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1.  Introduction

These are fortunate times for those working in observational 
cosmology or particle physics. On the one hand, both fields 
have standard models, which agree with a wide and fast-
growing range of observational and experimental data. On the 
other hand, it is precisely our confidence in these models that 
leads us to expect that they are incomplete, and that currently 
unknown physics is waiting to be discovered. Importantly, we 
also have an unprecedented range of new tools with which to 
search for this new physics.

To put this into a wider perspective it is worth looking for 
a minute into the history of astronomy. In the middle of the 
XIX century Urbain Le Verrier and others mathematically dis-
covered two new Solar System planets by insisting that the 
observed orbits of Uranus and Mercury should agree with the 
predictions of Newtonian physics. The first of these—which 
we now call Neptune (and was also predicted by John Couch 
Adams)—was soon observed in Berlin by Johann Galle and 
Heinrich d’Arrest. However, the second (dubbed Vulcan) was 
never found. We now know that the discrepancies in Mercury’s 
orbit were a consequence of the fact that Newtonian physics 
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cannot fully describe Mercury’s orbit. Explaining these dis-
crepancies was the first major success of Einstein’s General 
Relativity. Accounts of these two fascinating stories can be 
found in [1, 2]. They carry an important lesson that is par
ticularly relevant today: apparently similar questions can have 
totally different answers, so no matter how successful one par
ticular approach has proven in tackling past problems there 
is no guarantee that it will work when facing a new problem.

Over the past several decades, cosmologists have mathemat-
ically discovered two new components of the universe, which 
we now call dark matter [3, 4] and dark energy [5, 6], but so 
far these have not been directly detected in the laboratory—
we do not yet have an unambiguous smoking gun. Whether 
each of them will turn out to be a new Neptune or a new 
Vulcan remains to be seen, but their mathematical discovery 
alone highlights the fact that the standard ΛCDM paradigm, 
despite its phenomenological success, is at least incomplete. 
Incidentally, a similar point could be made about inflation (in 
the sense that it also implies new and unknown physics).

Something similar applies to particle physics, whose stand-
ard model is older and (arguably) on even firmer ground than 
that of cosmology: neutrino masses, dark matter and the size 
of the baryon asymmetry of the universe all require new phys-
ics beyond the current model. It is particularly striking that all 
of these have obvious astrophysical and cosmological impli-
cations. One of the key lessons learned in the field in recent 
years is that further progress in fundamental particle physics 
will increasingly depend on progress in cosmology.

Before proceeding, it is useful to introduce a working defi-
nition of the term ‘fundamental physics’. In this review we 
will follow [7] and define it to include two distinct but never-
theless inter-related aspects:

	 •	Tests of fundamental laws and symmetries: this includes 
tests of the Equivalence Principle in its various forms 
(see the detailed discussion in [8]), probing the behavior 
of gravity on all scales, understanding the structure and 
dimensionality of spacetime, and testing the foundations 
of quantum mechanics. Note that many of these princi-
ples are necessarily violated in extensions of the standard 
model: the spacetime structure is modified (violating 
Lorentz Invariance), fundamental couplings become 
dynamical, violating the Einstein Equivalence Principle 
(which we will discuss in detail in what follows), and 
gravity laws are modified at large and/or small scales.

	 •	Searches for Nature’s fundamental constituents: this 
includes scalar fields as an explanation for dark energy, 
new particles for dark matter, magnetic monopoles or 
fundamental strings. It also includes characterizing the 
constituents we already know, such as the Higgs or the 
masses of neutrinos. Most of these issues are reviewed in 
great detail in [9].

After a quest of several decades, the recent LHC discovery 
of the Higgs particle [10, 11] finally shows that fundamental 
scalar fields are part of Nature’s building blocks. A pressing 
follow-up question is then whether the Higgs field has some 
cosmological role, or indeed if there are additional scalar fields 
that do have such a role. The fact that we do not yet know the 

answer to the latter question has not prevented cosmologists 
and particle physicists from speculating, and it is now a chal-
lenging task to find one active researcher in the field that has 
never used a scalar field at any point in his or her career.

Apart from their comparative simplicity, scalar fields 
are popular in cosmology because they can take a vacuum 
expectation value while preserving Lorentz Invariance. (By 
contrast, other degrees of freedom such as vector fields or 
fermions would break Lorentz Invariance, very quickly lead-
ing to conflicts with Special Relativity.) They often imply the 
presence of additional particles, which may lead to new physi-
cal effects (an example will be discussed in the following sec-
tion) but can also be used to experimentally or observationally 
constrain the models. For this reason scalar fields now play a 
key role in most paradigms of modern cosmology, including

	 •	The period of exponential expansion of the early universe 
(inflation) which is believed to have seeded the primor-
dial density fluctuations that led to the large-scale cosmic 
structures we now observe [12].

	 •	The dynamics of cosmological phase transitions and of 
their unavoidable relics known as cosmic defects, such 
as cosmic strings, monopoles, domain walls and various 
hybrid defects, as well as cosmic superstrings [13].

	 •	Dynamical dark energy, an alternative to Einstein’s cos-
mological constant for powering the current acceleration 
of the universe (and, arguably, a more likely one than a 
cosmological constant itself) [14, 15].

	 •	The spacetime variation of nature’s fundamental 
dimensionless couplings, which is unavoidable in many 
extensions of the current standard model, and for which 
there is currently some tentative evidence. This will be 
the subject of this report.

If scalar fields are indeed behind any of these paradigms, 
this is of course reason enough to study them. But even more 
important than each of these is the fact that they do not occur 
alone: whenever a scalar field plays one of the above roles, it 
will unavoidably also leave imprints in other contexts that one 
can look for. Although this complementary point is often over-
looked, it will be crucial for the future of precision cosmol-
ogy, since it can be exploited in the form of consistency tests. 
Three simple examples will suffice to illustrate the point:

	 •	In realistic models of inflation, the inflationary phase ends 
with a phase transition at which cosmic defects—most 
often strings—will form [16, 17], and the energy scales 
of both will therefore be unavoidably related.

	 •	Conformally stretched defect networks would in principle 
be natural dark energy or dark matter candidates [18], 
although improved observational constraints together 
with a better understanding of the evolution of these 
networks have now ruled out such scenarios.

	 •	In realistic models of dark energy, where the acceleration 
of the universe is due to a dynamical scalar field, this 
field will naturally couple to the rest of the model (unless 
some unknown symmetry is postulated to suppress the 
couplings) and thus lead to potentially observable varia-
tions of nature’s fundamental couplings [19–21].
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A detailed exploration of the possibilities afforded by the 
latter connection (which will come to fruition with forthcom-
ing astronomical facilities) is among the key recent develop-
ments in the field, and will be discussed in detail in the second 
half of this review. We all know that fundamental couplings 
run with energy, and in many (or arguably most?) extensions 
of current canonical models they will equally naturally roll 
in time and ramble in space (meaning that they will depend 
on the local environment). Therefore astrophysical as well 
as local (laboratory) tests of their stability provide us with 
key probes of fundamental cosmology, and in particular they 
can—by themselves or in combination with other cosmologi-
cal probes—shed light on the enigma of dark energy. Whether 
current and future tests detect variations or simply find more 
strong upper limits, the improved sensitivity of the measure-
ments will yield improved constraints on a range of cosmol-
ogy and fundamental physics paradigms.

The aim of this review is to present a concise overview 
of the current status of these tests and their implications, as 
well as to highlight currently open issues or bottlenecks and 
describe forthcoming developments in the field that are likely 
to have a major impact (to the extent that such forecasts are 
possible). A canonical and far more extensive review of this 
topic has been written by Uzan in 2011 [22], and for this rea-
son I will make no attempt to provide an exhaustive ‘histori-
cal’ overview of the field. Instead I will concentrate on the key 
developments in the field in these last few years, both at the 
theoretical and the observational level, and in doing so I will 
occasionally rely on material of a shorter and more focused 
review which I wrote in 2014 [23].

As we will see in section 3, stability tests of several dimen-
sionless couplings (as well as various combinations thereof) 
can be made. This review will mainly focus on the fine-struc-
ture constant

α ≡ e2

�c
,� (1)

a measure of the strength of the electromagnetic interaction, 
both on the grounds that it is the more actively explored one 
and that a short but thorough review of tests of the stability of 
the proton-to-electron mass ratio,

µ ≡
mp

me
,� (2)

by Ubachs et  al appeared very recently [24]. (Beware that 
some authors use the opposite definition for μ, namely me/mp.) 
Reading all of these is recommended for those wanting to gain 
a wider perspective of the field, not least because it will make 
it clear how active the field is and how fast progress has been 
in recent years.

Last but not least, the review will often highlight the work 
of my own Dark Side Team, so the reader may want to keep 
in mind that this is a possible bias. Similarly, in discussing 
forecasts for the performance of future ground and space-
based astrophysical facilities, I will mostly focus on the ESO 
and ESA ones in which we are directly involved, such as 
ESPRESSO [25], the ELT [26] (and in particular its high-res-
olution spectrograph, provisionally dubbed ELT-HIRES [27]), 

and more occasionally Euclid [28] or CORE [29]. While it is 
uncontroversial that these are world-class facilities that will 
play a leading role in future developments in the field, the 
reader should note that other non-European facilities can cer-
tainly also provide significant contributions—and indeed, it is 
important that they do.

Briefly, the structure of the rest of the review is as follows. 
Section 2 has a generic and conceptual introduction to pos-
sible variations of nature’s fundamental couplings, and in par
ticular discusses how variations of different couplings may be 
related. Section 3 describes in some detail the recent advances 
in spectroscopic tests of the stability of these couplings, 
including a meta-analysis of all currently available data allow-
ing both for possible time (redshift) and space variations of 
these couplings. Section  4 provides a shorter discussion of 
other probes of the stability of these couplings, including 
local tests with atomic clocks, compact astrophysical objects, 
the cosmic microwave background and big bang nucleosyn-
thesis. Sections 5 and 6 review possible models for varying 
couplings, as well as their current observational constraints. 
Section 5 describes three important and representative classes 
of models: Bekenstein and Runaway Dilaton models (both of 
which lead to time variations) and Symmetron models (which 
lead to environmental variations). Section 6 focuses on mod-
els where the same dynamical degree of freedom is respon-
sible for both the varying couplings and the dark energy, and 
discussing both canonical models and an example of a non-
canonical one. Section 7 briefly considers three complemen-
tary probes of the aforementioned tests, namely the evolution 
of the cosmic microwave background temperature, the dis-
tance duality relation, and the redshift drift. Finally section 8 
discusses some Fisher Matrix based forecasts of the improve-
ments in sensitivity expected for forthcoming astrophysical 
facilities, and section 9 offers some conclusions.

2.  Fundamental couplings

Nature is characterized by a set of physical laws and funda-
mental dimensionless couplings, which historically we have 
assumed to be spacetime-invariant. For the former this is a 
cornerstone of the scientific method (indeed it’s hard to imag-
ine how one could do science at all if it were not the case), 
but for the latter it is only a simplifying assumption without 
further justification. These couplings ultimately determine the 
properties of atoms, cells, humans, planets and the universe 
as a whole, so it’s remarkable how little we know about them. 
We have no ‘theory of constants’ that describes their role in 
physical theories or even which of them are really fundamen-
tal—see for example the ‘trialogue’ on the subject by Duff, 
Okun and Veneziano [30]. In any case one thing is clear: if 
they do vary, all the physics we know is incomplete.

2.1.  Introducing varying couplings

Fundamental couplings are indeed expected to vary in most 
extensions of the current standard model. In particular, 
this will be the case in theories with additional spacetime 
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dimensions, such as string theory [31, 32]. In such paradigms 
the true fundamental constants of nature are defined in higher 
dimensions, while the (3 + 1)-dimensional ‘constants’ are 
only effective quantities, typically related to the true constants 
via characteristic sizes of the extra dimensions. Many explicit 
illustrations of these concepts have been discussed, including 
in

	 •	Kaluza–Klein models [33],
	 •	superstring theories [34], and
	 •	brane world models [35].

