤ 3.5?

If ξF is the dominant source of the couplings to baryons, the expected level of the

violation of the equivalence principle is

∆g

ḡ
≃ 10−6 ξ

2
Fφ

2
now

ω
(5.2)

Of course, it is possible that the value of φ today is close to zero, simply because in the

oscillatory regime, φ = 0 occurs regularly. This is, however, an accidental situation, and

one would naturally expect φnow to be on the order of the amplitude of oscillations. On the

other hand, the relative change of α is given by

∆α

α
=

1

2
ξF (φ

2(z)− φ2
now) ≃

1

2
ξFφ

2(z) (5.3)

Using the relation between φ(z) and φnow, and plugging in the constraint from (5.2), we get

∆α

α
<∼ 10−5(1 + z)2κ

ω

ξF
(5.4)

It is then clear that this can be consistent with 10−5 at 0.5 ≤ z ≤ 3.5 naturally without

a fine-tuning of parameters when ω/ξF ∼ 1. The Oklo bounds can be made marginally

consistent with [6] in this scenario only for large z (close to 3.5 rather than 0.5) and for

large κ, κ = 3/2. This favors models where the oscillations of φ at z < 3.5 are driven by

the rigid ξΛ-proportional mass term of φ.

6 Conclusions

We have shown that generalized versions of the Bekenstein’s model may be consistent with

the strong limits imposed by Eötvös-Dicke-Braginsky type of experiments and at the same

time provide a relative change of α at the 10−5-level, claimed recently in Webb et al. [6].

The necessary flexibility in our models is achieved by the coupling of the modulus field φ

to the dark matter energy density and to the cosmological constant. We argue that it is

natural to expect that the cosmological evolution of φ will be mostly driven by these sources

rather than by the baryon energy density. This can be seen explicitly in the simplest SUSY-

version of the Bekenstein model, where the supersymmetric partner of the U(1) gauge field

is the dominant non-baryonic component of dark matter.
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In practice, it turns out that among various models where φ couples to F 2, baryons

and dark matter, only a few survive the EDB constraints and provide the O(10−5) relative

change in α over the redshift range 0.5 ≤ z ≤ 3.5. In particular, we find that the models

where φ is coupled initially only to U(1) and SU(2) gaugino mass terms can easily satisfy

both criteria.

The bounds on ∆α from the Oklo phenomenon are less dependent on the details of the

coupling of φ to the matter field. Generally, they are strong enough to rule out the change

of the fine structure constant, implied by Webb et al. In the context of the generalized

models discussed here, the negative coupling of φ to the cosmological constant may be used

to slow down its evolution and make Oklo bounds consistent with [6]. This possibility,

however, looks accidental and very fine-tuned for ∆α/α ∼ 10−5 at z = 0.5. Of course, our

treatment of all models at the loop level is plagued by the usual problem of the cosmological

constant and the near-masslessness of the moduli field φ. This prevents us from making

any prediction for the size of the ζΛ coupling constant. We also find that ζi = 0 [15] is easier

to reconcile with EDB constraints and Webb et al., as in this case there is an additional

suppression of the φ-mediated force.
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