As an historical remark, it is interesting that the first gen-
eration of string theorists had the hope that the theory would 
ultimately predict a unique set of laws and couplings for 
low-energy physics. However, following the discovery of the 
evidence for the acceleration of the universe this claim was 
swiftly and pragmatically replaced by (to put it somewhat 
crudely) an ‘anything goes’ approach, often referred to as 
the multiverse and sometimes combined with anthropic argu-
ments. Regardless of the merit of such approaches (which in 
the author’s mind remains to be demonstrated), is clear that 
experimental and observational tests of the stability of funda-
mental couplings are probably their best route—and possibly 
even the only one—towards a testable prediction.

Clearly a detection of varying fundamental couplings will 
be revolutionary: it will immediately prove that the Einstein 
equivalence principle is violated (and therefore that gravity 
cannot be a purely geometric phenomenon) and that there is 
a fifth force of nature [36]. But even improved null results 
are important and indeed extremely useful. This can be sim-
ply understood by realizing that the natural scale for the cos-
mological evolution of one of these couplings, if driven by a 
canonical fundamental scalar field, would be the Hubble time. 
We would therefore expect a relative drift rate of the order of 
10−10  per year. However, current local bounds, coming from 
laboratory atomic clock comparison experiments (which we 
will discuss in section 4), are already about six orders of mag-
nitude stronger [37]. Thus any such dynamical scalar field 
must in some sense be ‘slow-rolling’—something that has 
obvious analogies with dark energy and inflation.

This leads us to a key point, which is again related to the 
relevance of improved null results. If no variations are seen 
at a certain level of sensitivity, should one make an effort 
to tighten these bounds? An analogy with dynamical dark 
energy provides the clearest way to understand the answer. 
Let’s consider the present-day value of the dark energy equa-
tion of state, w0, or more specifically (1 + w0) which is the 
dynamically relevant quantity. Recall that for a canonical sca-
lar field this is just the ratio of the square of the field speed to 
the field’s total energy,

1 + w ≡ 1 +
p
ρ
=

φ̇2

ρ
,� (3)

thus vanishing in the limit of a cosmological constant. Naively 
we would expect that a dynamical scalar field would have 
(1 + w0) of order unity, but observationally we know that this 
must be (1 + w0) < 0.1 [38] (depending on what data sets and 
priors are used). Now, the point is that if this number is not 

of order unity there is no natural scale for it: either there is 
some fine-tuning to make it small, or there is a new (currently 
unknown) symmetry which forces it to be zero.

An analogous argument can now be made for the fine-
structure constant: a dynamical scalar field coupled to the 
electromagnetic sector of the Lagrangian will lead to α vari-
ations, and we would expect the dynamically relevant param
eter, which is its relative variation

∆α

α
(z) ≡ α(z)− α0

α0
,� (4)

with α0 being its present-day value, to be of order unity, but 
observationally we know (as will be discussed in detail in sec-
tion 3) that it must be less than 10−5. So if no variations are 
confirmed at the 10−6 level (parts per million, henceforth ppm) 
which corresponds to the current state-of-the-art sensitivity, is 
it worth pushing to even better (that is, numerically smaller) 
sensitivities? Certainly the answer is yes, and the Strong CP 
Problem in QCD clearly illustrates why: a parameter which 
we would have expected (given our present knowledge of par-
ticle physics) to be of order unity is known to be smaller than 
10−10 , leading to the postulate of the Peccei–Quinn symmetry 
[39], which in turn leads to a range of further interesting con-
sequences—including axions, an interesting though currently 
not favored dark matter candidate. Hence a sufficiently tight 
bound will either imply that there are no dynamical scalar 
fields fields in cosmology or that the couplings of the scalar 
field to the rest of the model are suppressed by some currently 
unknown symmetry of Nature—whose existence would be as 
significant as that of the original field.

2.2.  Relating different couplings

It is also important to bear in mind that in theories where a 
dynamical scalar field yields a varying α, the other gauge and 
Yukawa couplings are also expected to vary. In particular, 
in Grand Unified Theories the variation of α will be related 
to that of the energy scale of Quantum Chromodynamics, 
whence the nucleon masses will necessarily vary when mea-
sured in an energy scale that is independent of QCD, such as 
the electron mass. It follows that we should expect a varying 
proton-to-electron mass ratio, μ, which can be probed with H2 
[40] as well as other molecules.

The specific relation between α(z) and µ(z) will be model-
dependent—indeed, highly so—but this very fact makes this 
a unique discriminating tool between competing models. A 
very useful and quite generic parametrization of joint varia-
tions has been developed in [41, 42], considering a class of 
grand unification models with the following assumptions:

	 •	The weak scale is determined by dimensional transmuta-
tion,

	 •	The relative variations of all the Yukawa couplings are the 
same, and

	 •	The variation of the couplings is driven by a dilaton-type 
scalar field, as in [43].

With these simplifying but otherwise reasonable assumptions 
one can obtain the following relations [41]

Rep. Prog. Phys. 80 (2017) 126902
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∆me

me
=

1
2
(1 + S)

∆α

α
� (5)

∆mp

mp
= [0.8R + 0.2(1 + S)]

∆α

α
.� (6)

and therefore the variations of μ and α are related through

∆µ

µ
= [0.8R − 0.3(1 + S)]

∆α

α
,� (7)

where R and S are universal dimensionless parameters, respec-
tively related to the strong and electroweak sectors of the 
model in question. To give just two examples, Coc et al [41] 
suggest typical values of R ∼ 36 and S ∼ 160, while in the 
dilaton-type model studied by Nakashima et al [44] we have 
R ∼ 109 and S ∼ 0. Additional discussion can be found in the 
review by Uzan [22]. At a phenomenological level, the choice 
S = −1, R = 0 can also describe the limiting case where α 
varies but the masses do not. Further useful relations can be 
obtained [45] for the gyromagnetic factors for the proton and 
neutron

∆gp

gp
= [0.10R − 0.04(1 + S)]

∆α

α
� (8)

∆gn

gn
= [0.12R − 0.05(1 + S)]

∆α

α
.� (9)

Relative variations of other quantities, including the neutron 
mass and lifetime and the deuteron binding energy can also be 
cast in this form, as discussed in detail in [41].

Any model in this class may therefore be phenomenologi-
cally characterized by its values of R and S, and thus tested 
using astrophysical or laboratory measurements. Alternatively, 
R and S can simply be taken as free parameters to be con-
strained by the available data. It follows from this discussion 
that from a theoretical perspective it is highly desirable to 
identify astrophysical systems where various constants can be 
simultaneously measured, or systems where a constant can be 
measured in several independent ways—we will see exam-
ples of these in the following section. Systems where several 
combinations of constants can be measured are also interest-
ing, and can provide useful consistency tests: an example is 
PKS1413+135, an edge-on radio source at redshift z = 0.247 
[46, 47]. Other consistency tests will be described in section 7.

3.  Recent spectroscopic measurements

The idea behind spectroscopic measurements of dimension-
less couplings—typically the fine-structure constant α, the 
proton-to-electron mass ration μ, the proton gyromagnetic 
ratio gp, or combinations thereof—is in principle quite sim-
ple. If one accurately knows the laboratory wavelength of a 
particular atomic or molecular transition and observes said 
transition in an astrophysical system, its wavelength will be 
changed due to redshift effects (be they cosmological, gravi-
tational or both). If in addition the physics in the region where 
the absorption or emission originated was different, there will 
be additional shifts, which may be to the red or to the blue 

depending on the detailed structure of the atom or molecule in 
question. How much each transition shifts, for a given varia-
tion of the coupling, is known as the transition’s sensitivity 
coefficient.

Obviously, for a single transition in a single system the 
two effects are completely degenerate and cannot be sepa-
rated. However, if one observes two or more transitions with 
different sensitivities to the coupling in question, and knows 
that these transitions were formed at the same physical loca-
tion, then the degeneracy can be broken, and one is able to 
determine the redshift and the value of the coupling (or its 
relative variation as compared to the present-day value, see 
equation (4)) at the place where the transitions were produced. 
To give some examples, α can be measured by looking at 
fine-structure doublets, μ by comparing molecular Hydrogen 
vibration and rotation modes, and various products of gp with 
α and/or μ by comparing Hydrogen hyperfine transitions with 
rotational, fine-structure or optical ones.

That said, there are of course several practicalities to bear 
in mind, including

	 •	One needs to have accurate measurements of the rest 
wavelengths of relevant transitions (indeed, up to a 
few years ago uncertainties in laboratory wavelengths 
provided the dominant part of the error budget of many 
measurements), and knowing the relative isotopic 
abundances of some species is also important; a recent 
compilation of this data for α measurements can be found 
in [48].

	 •	Atomic physics calculations are needed to determine 
how much a transition will shift for a given variation 
of the relevant coupling(s); these quantities are known 
as sensitivity coefficients, and are typically known with 
uncertainties which are much better than one percent for 
μ (at least for H2 and other common molecules) and in the 
range of less than one percent to about ten percent for α, 
depending on the transition.

	 •	Not all transitions are sufficiently sensitive to variations, 
and only relatively few astrophysical systems are clean 
enough to provide accurate measurements: more than one 
hundred lines of sight enable α measurements, though 
only a fraction of them are ideal (more on this in sec-
tion 8) and in any case atomic sensitivity coefficients are 
typically small; conversely molecular Hydrogen or other 
molecules enabling μ measurements are far less common, 
but several molecular transitions are highly sensitive to 
variations [49].

	 •	Emission line measurements are in general more straight-
forward than absorption ones (and possibly less vulnerable 
to some systematics), but much less sensitive—the best 
available emission constraints on α are in [50]; for this 
reason, in most of what follows we will focus on absorp-
tion line measurements.

Much of the recent interest and activity in this field emerged 
as the result of the work of Webb et al over the last to dec-
ades. In particular, their most recent work suggests, at more 
than four-sigma level of statistical significance, a ppm spa-
tial variation of the fine-structure constant α at low redshifts 
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(roughly 1 < z < 4) [51]. Their data set contains a total of 293 
archival measurements from the HIRES and UVES spectro-
graphs, respectively at the Keck and VLT telescopes. The data 
is unable to distinguish between a purely spatial dipole and 
one with an additional dependence on look-back time (both 
provide equally good statistical fits to the data, at just above 
the four-sigma level). Although theoretical models that may 
explain such a result seem to require some amount of fine-
tuning (a point to which we will return in section 5), there is 
also no identified systematic effect that is able to fully explain 
it. Nevertheless some concerns do exist [52], since it is clear 
that there are some systematics in the data that at present have 
not been fully modeled or corrected for—though work on this 
is ongoing [53].

3.1. The UVES large program and beyond

A specific cause for caution regarding the results of [51] is that 
it is based on archival data, meaning that the data was origi-
nally taken for other purposes—by a large number of different 
observers, under a broad range of observing conditions, and 
over a time span of almost a decade—and subsequently re-
analyzed for this purpose. Thus although the data set is quite 
large with 293 absorption systems in total, roughly half com-
ing from each telescope (a few of them were observed by both 
of them), the data acquisition procedures were far form ideal, 
particularly regarding the key issue of wavelength calibration.

Trying to confirm these results was the main motivation 
for an ESO UVES Large Program (Program L 185.A-0745, 
PI: Paolo Molaro). This is so far the only large program dedi-
cated to tests of the stability of fundamental couplings, with 
an optimized sample and methodology. The program con-
sisted of about 40 VLT nights, with observations in the period 
2010–13, partly in service and partly in visitor mode. Key 
improvements in the data acquisition include obtaining cali-
bration lamp exposures attached to science exposures (with-
out resetting the cross-disperser encoding the position for each 
exposure) and observing bright (magnitude 9–11) asteroids at 
twilight, to monitor the radial velocity accuracy of UVES and 
the optical alignments [54]. The collaboration includes mem-
bers from all active observational groups—another of our key 
goals is to compare, check and optimize the different analysis 
pipelines currently being used by different groups, including 
the introduction of blind analysis techniques.

With 40 VLT nights one can only observe a relatively small 
sample. Criteria for the sample selection included the pres-
ence of multiple absorption systems, brightness, relatively 
high redshift, simplicity of the spectrum, narrow components 
at sensitive wavelengths, and no line broadening/saturation. 
The preference for high redshift stems both from observa-
tional reasons (so that the FeII1608 transition can be observed: 
this is desirable because it has a large negative sensitive coef-
ficient, while other Iron lines have large positive sensitivity 
coefficients) and from theoretical reasons (other things being 
equal, it leads to stronger constraints on dark energy, as will 
be seen in sections 6 and 8). Typically the spectral resolution 
of the data is around R ∼ 60 000 and the signal-to-noise per 
pixel S/N ∼ 100. This led us to an expectation of a potential 

accuracy of 1–2 ppm per system, where photon noise and 
calibration errors are comparable, and thus an overall goal of 
2 ppm per system and 0.5 ppm for the full sample.

The list of astrophysical targets to be observed in the Large 
Program was selected was before the dipole indications of 
Webb et  al were known. Therefore, the selected sample is 
not optimized to test this dipole (at least in the strict sense 
that none of the observed targets is near the north pole of the 
best-fit dipole direction). The sample consists of 13 lines of 
sight for α measurements, and 2 lines of sight for μ measure-
ments. Note that in the former case the lines of sight often 
include several absorption systems at different redshifts, each 
of which may lead to a separate measurement. These are par
ticularly useful for testing for hypothetical dependencies on 
look-back time. A more detailed description of the Large 
Program sample may be found in [55].

The first complete quasar spectrum analyzed was that of 
HE 2217-2818 [56], which includes 5 absorption systems at 
redshifts zabs = 0.787, 0.942, 1.556, 1.628 and 1.692. It was 
found that the most precise result is obtained for the absorber 
at zabs = 1.692, where 3 Fe II transitions and Al II λ1670 have 
high S/N and provide a wide range of sensitivities to α. The 
final result for the relative variation in this system is

∆α

α
= +1.3 ± 2.4stat ± 1.0sys ppm,� (10)

one of the tightest current bounds from an individual absorber. 
There is no evidence for variation in α at the 3 ppm precision 
level (at the 1σ confidence level). If the dipolar variation of 
Webb et al [51] is correct, the expectation at this sky position 
is (3.2−5.4)± 1.7 ppm depending on whether one assumes a 
pure spatial dipole or one with a further dependence on look-
back time. The above constraint is not inconsistent with this 
expectation.

The second Large Program result was an accurate analysis 
of the H2 absorption lines from the zabs = 2.402 damped Lyα 
system towards HE 0027-1836 to constrain the variation of μ 
[57]. A detailed cross-correlation analysis between 19 individ-
ual exposures, taken over three years, as well as the combined 
spectrum, was carried out to check the wavelength calibra-
tion stability. The presence of possible wavelength depend-
ent velocity drifts was noticed, and available asteroid spectra 
taken with UVES close to these observations were used to 
confirm, quantify and correct for this effect. Using both lin-
ear regression analysis and Voigt profile fitting where ∆µ/µ 
is explicitly considered as an additional fitting parameter, the 
final corrected result was

∆µ

µ
= −7.6 ± 8.1stat ± 6.3sys ppm,� (11)

consistent with the null result. It should be noted that intra-
order and long-range distortions are not exclusive to the 
UVES spectrograph at the VLT, but have also been identified 
in HIRES at Keck and (to a lesser extent) in HARPS—a more 
detailed discussion of the impact of these distortions can be 
found in [52].

In order to gain a better understanding of these distortions, 
the equatorial quasar HS 1549+1919 was observed with 
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world’s three largest optical telescopes: the VLT, Keck and, 
for the first time in such analyses, Subaru [58]. By directly 
comparing these spectra to each other, and by ‘supercalibrat-
ing’ them using asteroid and iodine-cell tests, long-range 
distortions of the quasar spectra’s wavelength scales which 
would have caused significant systematic errors in the α 
measurements were detected and removed. For each telescope 
∆α/α was measured in 3 absorption systems at redshifts 
zabs = 1.143, 1.342, and 1.802. The nine measurements of 
∆α/α were all found to be consistent with zero at the 2 − σ 
level, with 1 − σ statistical (systematic) uncertainties in the 
range 5.6–24 (1.8–7.0) ppm. They were also found to be con-
sistent with each other at the 1 − σ level, allowing the calcul
ation of a combined value for each telescope and, finally, a 
single value for this line of sight:

∆α

α
= −5.4 ± 3.3stat ± 1.5sys ppm,� (12)

which again is consistent with both zero and with the best-fit 
dipole predictions for this line of sight. If one averages all the 
Large Program α results published so far, we obtain

(
∆α

α

)

LP
= −0.6 ± 1.9stat ± 0.9sys ppm.� (13)

Thus while a full analysis of this sample is still in progress, the 
results so far already demonstrate the robustness and reliabil-
ity at the 3 ppm level afforded by supercalibration techniques 
and the direct comparison of spectra from different telescopes. 
Analysis of the rest of the Large Program data set is currently 
ongoing.

Before moving on, let us pause for a moment to ask why 
these spectroscopic measurements of α and μ are so difficult, 
and why the issue of systematics features quite frequently 
in the discussion. The fact is that, while to some extent the 
spectroscopic velocity measurements in question are akin to 
finding exoplanets, they are much harder in the fundamental 
physics context, both because one is dealing with much fainter 
sources (QSOs with magnitude 16 or fainter, rather than very 
bright nearby stars) and because only a few absorption lines 
are clean enough to be useful. In a nutshell, spectroscopic 
measurements of fundamental couplings require observing 
procedures—and indeed instruments—beyond current facili-
ties. Despite their obvious success in other fields, spectro-
graphs such as UVES, HARPS or Keck-HIRES were not built 
with this science case in mind and are far from optimal for it. 
One also needs customized data reduction pipelines, as well 
as careful wavelength calibration procedures. In particular, 
one must calibrate with laser frequency combs [59, 60], rather 
than Th-Ar lamps or I2 cells which are the currently standard 
methods.

These issues highlight the need for future more precise 
measurements, to be provided by a new generation of high-
resolution, ultra-stable spectrographs like ESPRESSO for the 
VLT [25] and ELT-HIRES for the ELT [27, 61], which have 
these tests as a key science and design driver: they will sig-
nificantly improve the precision of these measurements and, 
crucially, have a much better control over possible systemat-
ics. At lower redshifts, there will also be complemented by 

ALMA measurements—two recent white papers discussing 
the ALMA role are [62, 63].

Despite these difficulties, significant progress is being 
made. In addition to the work in the Large Program (whose 
main long-term legacy will probably be a clearer understand-
ing of what features an absorber should have in order to yield 
precise measurements and of how to optimally analyze the 
data), other improvements in sensitivity are being achieved. 
Chromium an Zinc transitions, which are not as common as 
Iron or Magnesium ones but are highly sensitive to variations 
and less vulnerable to long-range distortions in the wave-
length calibration, can now provide competitive constraints 
on their own [64]. A sensitivity better than 1 ppm has recently 
been achieved for an individual absorber in the line of sight of 
the bright quasar HE0515-4414 [65], although this is likely to 
be the only target for which this is feasible until ESPRESSO 
becomes available. Finally, genetic algorithms are being used 
to develop automated analysis pipelines [66], which should 
lead to significantly faster (and possibly also more objective) 
processing of the data.

3.2.  A meta-analysis of all current data

We now provide an overall summary of the current status of 
measurements of the various couplings. Whenever several 
measurements of the same source exist we list only the most 
recent one (which is almost always the most sensitive one), 
except in cases where they are done using different telescopes 
or different molecular species.

Table 1 lists the recent dedicated measurements of α, 
which are also plotted in the top right panel of figure 1; for 
comparison, the archival data of Webb et al is shown in the top 
left panel of the same figure. We note that the weighted mean 
of the 21 measurements on the table is

(
∆α

α

)

New
= −0.64 ± 0.65 ppm,� (14)

and thus compatible with the null result, unlike the archival 
data set, for which the weighted mean of its 293 measure-
ments is nominally [51]

(
∆α

α

)

Webb
= −2.16 ± 0.86 ppm.� (15)

Table 2 contains individual μ measurements, which 
are shown in the bottom left panel of figure  1. For a more 
detailed discussion of these measurements see also the review 
by Ubachs et  al [24]. Note that several different molecules 
can be used [49], and in the case of the gravitational lens 
PKS1830  −  211 there are actually four independent measure-
ments, with different levels of sensitivity. Currently ammonia 
is the most common molecule at low redshift, though others 
such as methanol [84, 85], peroxide [86], hydronium [87] and 
methanetiol (also known as methyl mercaptan) [88] have a 
greater potential in the context of facilities like ALMA, due 
to their large sensitivity coefficients [49]. At higher redshifts, 
optical/near UV measurements are done using molecular 
hydrogen as first suggested in [40]. Carbon monoxide is less 
common but has sensitivity coefficients similar to those of 
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molecular hydrogen [89], and can certainly provide important 
independent tests. The ultimate goal here is to find other mol-
ecules at higher redshifts, enabling optical and radio meas-
urements in the same targets. Efforts in this direction are 
currently ongoing.

The tightest available constraint on μ comes precisely from 
PKS1830  −  211, from observations of methanol transitions 
[74]. We can similarly calculate the weighted mean of the 
low and high-redshift samples (z < 1 and z > 2 respectively), 
finding

(
∆µ

µ

)

Radio
= −0.24 ± 0.09 ppm� (16)

(
∆µ

µ

)

Optical
= 2.9 ± 1.9 ppm;� (17)

in both cases this is weak evidence for a variation, although 
note the preferred sign of this variation is different at high and 
low redshifts. Importantly, in this case the division between 
low and high redshift measurements is also a division between 
radio/mm and UV/optical measurements.

It is also worthy of note that while for molecular hydro-
gen one is indeed measuring μ, for more complex molecules 
(which are often far more sensitive to μ variations than H2 
itself) one is actually measuring a ratio of an effective nucleon 
mass to the electron mass, and the relative variation of this 
quantity will only equal that of μ if there are no composition-
dependent forces—in other words, if protons and neutrons 
have identical couplings to putative scalar fields. A test of 
this hypothesis could thus by carried out by finding a system 

where μ can be separately measured from different molecules 
with different numbers of protons and neutrons: for example 
H2, HD, and perhaps also ammonia, methanol or carbon mon-
oxide, which are all (comparatively) common molecules. This 
would be a revolutionary direct astrophysical test of the Weak 
Equivalence Principle, and it could in principle be done by 
ELT-HIRES [27], provided it has a suitable wavelength cover-
age in the blue part of the spectrum.

While direct measurements of α and μ are most com-
monly obtained in the ultraviolet/optical, in the radio band 
one can more often measure combinations of them. Typically 
combinations of HI 21 cm absorption lines, conjugate 18 cm 
OH lines and molecular rotation lines are sensitive to vari-
ous combinations of α, μ and gp. Here a ppm sensitivity is 
nominally easier to reach (inter alia because sensitivity coef-
ficients tend to be larger), though usually only at significantly 
lower redshifts. Recent measurements are listed in table  3, 
and also plotted in the bottom right panel of figure 1. Note 
that measurements have been made beyond redshift z = 6.4, 
and that PKS1413+135, an edge-on radio source at redshift 
z = 0.247, allows measurements of all three couplings [46], 
though currently only at a modest level of sensitivity.

It is interesting to carry out a global statistical analysis 
of these data sets. These results are displayed in table 4. At 
face value there is a mild preference, at the level of two to 
three standard deviations, for negative variations of α and μ. 
However, the most noteworthy result of this analysis are the 
very large values of the reduced chi-square at the maximum 
of the three-dimensional likelihoods. This is mostly due to the 
combined measurements data set, but the issue remains when 

Table 1.  Available dedicated measurements of α. Listed are, respectively, the object along each line of sight, the redshift of the 
measurement, the measurement itself (in parts per million), the spectrograph, and the original reference. The third measurement is the 
weighted average from 8 absorbers along the lines of sight of HE1104-1805A, HS1700+6416 and HS1946+7658, reported in [67]  
without the values for individual systems.

Object z ∆α/α (ppm) Spectrographs Reference

J0026−2857 1.02 3.5 ± 8.9 UVES Murphy et al (2016) [64]
J0058+0041 1.07 −1.4 ± 7.2 HIRES Murphy et al (2016) [64]
3 sources 1.08 4.3 ± 3.4 HIRES Songaila and Cowie (2014) [67]
HS1549+1919 1.14 −7.5 ± 5.5 UVES/HIRES/HDS Evans et al (2014) [58]

HE0515−4414 1.15 −1.4 ± 0.9 UVES Kotus et al (2017) [65]
J1237+0106 1.31 −4.5 ± 8.7 HIRES Murphy et al (2016) [64]
HS1549+1919 1.34 −0.7 ± 6.6 UVES/HIRES/HDS Evans et al (2014) [58]

J0841+0312 1.34 3.0 ± 4.0 HIRES Murphy et al (2016) [64]
J0841+0312 1.34 5.7 ± 4.7 UVES Murphy et al (2016) [64]

J0108−0037 1.37 −8.4 ± 7.3 UVES Murphy et al (2016) [64]

HE0001−2340 1.58 −1.5 ± 2.6 UVES Agafonova et al (2011) [68]
J1029+1039 1.62 −1.7 ± 10.1 HIRES Murphy et al (2016) [64]
HE1104−1805 1.66 −4.7 ± 5.3 HIRES Songaila and Cowie (2014) [67]

HE2217−2818 1.69 1.3 ± 2.6 UVES Molaro et al (2013) [56]
HS1946+7658 1.74 −7.9 ± 6.2 HIRES Songaila and Cowie (2014) [67]
HS1549+1919 1.80 −6.4 ± 7.2 UVES/HIRES/HDS Evans et al (2014) [58]

Q1103−2645 1.84 3.5 ± 2.5 UVES Bainbridge and Webb (2016) [66]

Q2206−1958 1.92 −4.6 ± 6.4 UVES Murphy et al (2016) [64]
Q1755+57 1.97 4.7 ± 4.7 HIRES Murphy et al (2016) [64]
PHL957 2.31 −0.7 ± 6.8 HIRES Murphy et al (2016) [64]
PHL957 2.31 −0.2 ± 12.9 UVES Murphy et al (2016) [64]
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Figure 1.  Currently available astrophysical measurements of fundamental couplings: the archival data set of Webb et al [51] (top left), and 
dedicated measurements of α (top right, see table 1), μ (bottom left, see table 2) and combinations of parameters, generically denoted Q 
(bottom right, see table 3). Note that both the horizontal and the vertical scales are different in each panel.

Table 2.  Available measurements of μ. Listed are, respectively, the object along each line of sight, the redshift of the measurement, the 
measurement itself, the molecule(s) used, and the original reference. Low-redshift measurements were obtained with various facilities in 
the radio/mm band, while high-redshift ones were obtained in the UV/optical with the UVES spectrograph.

Object z ∆µ/µ Method Reference

B0218+357 0.685 0.74 ± 0.89 NH3/HCO+/HCN Murphy et al (2008) [69]

B0218+357 0.685 −0.35 ± 0.12 NH3/CS/H2CO Kanekar (2011) [70]

PKS1830−211 0.886 0.08 ± 0.47 NH3/HC3N Henkel et al (2009) [71]

PKS1830−211 0.886 −1.2 ± 4.5 CH3NH2 Ilyushin et al (2012) [72]

PKS1830−211 0.886 −2.04 ± 0.74 NH3 Muller et al (2011) [73]

PKS1830−211 0.886 −0.10 ± 0.13 CH3OH Bagdonaite et al (2013) [74]

J2123−005 2.059 8.5 ± 4.2 H2/HD (VLT) van Weerdenburg et al (2013) [75]

J2123−005 2.059 5.6 ± 6.2 H2/HD (Keck) Malec et al (2010) [76]

HE0027−1836 2.402 −7.6 ± 10.2 H2 Rahmani et al (2013) [57]

Q2348−011 2.426 −6.8 ± 27.8 H2 Bagdonaite et al (2012) [77]

Q0405−443 2.597 10.1 ± 6.2 H2 King et al (2008) [78]

J0643−504 2.659 7.4 ± 6.7 H2 Albornoz-Vásquez et al (2014) [79]
J1237+0648 2.688 −5.4 ± 7.5 H2/HD Daprà et al (2015) [80]

Q0528−250 2.811 0.3 ± 3.7 H2/HD King et al (2011) [81]

Q0347−383 3.025 2.1 ± 6.0 H2 Wendt and Reimers (2008) [82]
J1443+2724 4.224 −9.5 ± 7.6 H2 Bagdonaite et al (2015) [83]
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they are combined with direct measurements of α or μ. One 
possible explanation is that the uncertainties of some of the 
measurements have been underestimated. The problem per-
sists if the data is divided into different redshift bins, which 
could more accurately account for redshift dependencies in 
the variations, an issue first noticed in [101]. A more detailed 
analysis and discussion can be found in [102].

3.3.  Spatial variations?

As previously mentioned, the Webb et  al analysis of their 
large archival data set provided evidence for spatial varia-
tions of α at the level of a few ppm, at a statistical level of 
significance of more than four standard deviations. A recent 
analysis [103], combining this with the then-existing set of 
11 dedicated measurement found that the dipole was still a 
reasonable fit, although the preferred amplitude was reduced 
by twenty percent. It is worth revisiting and updating this 
analysis, given that there are now 21 dedicated α measure-
ments in table  1, significantly increasing the sky coverage, 

and that some of the previously existing measurements have 
also been improved. We note that the third measurement listed 
in table 1 is the weighted average from measurements along 
three lines of sight which contain absorbers at roughly similar 
redshifts but are in fact widely separated on the sky (specifi-
cally, HE1104−1805A, HS1700+6416 and HS1946+7658), 
reported in [67]. (The authors only report this average and not 
the individual measurements.) For this reason this measure-
ment has been removed from spatial variations analysis, leav-
ing the dedicated data set with 20 measurements.

The simplest approach in the modeling of spatial variations 
is to fit the α measurements to two different phenomenologi-
cal parametrizations. The first is a pure spatial dipole for the 
relative variation of α, which on a sphere has the form

∆α

α
(A,Ψ) = A cosΨ,

�
(18)

which depends on the orthodromic distance Ψ to the North 
Pole of the dipole (the locus of maximal positive variation) 
given by

Table 3.  Available measurements of several combinations of the dimensionless couplings α, μ and gp. Listed are, respectively, the object 
along each line of sight, the redshift of the measurement, the dimensionless parameter being constrained, the measurement itself (in parts 
per million), and its original reference.

Object z QAB ∆QAB/QAB Reference

J0952+179 0.234 α2gp/µ 2.0 ± 5.0 Darling (2012) [90]

PKS1413+135 0.247 α2×1.85gpµ
1.85 −11.8 ± 4.6 Kanekar et al (2010) [91]

PKS1413+135 0.247 α2×1.57gpµ
1.57 5.1 ± 12.6 Darling (2004) [92]

PKS1413+135 0.247 α2gp −2.0 ± 4.4 Murphy et al (2001) [93]

J1127−145 0.313 α2gp/µ −7.9 ± 4.6 Darling (2012) [90]

J1229−021 0.395 α2gp/µ 20.1 ± 28.7 Darling (2012) [90]

J0235+164 0.524 α2gp/µ −8.0 ± 3.9 Darling (2012) [90]

B0218+357 0.685 α2gp −1.6 ± 5.4 Murphy et al (2001) [93]

J0134−0931 0.765 α2×1.57gpµ
1.57 −5.2 ± 4.3 Kanekar et al (2012) [94]

J2358−1020 1.173 α2gp/µ 1.8 ± 2.7 Rahmani et al (2012) [95]

J1623+0718 1.336 α2gp/µ −3.7 ± 3.4 Rahmani et al (2012) [95]

J2340−0053 1.361 α2gp/µ −1.3 ± 2.0 Rahmani et al (2012) [95]

J0501−0159 1.561 α2gp/µ 3.0 ± 3.1 Rahmani et al (2012) [95]

J1381+170 1.776 α2gp/µ −12.7 ± 3.0 Darling (2012) [90]

J1157+014 1.944 α2gp/µ 23.1 ± 4.2 Darling (2012) [90]

J0458−020 2.040 α2gp/µ 1.9 ± 2.5 Darling (2012) [90]

J1024+4709 2.285 α2µ 100 ± 40 Curran et al (2011) [96]

J2135−0102 2.326 α2µ −100 ± 100 Curran et al (2011) [96]

J1636+6612 2.517 α2µ −100 ± 120 Curran et al (2011) [96]

H1413+117 2.558 α2µ −40 ± 80 Curran et al (2011) [96]

J1401+0252 2.565 α2µ −140 ± 80 Curran et al (2011) [96]

J0911+0551 2.796 α2µ −6.9 ± 3.7 Weiss et al (2012) [97]

J1337+3152 3.174 α2gp/µ −1.7 ± 1.7 Srianand et al (2010) [98]

APM0828+5255 3.913 α2µ −360 ± 90 Curran et al (2011) [96]

MM1842+5938 3.930 α2µ −180 ± 40 Curran et al (2011) [96]

PSS2322+1944 4.112 α2µ 170 ± 130 Curran et al (2011) [96]

BR1202−0725 4.695 α2µ 50 ± 150 Lentati et al (2013) [99]

J0918+5142 5.245 α2µ −1.7 ± 8.5 Levshakov et al (2012) [100]

J1148+5251 6.420 α2µ 330 ± 250 Lentati et al (2013) [99]
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cosΨ = sin θi sin θ0 + cos θi cos θ0 cos (φi − φ0),�
(19)

where (θi,φi) are the Declination and Right Ascension of 
each measurement and (θ0,φ0) those of the North Pole. These 
latter two coordinates, together with the overall amplitude of 
the variation, A, are our free parameters. An additional mono-
pole term is not included, both because there is no signifi-
cant statistical preference for it in previous analyses [51] and 
because it is physically clear that any such term would be 
understood as being due to the assumption of terrestrial iso-
topic abundances, in particular for Magnesium—we refer the 
interested reader to [104] for a detailed technical discussion 
of this point.

As a means to check the impact of the above choices (and 
hence the ability of the data to discriminate between differ-
ent models for spatial variations), one can also consider a 
parametrization where there is an implicit time dependence 
in addition to the overall spatial variation. Previous analyses 
considered the case of a dependence on look-back time, but 
this requires the assumption of a cosmological model and 
moreover it’s not clear how such a dependence would emerge 
from realistic varying α models. We can instead assume a log-
arithmic dependence on redshift

∆α

α
(A, z,Ψ) = A ln (1 + z) cosΨ.� (20)

This has the practical advantage of not requiring any addi-
tional free parameters, but as we will see in section 5 such 
logarithmic redshift dependencies are also typical of well 
motivated dilaton-type models [105].

The results of this analysis are summarized in the red con-
tours in figure 2, and in table 5. For the Webb et al data we 
recover the statistical preference for a dipole at more than four 
standard deviations, while there is no preference for a dipole 
in the more recent data. Combining the two data sets, the sta-
tistical preference for a dipole is reduced to only 2.3 standard 
deviations, and the best-fit amplitude is less than 6 ppm. As 
for the direction of maximal variation, we note that the pre-
ferred Declination is significantly changed by the addition of 
the most recent data, moving by about 18 degrees, while the 
Right Ascension is comparatively less affected.

Comparing the results for the pure spatial dipole and the 
redshift-dependent one, we see that they are very similar (with 

the constraints on the latter being very slightly weaker); this 
is visually clear in figure 2, where the results for both mod-
els are represented, and for this reason table  5 only reports 
the results for the pure spatial case. The current sensitivity 
and redshift distribution of the measurements is not sufficient 
to distinguish between these models. In any case, it may be 
argued that while assuming such simple dipole parametriza-
tions is phenomenologically legitimate, it is not quite realistic, 
since in models where there are environmental dependencies 
the observational behavior would be more complex that that. 
This is a legitimate point, and in section 5 we will discuss a 
way to address it.

An additional independent test of possible spatial vari-
ations can be done with the sample of 13175 emission line 
measurements of α from the SDSS-III/BOSS DR12 quasar 
sample of Albareti et  al [50]. While the sensitivity of each 
of their individual measurements of the relative variation of 
α is much worse than the ones reported in table 1 (ranging 
from 2.4 × 10−4 to 1.5 × 10−2, to be compared to parts-per-
million), the much large number of measurements covering 
a significant fraction of the sky still allows for a worthwhile 
test of spatial variations. For comparison, the weighted mean 
of the 13175 measurements, which span the redshift range 
0.041 < z < 0.997 is

(
∆α

α

)

BOSS
= 9 ± 18 ppm.� (21)

One can also use this data set to test for possible spatial varia-
tions. A detailed analysis can be found in [102], with the result 
that there is no preference for a particular direction on the sky, 
and specifically with the following three-sigma (99.7% C.L.) 
upper bound for the amplitude of a putative dipole

ASDSS < 7 × 10−4.� (22)

This bound on the amplitude is about 64 times weaker than the 
one discussed above from the absorption line measurements 
(see bounds on the amplitude in table 5), but it is indepen-
dent from it. Moreover, it is stronger than recent bounds on 
spatial variations coming from the combination of Sunyaev–
Zel’dovich cluster measurements and Planck satellite data 
(and even stronger than analogous bounds from the Planck 
cosmic microwave background data alone) [106].

Since the number of available measurements of μ in table 2 
is not much smaller than those of α in table 1, one may also 
ask whether there is any evidence for a dipole in the μ meas-
urements. This issue was briefly addressed in [24], but that 
work only considered the high-redshift molecular hydrogen 
measurements. Doing the analysis with all the data in table 2 
we find that there is no strong preference for it: the statisti-
cal significance of a possible dipole is less than two sigma. 
Specifically, the two-sigma (95.4% confidence level) upper 
limit for the dipole amplitude in the case of a pure spatial 
dipole is

Aµ < 1.9 ppm,� (23)
while for the redshift-dependent one it is

Aµ < 4.3 ppm.� (24)

Table 4.  One-dimensional marginalized one-sigma constraints for 
α, μ an gp, for various combinations of data sets. All constraints are 
in parts per million. The last column has the reduced chi-square for 
the maximum of the 3D likelihoods.

Sample
∆α/α 
(ppm)

∆µ/µ 
(ppm)

∆gp/gp 
(ppm) χ2

ν

Table 3 only −3.5 ± 2.2 −0.6 ± 1.7 5.4 ± 5.7 3.83

Table 3  +  Webb −2.3 ± 0.8 −1.4 ± 1.2 2.4 ± 2.4 1.28

Table 3  +  1 −0.9 ± 0.6 −2.3 ± 1.1 −1.4 ± 2.0 2.58

Table 3  +  1  +  Webb −1.4 ± 0.5 −2.1 ± 1.1 −0.2 ± 1.7 1.26

Table 3  +  2 −3.9 ± 1.3 −0.2 ± 0.1 6.6 ± 2.9 2.95

Table 3  +  2  +  1 −1.3 ± 0.6 −0.2 ± 0.1 1.0 ± 1.5 2.33

All data −1.6 ± 0.5 −0.2 ± 0.1 1.7 ± 1.3 1.27
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Moreover, the directions on the sky corresponding to the 
North pole of such putative α and μ dipoles are incompatible 
at more than three sigma for the case of pure spatial dipoles, 
or at more than two sigma for the case of a dilaton-type red-
shift dependence—see figure 2 for a visual comparison. The 
difference between the pure and redshift-dependent dipole 
analyses in somewhat larger in the μ case than in the α 
one, the reason for this being that in the former the tight-
est measurements are at low redshifts—compare equations   
(16)–(17). In any case, the conclusion is that at present there 
is also no strong evidence for spatial variations, though 
the issue will certainly be revisited in the near future as 
ESPRESSO becomes available.

Finally, we should point out that the radio band sensitiv-
ity is even better for measurements within the Galaxy (thus 
effectively at z = 0), where one can search for environmental 
dependencies since measurements can be made in regions 
with densities that are many orders of magnitude smaller than 
the local one. Here again there is no current evidence for vari-
ations, up to a sensitivity at the 0.05 ppm level for μ [107] and 
at the 0.1 ppm level for α [108]. Searches for environmental 
dependencies can also be done using compact astrophysical 
objects, to be briefly discussed in the next section.

4.  Other probes

Although the QSO high-resolution spectroscopic measure-
ments described in the previous section  constitute the most 
actively pursued topic in this field, they are complemented by 
a range of other local and astrophysical measurements, which 
probe the stability of fundamental couplings in a vast range 
of cosmological epochs and physical environments. While it 

is not the main goal of this review to provide a thorough dis-
cussion of all of these, in this section we provide some com-
ments and updates on a few of these, on which there has been 
relevant recent activity. We remind the reader that a more sys-
tematic review may be found in [22].

In strict terms of sensitivity, the other probe that is compet-
itive with QSO spectroscopy is provided by laboratory tests 
using atomic clocks [117]. The idea is analogous to that of 
QSO spectroscopy. One compares (in this case over a time 
span of at least a few months, but possibly several years) two 
atomic clocks whose characteristic frequencies have different 
sensitivities to certain combinations of α, μ and gp, thereby 
obtaining a measurement of the drift rate of this combination 
in the relevant time period. Typically the ratio of the two fre-
quencies will be proportional to

Table 5.  One- and three-sigma constraints on the Amplitude and 
Equatorial sky coordinates of maximal variation (Right Ascension 
and Declination) for a pure spatial dipole variation of α. The ‘All 
Data’ case corresponds to using the data of Webb et al [51] together 
with the 20 individual measurements presented in table 1; this is 
plotted with solid red contours in figure 5.

Data set  
and C.L.

Amplitude 
(ppm)

Right  
Ascension (h)

Declination 
(°)

Webb et al [51] 
(68.3%)

9.4 ± 2.2 17.2 ± 1.0 −61 ± 10

Webb et al [51] 
(99.7%)

9.4 ± 6.4 17.2+4.4
−5.3

<−28

Table 1 (68.3%) <2.3 14.1+3.4
−5.8

>17

Table 1 (99.7%) <6.4 N/A N/A
All data (68.3%) 5.6 ± 1.8 16.9 ± 0.8 −43 ± 7
All data (99.7%) <10.9 16.9+3.4

−3.2 −43+34
−31

Figure 2.  Two-dimensional Right Ascension–Declination likelihood, with the amplitude marginalized, for a pure spatial dipole (solid 
lines) and for one with a dilaton-like redshift dependence (dashed lines). Red lines correspond to all the available α data, while blue lines 
corresponds to the μ data. One, two and three sigma contours are shown in all cases. Note that the two dipoles point to different directions 
on the sky.

Rep. Prog. Phys. 80 (2017) 126902



Review

13

νAB =
νA

νB
∝ αλαµλµgλg

p
�

(25)

where the λi are again the sensitivity coefficients

λα =
d ln νAB

d lnα
,� (26)

and analogously for the other couplings. Table 6 presents the 
latest available laboratory measurements. Notice that it is pos-
sible to individually constrain α (indeed, at very high sensitivity) 
while the best measurements of μ and gp are obtained for pairs of 
clocks sensitive to their combinations with α. The constraint of 
Rosenband et al [37] is currently the single most stringent con-
straint on α, and has been frequently used in combination with 
other data to constrain several models for α variations—some of 
these constraints will be discussed in sections 5 and 6. A joint 
statistical analysis of the data in this table leads to the following 
best-fit values, at the one-sigma (68.3%) confidence level (see 
also figure 3)

d lnα
dt

= (−2.2 ± 2.4)× 10−17 yr−1� (27)

d lnµ
dt

= (13.8 ± 8.6)× 10−17 yr−1� (28)

d ln gp

dt
= (−5.8 ± 2.5)× 10−17 yr−1;� (29)

thus there is no evidence for α or μ variations, while intrigu-
ingly a drift of gp is preferred at more than two standard devia-
tions. A joint analysis also leads to useful constraints on the 
unification parameters R and S, introduced in section 2. For 
example the work of [118] led to

(S + 1)− 2.7R = −5 ± 15;� (30)

with the newer data this constraint is improved by roughly a 
factor of two. Significant progress is expected in laboratory 
measurements in the coming years: with forthcoming molecu-
lar and nuclear clocks, particularly those based on Thorium229 
[119], a sensitivity as high as 10−21 yr−1 may be achieved.

The Oklo natural nuclear reactor is another complementary 
probe of the stability of fundamental couplings. In particular, 
it nominally provides a strong constraint on α, however it only 

does so if one assumes that everything else is not varying (in 
other words, that there is a different value of α but physics is 
otherwise unchanged). Since here one is dealing with a chain of 
nuclear reactions, this is likely to be a very crude assumption, 
as has been amply documented in the recent literature. Indeed, 
the Oklo nuclear reactions are more sensitive to the analogous 
coupling for the strong nuclear force, αs. We refer the interested 
reader to a recent review on the subject [120] and references 
therein. So while it is clear that this is not as ‘clean’ and reliable 
a measurement as the atomic clock and QSO measurements, 
one can certainly take these constraints at face value. The cur
rent constraint, from the analysis of [121], is

∆α

α
= (0.5 ± 6.1)× 10−8,� (31)

at an effective redshift zOklo = 0.14. This nominally strong 
bound ultimately exploits the presence of a 97.3 meV reso-
nance in the neutron capture by the Samarium-149 isotope 
(whereas the typical energy scale of nuclear reactions is of 
order MeV). We note that even stronger bounds have been 
obtained in [122, 123], but these rely on additional assump-
tions, while the bound of [121] is more conservative.

Compact objects have also been the focus of significant 
recent studies, exploring their suitability as probes of the sta-
bility of fundamental couplings. There are many theoretical 
studies which quantify the effect of varying couplings on 
these objects and use their known properties to infer a posteri-
ori limits on such variations. Such analyses have been carried 
out for Population III stars [124], solar-type stars [125] and 
neutron stars [126]. In all these cases current sensitivities are 
around the 50 ppm level, and often the limiting factor comes 
from nuclear physics uncertainties.

More recently direct observational constraints have been 
obtained, also at about the 50 ppm level of sensitivity, for both 
α and μ using white dwarf stars [127, 128]. These come from 
spectroscopic observations of highly excited metal lines (FeV 
and NiV) and molecular hydrogen, respectively

(
∆α

α

)

FeV
= 42 ± 16 ppm� (32)

(
∆α

α

)

NiV
= −61 ± 58 ppm� (33)

Table 6.  Atomic clock constraints of varying fundamental couplings. The third, fourth and fifth columns show the sensitivity coefficients of 
each frequency ratio to the various dimensionless couplings.

Clocks ν̇AB/νAB (yr−1) λα λµ λg Reference

Hg-Al (5.3 ± 7.9)× 10−17 −2.95 0.0 0.000 Rosenband et al (2008) [37]

Dy162-Dy164 (−5.8 ± 6.9)× 10−17 1.00 0.0 0.000 Leefer et al (2013) [109]

Cs-SF6 (−1.9 ± 2.7)× 10−14 2.83 0.5 −1.266 Shelkovnikov et al (2008) [110]

Cs-H (3.2 ± 6.3)× 10−15 2.83 1.0 −1.266 Fischer et al (2004) [111]

Cs-Sr (1.80 ± 0.55)× 10−16 2.77 1.0 −1.266 Abgrall et al (2015) [112]

Cs-Hg (−3.7 ± 3.9)× 10−16 5.77 1.0 −1.266 Fortier et al (2007) [113]

Cs-Yb(E2) (−0.5 ± 1.9)× 10−16 1.83 1.0 −1.266 Tamm et al (2014) [114]

Cs-Yb(E3) (−0.2 ± 4.1)× 10−16 8.83 1.0 −1.266 Huntemann et al (2014) [115]

Cs-Rb (1.07 ± 0.49)× 10−16 0.49 0.0 −2.000 Guéna et al (2012) [116]
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(
∆µ

µ

)

GD133
= −27 ± 47 ppm� (34)

(
∆µ

µ

)

G29−38
= −58 ± 38 ppm� (35)

and provide a means to constrain environmental dependen-
cies—in this case, possible dependencies on the gravitational 
potential. In the case of the α measurements, the FeV and NiV 
results are inconsistent with each other at the 1.6 sigma level, 
the likely reason being related to uncertainties in laboratory 
wavelength measurements of these transitions; assuming that 
these can be improved, the sensitivity of these measurements 
should certainly reach the ppm level.

The effects of varying fundamental couplings on the white 
dwarf mass-radius relation were recently studied in [129], 
both for the simple case of a polytropic stellar structure model 
and for a more general model. This analysis shows that inde-
pendent measurements of the mass and radius, together with 
direct spectroscopic measurements of α in white dwarf atmos
pheres such as those discussed in the previous paragraph, 
lead to constraints on unification scenarios which interest-
ingly are almost orthogonal to the ones coming from atomic 
clocks. Currently available measurements do not yet provide 
stringent constraints, but improvements in mass and radius 
measurements, expected for example from the Gaia satellite 
[130], can break parameter degeneracies and lead to strong 
new constraints.

At higher redshifts the cosmic microwave background pro-
vides a very clean probe in principle: it is well known that 
varying couplings will affect the ionization history of the uni-
verse (including the energy levels, the binding energies and the 
Thomson cross-section), and moreover the relevant physics is 
to a large extent linear and well understood. Nevertheless, the 
sensitivity of this probe is limited by the presence of degen-
eracies with other cosmological parameters, so current con-
straints are around the 3700 ppm level for α [131], and even 
worse for μ and for spatial variations. Given the ppm con-
straints at low redshifts, CMB constraints will only be com-
petitive for very specific classes of models that would predict 
strong variations in the very early universe—this would not be 
the case in the simplest dilaton-type (string-theory inspired) 
models. Conversely, the detection of α variations at the CMB 
epoch that are not detectable by more sensitive low-redshift 
spectroscopic methods would certainly point to new and 
unexpected physics. Next-generation missions such as CORE 
should improve these bounds by almost one order of magni-
tude [132].

Another recent approach is to extract constraints on α by 
comparing x-ray and Sunyaev–Zel’dovich cluster data, lead-
ing to percent-level constraints [133]. Again the sensitivity 
of this method is very low compared to QSO spectroscopic 
measurements, though on the other hand this approach in 
principle has the advantage of large numbers. With moderate 
gains in the sensitivity of the observations in each individual 
cluster which should be easily achievable, if one is able to use 
the tens of thousands of clusters that will be observed by next 
generation missions such as CORE [134] one may be able to 

obtain independent competitive constraints, though at lower 
median redshifts (with current data, all clusters for which this 
technique has been used are at z < 0.5). Another potential 
advantage of a large number of sources well spread on the 
sky is the possibility to constrain spatial variations. Indeed the 
recent analysis of de Martino et al [106], which uses a larger 
cluster sample (an advantage that is partially offset by the fact 
that all clusters therein are at z < 0.3) has improved both the 
constraints obtained by [133] and the Planck constraints on 
spatial variations of α [131]. These data sets are also useful 
since they can provide measurements of the CMB temper
ature at non-zero redshift, a topic to which we will return in 
section 7.

At even higher redshifts constraints can also be obtained 
from Big Bang Nucleosynthesis, though with the caveat that 
they will necessarily be model-dependent. The reason for this 
is that the first step in any analysis of the effects of varying 
fundamental couplings on BBN will be to ascertain its effect 
on the neutron to proton mass difference, and this can only 
be done through the phenomenological Gasser–Leutwyler 
formula [135]. That said, current phenomenological con-
straints are at around the percent level for relatively generic 
phenomenological models [136], though much tighter con-
straints can be obtained for more specific choices of model, 
in particular by restricting oneself to the unification scenarios 
we mentioned in section  2, as was done in [41]. Finally, it 
has been claimed that the Lithium problem might be removed 
in some GUT scenarios [137]. This is plausible in principle, 
because one generically expects that varying couplings will 
have larger effects for heavier nuclei: in other words, they 
could significantly change the Lithium abundance while leav-
ing those of lighter nuclei comparatively unaffected. A more 
detailed analysis of this scenario is probably warranted given 
recent observational progress [138].

5.  Cosmological models with varying couplings

Having reviewed the observational status of the tests of the 
stability of dimensionless fundamental couplings, we now 
move on to describe possible models in which these couplings 
do vary, as well as how they are constrained by the available 
data. This will be the subject of the present and the follow-
ing sections, and we will again focus mostly on models for α 
variations.

From an observational point of view, scalar field based mod-
els for varying couplings can be conveniently divided into two 
broad classes [23]. As we shall see later in this review, should 
varying couplings be detected, observational consistency tests 
can be done to ascertain to which of the two classes the model 
responsible for these variations belongs two. Attributing the 
variations to a specific model within the appropriate class will 
be a subsequent task.

The first, dubbed Class I, contains those models where 
the degree of freedom responsible for the varying constants 
also provides the dark energy. These are therefore natural 
and ‘minimal’ models, in the operational sense that there is a 
single new dynamical degree of freedom—in other words, a 
single extension of the standard model—accounting for both.  
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In this class of models the redshift dependence of the cou-
plings will be parametrically determined, and any available 
measurements of α (be they detections of variations or null 
results) can be used to set constraints on combinations of fun-
damental physics and cosmological parameters, such as the 
dark energy equation of state. We will discuss these models in 
more detail in the following section.

Presently we focus instead on the opposite class, dubbed 
Class II models. These are the ones where the field that pro-
vides the varying couplings does not provide the dark energy 
(or at least does not provide all of it). In this case the afore-
mentioned unique link with dark energy is lost, though the 
parameters of the underlying cosmological model will never-
theless affect the variation of the couplings, as we will see in 
specific examples. Moreover, note that even if the scalar field 
does not dominate the background cosmological dynamics, 
inferring its presence is still crucial since—through α vari-
ations themselves or through other effects—it can bias cos-
mological parameter estimations [139, 140]. We will return 
to this point in section 7. In this section we will discuss three 
representative examples of these models.

5.1.  Bekenstein models

Arguably the simplest class of phenomenological models for 
varying couplings is the one first suggested by Bekenstein 
[141] where, by construction, the dynamical degree of free-
dom responsible for the varying coupling has a negligible 
effect on the cosmological dynamics. This class includes the 
Sandvik–Barrow–Magueijo model for a varying fine-structure 
constant α [142] and the Barrow–Magueijo model for a vary-
ing proton-to-electron mass ratio μ, both of which have been 
studied in some detail.

These models are characterized by a single phenomeno-
logical dimensionless parameter, ζ, describing the strength of 
the coupling of the dynamical scalar degree of freedom to the 
electromagnetic sector, and thus determining the amount of 
weak equivalence principle (WEP) violation in the model. In 
what follows we describe the simplest version of both mod-
els. While extensions of the α model with additional (func-
tional) degrees of freedom have been suggested [143, 144], 
the quantity and quality of the available data (and the fact that 
no strong evidence for a nonzero coupling ζ currently exists) 
motivate us to focus on the simplest scenarios.

The Bekenstein–Sandvik–Barrow–Magueijo (BSBM) 
model for varying α was introduced in [142], drawing on 
Bekenstein’s earlier work [141]. It is a model where the vari-
ation of α is due to a varying electric charge, while other 
parameters are assumed to remain constant. Conceptually 
one could say that this is a dilaton-type model (see the fol-
lowing section), though one where the field is postulated to 
couple only to the electromagnetic sector of the Lagrangian. 
The model’s dynamical equations are obtained by standard 
variational principles, as discussed in [142]. Specifically, the 
value of the fine-structure constant is related to the scalar 
field ψ via α/α0 = e2(ψ−ψ0) though as usual the observational 

parameter of choice is the relative variation of α, ∆α/α, see 
equation  (4). Without loss of generality we henceforth re-
define the field such that at the present day ψ0 = 0.

Assuming a flat, homogeneous and isotropic cosmology 
(in agreement with the latest cosmological data [131]), one 
obtains the following Friedmann equation [142]

H2 =
8πG

3

[
ρm(1 + ωζαe−2ψ) + ρre−2ψ + ρΛ +

1
2
ωψ̇2

]
,

� (36)
with the dots denoting derivatives with respect to physical 
time, and the ρi  respectively denoting the matter, radiation and 
dark energy densities. The scalar field equation is

ψ̈ + 3Hψ̇ = −2ζαGρme−2ψ .� (37)

Here ω is a parameter that can be defined as ω ∼ �c/�2, where 
� effectively describes the scale below which one has signifi-
cant deviations from standard electromagnetism. For simplic-
ity (and consistently with the analyses in [142, 145]) one can 
take ω ∼ 1, leaving the coupling ζα as the only phenomeno-
logical free parameter in the model. Typical values for this 
parameter are discussed in some detail in [142], but irrespec-
tive of theoretical expectations ζα can be taken as a free phe-
nomenological parameter, to be constrained by observations. 
Note that in addition to radiation and matter the model needs a 
dark energy component, which for simplicity is assumed to be 
a cosmological constant, to match cosmological observations. 
It is straightforward to show that the dynamical scalar field 
ψ is constrained to be entirely subdominant in the dynam-
ics of the universe (one practical consequence of this being 
that we can assume the standard values of the cosmological 
parameters), and its only role is to drive a variation of the fine-
structure constant.

In practice it is more convenient to write this equation as a 
function of redshift; recalling that

dz
dt

= −(1 + z)H,� (38)

one finds

ψ′′ +

(
d lnH

dz
− 2

1 + z

)
ψ′ = −3ζαΩm

4π
(1 + z)
E2(z)

e−2ψ;� (39)

here the primes denote derivatives with respect to redshift, 
and for future convenience we have defined the dimensionless 
function

E(z) =
H(z)
H0

.� (40)

The above equation  can be straightforwardly integrated, 
together with the Friedmann equation, by standard numer
ical methods. One finds that deep in the matter era the rela-
tive α variation is proportional to log (1 + z) (just as in most 
dilaton-type scenarios where this behavior occurs through-
out, see below), but the onset of acceleration quickly freezes 
the dynamics of the field and leads to comparatively smaller 
variations close to the present day. The current drift rate of α, 
expressed in dimensionless units, is
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(
1
H

α̇

α

)

0
= −

(
α′

α

)

0
= −2ψ′

0� (41)

and will be relevant for comparison to atomic clock mea-
surements. For example the previously mentioned bound by 
Rosenband et al [37] expressed in these units is

(
1
H

α̇

α

)

0
= (−2.2 ± 3.2)× 10−7.� (42)

Moreover, in this type of model there are composition-depen-
dent forces which lead to a WEP violation at a level quantified 
by the Eötvös parameter, denoted η [8]. Specifically, for this 
model the relation between η and the coupling parameter is 
[142]

ηα ∼ 3 × 10−9ζα,� (43)

to be compared to current bounds coming from torsion bal-
ance experiments [146]

η = (−0.7 ± 1.3)× 10−13� (44)

and lunar laser ranging [147]

η = (−0.8 ± 1.2)× 10−13.� (45)

Constraints on this model were recently discussed in [148] 
and will be updated here, including the new data that became 
available in recent months. Specifically, the following data 
sets were used (differences/updates relative to the analysis of 
[148] are indicated in brackets)

	 •	The Union2.1 data set of 580 Type Ia supernovas [149]; 
	 •	A compilation of 38 Hubble parameter measurements by 

Farooq et al [150] (whereas [148] used the 35 measure-
ments then available)

	 •	The astrophysical measurements of Webb et al as well as 
the 21 dedicated measurements listed in table 1 (whereas 
[148] used the 11 dedicated measurements then avail-
able)

	 •	The atomic clock constraint on α by Rosenband et al, see 
equation  (42), and the Oklo contraint [121], see equa-
tion (31).

For future reference, note that this data set—which we hence-
forth refer to as the Canonical Data set—will also be used 
later in this review to constrain other classes of models.

For the purpose of constraining the Bekenstein-type mod-
els, the background cosmology (supernova and Hubble param
eter) data will effectively provide conservative constraints on 
the present-day matter density, Ωm. Stronger constraints could 
be obtained by using for example CMB priors, but for the 
sake of consistency it is simpler to use only low-redshift data 
throughout the analysis.

The resulting constraints are summarized in the top panel 
of figure  4. As expected the correlation between the two 
parameters is small, and the cosmological data sets mostly fix 
the matter density, while the α measurements constrain the 
coupling ζα. Specifically, marginalizing over ζα yields

Ωm = 0.28 ± 0.03,� (46)

at the three sigma (99.7%) confidence level, which is fully 
compatible with other extant cosmological data sets, includ-
ing the recent Planck data [38]. On the other hand, marginal-
izing over Ωm, we find

ζα = (−0.8 ± 1.5)× 10−6, 68.3% C.L.� (47)

ζα = (−0.8 ± 4.5)× 10−6, 99.7% C.L..� (48)

Finally on can express this constraint on the coupling as a con-
straint on the Eötvös parameter,

ηα < 1.3 × 10−14, 99.7% C.L..� (49)

These constraints slightly improve those of [148], and table 7 
compares the two. Note that the bound on ηα is a stronger 
bound than the current local experimental limits. In other 
words, models in this class in agreement with the α constraints 
also satisfy current WEP bounds. However, we note that the 
recently launched MICROSCOPE satellite is expected to 
improve the sensitivity of local bounds to η ∼ 10−15 [151], 
thus enabling additional constraints.

The Bekenstein–Barrow–Magueijo model for varying μ 
was introduced in [152]. It is again a dilaton-type model and 
to a large extent analogous to the α model, the main differ-
ence being that it describes a varying electron mass rather 
than a varying electric charge. Other parameters are again 
assumed to remain constant. Observationally, this leads to 
a varying proton-to-electron mass ratio, μ. (Note that [152] 
uses a definition of μ which is opposite to the one we fol-
low here, specifically it defines it as me/mp.) As before we 
can assume that the field driving these variations, in this case 
denoted φ, does not significantly contribute to the Friedmann 
equation. Moreover we restrict ourselves to flat, homogeneous 
and isotropic cosmologies, and assume that the dark energy is 
provided by a cosmological constant. In this case the electron 
mass is given by me/me0 = eφ−φ0, while the observationally 
relevant parameter is ∆µ/µ(z). Without loss of generality we 
also re-define the field such that φ0 = 0.

In this case the dynamical equation  for φ, analogous to 
equation (39), has the form

φ′′ +

(
d lnH

dz
− 2

1 + z

)
φ′ = −ζµΩm

(1 + z)
E2(z)

eφ.� (50)

For simplicity (and in analogy with the α case discussed 
above), we have defined the dimensionless coupling ζµ. 
Written in terms of the parameters used in [152], this is has 
the form

ζµ =
3Ωb

8πµGω

(
1 − fHe

2

)
,� (51)

where Ωb is the present-day baryon density and fHe ∼ 1/12 
is the Helium-4 number fraction. Qualitatively the redshift 
dependence of μ in this model is quite similar to that of the 
α model, the main quantitative difference being that, as we 
will presently see, the allowed values of the coupling will be 
smaller. In this case the current drift rate of μ, expressed in 
dimensionless units is
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(
1
H

µ̇

µ

)

0
= −

(
µ′

µ

)

0
= φ′

0,� (52)

which is constrained by a weaker bound from local atomic 
clock measurements given by equation  (28), which when 
expressed in dimensionless units becomes

(
1
H

µ̇

µ

)

0
= (2.0 ± 1.3)× 10−6.� (53)

Note that this bound is stronger than the one used in the analy-
sis of [148], but it is in any case weaker than the astrophysical 
measurements, so updating it will have a fairly small impact 
on the overall constraints. Conversely, in this case the amount 
of WEP violation is much stronger

ηµ ∼ 10−4ζµ.� (54)

Naturally in this case we can use the same cosmological 
data sets as in the case of the α model, together with the μ 
measurements in table 2 and the above atomic clock bound 
on μ. The results of the analysis are summarized in the bot-
tom panel of figure 4. Again the correlation between the two 
parameters is small (though note that it is different from that 
in the α model case). Marginalizing over ζα we unsurprisingly 
find the same constraint on Ωm as in the previous case, while 
for the coupling ζµ we find

ζµ = (2.7 ± 1.0)× 10−7, 68.3% C.L.� (55)

ζµ = (2.7 ± 3.1)× 10−7, 99.7% C.L.;� (56)

this seemingly corresponds to detection of a non-zero cou-
pling with a statistical significance of 2.5 standard deviations. 
However, this value of the coupling is actually incompatible 
with the bound which comes from WEP violations

ζµ < 4 × 10−9, 99.7% C.L.;� (57)

here, unlike in the case of the α model, this constraint is about 
two orders of magnitude stronger than that coming from the 
μ measurements.

While we will discuss future prospects for this field in sec-
tion 8, here we take the opportunity to briefly discuss forth-
coming improvements to these constraints, expected from the 
new generation of high-resolution ultra-stable optical spectro-
graphs. The first of these, ESPRESSO [25], will be installed 
at the combined Coudé focus of ESO’s VLT in 2017 and it 
will become the instrument of choice for tests of the stabil-
ity of fundamental constants until the era of the Extremely 
Large Telescopes, and particularly its flagship spectrograph, 
ELT-HIRES [27].

A preliminary selection of the list of α targets to be 
observed during the ESPRESSO Fundamental Physics 
Guaranteed Time Observations (GTO) has been recently 
done [153], identifying 14 absorption systems in the redshift 
range 1.35 � z � 3.02. For this list of ESPRESSO targets 
one can generate simulated measurements with the expected 
ESPRESSO sensitivity, assuming two different scenarios, 
referred to as ‘Baseline’ and ‘Ideal’ [148]. These are meant to 
represent two estimates of ESPRESSO’s actual performance 

Figure 3.  Two-dimensional likelihoods for each pair of couplings, 
marginalizing over the other, from a global analysis of the data 
in table 6. All the axes are in units of 10−16 yr−1, and one, two 
and three sigma contours are shown in all cases. Note that all axis 
ranges are the same, to highlight the different sensitivities with 
which the various possible drifts can currently be constrained.
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and sensitivity for these measurements, with the former being 
conservative an the latter being somewhat more optimistic 
(for example, it may imply additional telescope time on each 
target). Naturally, the actual performance of the instrument 
will only be known after commissioning, but one may expect 
it to be somewhere between the two. Further discussion of 
the assumptions underlying these Baseline and Ideal scenarios 
can be found in [153]. The ESPRESSO target list was also 
used for a second forecast, in this case for ELT-HIRES, by 

extrapolating the gains from the increased telescope collecting 
area and—crucially—assuming that the wavelength coverage 
of ELT-HIRES is at least equal to that of ESPRESSO (this will 
certainly be the case at the red end, but what happens at the 
blue end remains to be seen at the time of writing).

These future (simulated) astrophysical data sets were used 
instead of the current α measurements to obtain constraints 
on the model parameters. Thus a data set of 314 current 
measurements was replaced by one with only 14, spanning a 

Figure 4.  Astrophysical and cosmological constraints on Bekenstein-type models, specifically 2D likelihood contours on the ζα − Ωm 
plane (top panel) and the ζµ − Ωm plane (bottom panel). Constraints from the cosmological data are shown in green (horizontal contours) 
and those from astrophysical data in magenta (vertical contours); the joint constraints are shown in black. One, two and three sigma 
contours are plotted in all cases. The reduced chi-square for the maximum likelihood value is χ2

ν = 0.96 for the α case and χ2
ν = 0.94 for 

the μ case. These plots update those presented in [148].
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smaller redshift range but naturally having much better preci-
sion. The previously defined cosmological data sets as well as 
the atomic clocks bound of Rosenband et al were also used. 
Naturally these are conservative assumptions since both of 
these data sets are also expected to improve, but the goal is 
to directly assess the impact of the improved astrophysical 
measurements.

The forecasts for the various scenarios are compared with 
the current constraints in table 7. These results make it clear 
that even a relatively small set of only 14 measurements will 
lead to very significant improvements. As previously men-
tioned the Baseline and Ideal scenarios are intended to bracket 
the actual performance of ESPRESSO and ELT-HIRES (with 
somewhat larger uncertainties on the latter, given the earlier 
stage of its development). We therefore expect the ESPRESSO 
GTO data set to improve constraints on the coupling in these 
models by a factor of about 5 while an analogous ELT-HIRES 
program can improve it by a factor of about 50, both these 
factors being calculated relative to the present values of the 
constraints.

5.2.  Runaway dilaton models

String theory does predict the presence of a scalar partner of 
the spin-2 graviton, the dilaton, hereafter denoted φ. A par
ticular class of string-inspired models is the so-called runaway 
dilaton scenario of Damour, Piazza and Veneziano [154, 155]. 
In this scenario, which among other things provides a way to 
reconcile a massless dilaton with experimental data, the dila-
ton decouples while cosmologically attracted towards infinite 
bare coupling, and the coupling functions have a smooth finite 
limit

Bi(φ) = ci +O(e−φ).�
(58)

As extensively discussed in [155], provided there’s a signifi-
cant (order unity) coupling to the dark sector, the runaway of 
the dilaton towards strong coupling may yield violations of 
the Equivalence Principle and variations of the fine-structure 
constant α that are potentially measurable. We now describe 
this scenario, mostly following the discussion in [105].

The Einstein frame Lagrangian for this class of models is 
[154, 155]

L =
R

16πG
− 1

8πG
(∇φ)

2 − 1
4

BF(φ)F2 + ....
�

(59)

where R is the Ricci scalar and BF is the gauge coupling func-
tion. From this one can show [155] that the corresponding 
Friedmann equation is as follows

3H2 = 8πG
∑

i

ρi + H2φ′2,
�

(60)

where the sum is over the components of the universe, except 
the kinetic part of the dilaton field which is described by the 
last term, and the prime is the derivative with respect to the 
logarithm of the scale factor. The sum does include the poten-
tial part of the scalar field; the total energy density and pres
sure of the field are

ρφ = ρk + ρv =
(Hφ′)2

8πG
+ V(φ)

�
(61)

pφ = pk + pv =
(Hφ′)2

8πG
− V(φ);

�
(62)

here k and v correspond to the kinetic and potential parts of the 
field, with the latter providing the dark energy. On the other 
hand, the evolution equation for the scalar field is

2
3 − φ′2 φ

′′ +

(
1 − p

ρ

)
φ′ = −

∑
i

αi(φ)
ρi − 3pi

ρ
.

�
(63)

Here p =
∑

i pi, ρ =
∑

i ρi , and the sums are again over all 
components except the kinetic part of the scalar field.

The αi(φ) are the couplings of the dilaton with each comp
onent i, so they characterize the effect of the various comp
onents of the universe in the dynamics of the field. One may 
generically expect that the dilaton has different couplings to 
different components [155], though one must bear in mind 
that experimental constraints impose a tiny coupling to bar-
yonic matter, as we will discuss presently. In these models, 
this small coupling could naturally emerge due to a Damour–
Polyakov type screening of the dilaton [156].

The relevant parameter here is the coupling of the dila-
ton field to hadronic matter. As discussed in [156], to a good 
approximation this is given by the logarithmic derivative of the 
QCD scale, since hadron masses are proportional to it (mod-
ulo small corrections). Assuming that all gauge fields couple, 
near the string cutoff, to the same BF(φ), and in accordance 
with equation (58) which yields

B−1
F (φ) ∝ (1 − bFe−cφ),� (64)

we can write

αhad(φ) ∼ 40
∂ lnB−1

F (φ)

∂φ
,� (65)

where the numerical coefficient is further described in [155], 
and we finally obtain

αhad(φ) ∼ 40 bFc e−cφ.� (66)

Table 7.  Current one and three sigma uncertainties on the 
coupling ζα (marginalizing over Ωm) obtained from current data, 
and the corresponding forecasts for the forthcoming ESPRESSO 
Fundamental Physics GTO target list and the next-generation 
ELT-HIRES (under the assumptions discussed in the text). The 
difference between the constraints of [148] stems for the fact that 
new α and Hubble parameter measurements became available.

Data set σζ (68.3% C.L.) σζ (99.7% C.L.)

Current (Reference [148]) 1.7 × 10−6 4.8 × 10−6

Current (This review) 1.5 × 10−6 4.5 × 10−6

ESPRESSO Baseline 6.0 × 10−7 1.8 × 10−6

ESPRESSO Ideal 2.1 × 10−7 6.3 × 10−7

ELT-HIRES Baseline 1.1 × 10−7 3.2 × 10−7

ELT-HIRES Ideal 2.3 × 10−8 7.0 × 10−8
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Note that c and bF are constant free parameters: the former 
one is expected to be of order unity and the latter one much 
smaller. Moreover, if we set c = 1 (which we will do hence-
forth) we can also eliminate bF by writing

αhad(φ)

αhad,0
= e−(φ−φ0),� (67)

where φ0 is the value of the field today, and simultaneously 
writing the field equation in terms of (φ− φ0).

There are two local constraints. Firstly the Eddington 
parameter γ, which quantifies the amount of deflection of light 
by a gravitational source, has the value

γ − 1 = −2α2
had,0,� (68)

and is constrained by the Cassini bound [157]

γ − 1 = (2.1 ± 2.3)× 10−5.� (69)

Secondly, in this model the dimensionless Eötvös parameter, 
quantifying violations to the Weak Equivalence Principle, has 
the value

ηAB ∼ 5.2 × 10−5α2
had,0,� (70)

and is constrained by the torsion balance and Lunar Laser 
Ranging tests already discussed in the previous section, see 
equations (44) and (45). From these we conservatively obtain 
the bound

|αhad,0| � 10−4.� (71)

Using equation (66), and still assuming that c ∼ 1, this yields 
a bound on the product of bF and the exponent of φ0, namely 
φ0 � ln (|bF|/2 × 10−6). Nevertheless, this is not explicitly 
needed: the evolution of the system will be determined by αhad 
rather than by bF or φ0.

These constraints do not apply to the dark sector (in 
other words, to dark matter and/or dark energy) whose cou-
plings may be stronger. There are two possible scenarios to 
consider. A first possibility is that the dark sector couplings 
(which we will denote αm and αv for the dark matter and dark 
energy respectively) are also much smaller than unity, that 
is αm,αv � 1. In this case the small field velocity leads to 
violations of the Equivalence Principle and variations of the 
fine-structure constant that are quite small. For this case to 
be observationally realistic the fractions of the critical density 
of the universe in the kinetic and potential parts of the scalar 
field must be

Ωk =
1
3
φ′2 � 1, Ωv ∼ 0.7;� (72)

note that if one assumes a flat universe, then Ωm +Ωk +Ωv = 1. 
(Do not confuse the index k, which refers to the kinetic part 
of the scalar field, with the curvature term in standard cosmol-
ogy, which we are setting to zero throughout.) A more inter-
esting possibility is that the dark couplings αm and/or αv are of 
order unity. If so, violations of the Equivalence Principle and 
variations of the fine-structure constant are typically larger, 
and may well be observable. In this case Ωk may be more 
significant, and Ωv should be correspondingly smaller [158]. 

Nevertheless the dark matter coupling is also constrained: 
during matter-domination the equation of state has the form

wm(φ) =
1
3
φ′2 ∼ 1

3
α2

m,� (73)

and must therefore be small.
The present value of the field derivative is also constrained 

if one assumes a spatially flat universe; in that case the decel-
eration parameter

q = −aä
ȧ2 = −1 − Ḣ

H2
� (74)

can be written as

φ′
0

2
= (1 + q0)−

3
2
Ωm0� (75)

and using a reasonable upper limit for the deceleration param
eter, q0 = −0.57 ± 0.04 [159], and a lower limit for the matter 
density, say from the Planck mission [38], one conservatively 
obtains

|φ′
0| � 0.3,� (76)

which is nevertheless almost three times tighter than the one 
available at the time of [155]. Thus in this scenario both the 
hadronic coupling and the field speed today are constrained.

Moreover, we can use the field equation, equation (63), to 
set a consistency condition for φ′

0. For this we only need to 
assume that the field is moving slowly today (a good approx
imation given the bounds on its speed) and therefore the φ′′ 
term should be subdominant in comparison with the other 
two. Then we easily obtain

φ′
0 = − αhadΩb + αmΩc + 4αvΩv

Ωb +Ωc + 2Ωv
,� (77)

with all quantities being evaluated at redshift z = 0. To avoid 
confusion we have denoted baryonic and cold dark matter by 
Ωb and Ωc respectively; naturally Ωm = Ωb +Ωc. We choose 
the cosmological parameters in agreement with Planck data 
[38], setting the current fractions of baryons, dark matter 
and dark energy to be respectively Ωb ∼ 0.04, Ωc ∼ 0.27 
and Ωφ = Ωk +Ωv ∼ 0.69. Noting that |αhad,0| � 10−4, that 
|φ′

0| � 0.3 and that Ωk = φ′
0

2
/3 is necessarily small, we can 

consider three particular cases of this relation

	 •	The dark coupling case, where αm = αv (and both are 
assumed to be constant), leads to

|αv| < 0.3
Ωm + 2Ωv

Ωc + 4Ωv
∼ 0.17;� (78)

	 •	The matter coupling case, where αm = αhad (and both are 
field-dependent, as in equation (67)), leads to

|αv| < 0.3
Ωm + 2Ωv

4Ωv
∼ 0.18;� (79)

	 •	The field coupling case, where αm = −φ′, leads to

|αv| < 0.3
Ωb + 2Ωv

4Ωv
∼ 0.15.� (80)
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Note that in all cases αv is a constant (field-independent) 
parameter. Naturally these are back-of-the-envelope con-
straints that need to be improved by a more robust analysis, 
but they are enough to show that order unity couplings αv will 
be strongly constrained. An additional constraint will come 
from atomic clock measurements, as we will now discuss.

Consistently with our previous assumption that all gauge 
fields couple to the same BF, here α will be proportional to 
B−1

F (φ), as given by equation (64). This will also imply that 
α will be related to the hadronic coupling. One can then show 
that the evolution of α is given by [155]

1
H

α̇

α
=

bFce−cφ

1 − bFce−cφ φ′ ∼ bFce−cφφ′ ∼ αhad

40
φ′.� (81)

In particular this equation applies at the present day (describ-
ing the current running of α) and this variation is constrained 
by the Rosenband et al bound [37]; assuming the Planck value 
for the Hubble constant H0 = (67.4 ± 1.4) km/s/Mpc, we 
find

|αhad,0φ
′
0| ∼ |bFce−cφ0φ′

0| � 3 × 10−5.� (82)

Thus atomic clock experiments constrain the product of the 
hadronic coupling and the field speed today. It is interesting to 
note that this constraint—which stems from microphysics—
is similar to the one obtained by multiplying the individual 
constraints on each of them, which are given respectively by 
equations (71) and (76) and come from macrophysics (Solar 
System or torsion balance tests, plus a cosmology bound).

In [155] the authors first obtained approximate solutions 
for the evolution of α by assuming that φ′ = const. in both the 
matter and the dark energy eras (naturally the two constants 
are allowed to be different). However, as pointed out in [105], 
by integrating equation (81) or by directly using the relation 
between α and BF(φ) one can express the redshift dependence 
of α in the general form

∆α

α
(z) = B−1

F (φ(z))− 1 = bF

(
e−φ0 − e−φ(z)

)
,� (83)

where for simplicity we have again set c ∼ 1. This can also be 
recast in the more suggestive form

∆α

α
(z) =

1
40

αhad,0

[
1 − e−(φ(z)−φ0)

]
.� (84)

Thus the behavior of ∆α/α close to the present day depends 
both on αhad,0 (which provides an overall normalization) and 
on the speed of the field, φ′

0, which can also be related to the 
values of the couplings as in equation (77). When dealing with 
high-resolution spectroscopic measurements one is interested 
in the evolution of α at relatively low redshifts, in which case 
one can linearize the field evolution

φ ∼ φ0 + φ′
0 ln a,� (85)

and therefore the evolution of α will take the simpler form

∆α

α
(z) ≈ − 1

40
αhad,0φ

′
0 ln (1 + z);� (86)

this is indeed what is obtained with the simplifying assump-
tions of [154, 155]. Nevertheless, note that φ− φ0 can still be 

of order unity by redshift z = 5 for values of the coupling that 
saturate the current bounds, and therefore the evolution of α 
should be calculated using the full equations.

By numerically solving the previously discussed Friedmann 
and scalar field equations one can further study the cosmolog-
ical dynamics of this model [105]. Note that in this model the 
dark energy equation of state is

1 + w0 =
2Ωk

Ωk +Ωv
=

2
3

φ′
0

2

Ωk +Ωv
,� (87)

and the range of allowed values for φ′
0 (specifically, |φ′

0| � 0.3) 
leads to −1 � w0 < −0.91, which is perfectly compatible with 
current observational bounds [38]. Using all available α data 
(both that of [51] and the dedicated measurements of table 1) 
one finds no significant evidence for a non-zero coupling 
αhad,0. Note that Hubble parameter measurements do help to 
constrain the current speed of the field to be small.

Forecasts for future constraints on this model were dis-
cussed in [160], using a combination of simulated cosmo-
logical probes and astrophysical tests of the stability of the 
fine-structure constant α expected from ELT-HIRES [27]. 
The three different scenarios for the dark sector couplings 
discussed above were separately considered, with the goal of 
identifying observational differences between them, and the 
degeneracies between the parameters ruling the coupling of 
the dilaton field to the other components of the universe were 
identified and quantified. This analysis shows that if the cou-
plings are very small (e.g., αb = αv ∼ 0) these degeneracies 
strongly affect the constraining power of future data, while 
if they are sufficiently large (say, αb > 10−5 or αv > 0.05, 
both still well below current upper bounds) the degeneracies 
can be partially broken. The conclusion is therefore that the 
ELT will be able to explore some of this additional parameter 
space, and improve current constraints by about one order of 
magnitude.

5.3.  Environmental dependencies from symmetron models

The models discussed in the two previous sections led to red-
shift (in other words, time) dependencies of α and have spatial 
variations that are of second order and therefore much smaller. 
Given the observational indications of possible spatial varia-
tions, we now discuss a scenario where these may be larger 
than the time variations, in the context of symmetron mod-
els. This was first studied in [161], whose discussion we now 
follow.

In the symmetron model [162, 163], the vacuum expecta-
tion value (VEV) of a scalar field depends on the local mass 
density, becoming large in regions of low density and small in 
regions of high density. The coupling of the scalar to matter is 
proportional to the VEV, leading to a theory where the scalar 
can couple with gravitational strength in regions of low den-
sity, but be decoupled and screened in regions of high density. 
This is achieved through the interplay of a symmetry break-
ing potential and a universal quadratic coupling to matter. 
In vacuum, the scalar acquires a VEV which spontaneously 
breaks a Z2 symmetry φ → −φ. In the regions of sufficiently 
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high matter density, the field is confined near φ = 0, and the 
symmetry is restored. The fifth force arising from the matter 
coupling is proportional to φ making the effects of the scalar 
small in high density regions.

The symmetron model is a scalar-tensor modification of 
gravity described by the action

S =

∫
dx4√−g

[
R
2

M2
pl −

1
2
(∂φ)

2 − V(φ)

]
+ Sm(Ψm; g̃µν)

� (88)
where g = det gµν, Mpl = 1/

√
8πG , Sm is the matter-action 

and units with � = c ≡ 1 are being used. The matter fields Ψm 
are coupled to the scalar field via a conformal coupling

g̃µν = gµνA2(φ).� (89)

Because of this coupling the matter fields will experience a 
fifth-force, which in the non-relativistic limit is given by

�Fφ ≡ dA(φ)
dφ

�∇φ =
φ�∇φ

M2� (90)

where the last equality only holds for the symmetron. The 
symmetron potential is chosen to be of the symmetry break-
ing form

V(φ) = −1
2
µ2φ2 +

1
4
λφ4

�
(91)

where μ (not to be confused with the proton-to-electron mass 
ratio discussed elsewhere in this review) is a mass-scale and 
the conformal coupling is chosen as the simplest coupling 
consistent with the potential symmetry φ → −φ,

A(φ) = 1 +
1
2

(
φ

M

)2

,� (92)

where M is a mass scale and λ a dimensionless coupling con-
stant. A variation of the action with respect to φ leads to the 
following field equation

∇2φ =
dVeff

dφ
.� (93)

The dynamics of φ is determined by the effective potential

Veff = V(φ) + A(φ)ρm =
1
2

[
ρm

µ2M2 − 1
]
µ2φ2 +

1
4
λφ4.

� (94)
In the early Universe where the matter density is high the 
effective potential has a minimum at φ = 0 where the field 
will reside. As the Universe expands the matter density dilutes 
until it reaches a critical density

ρSSB = µ2M2,� (95)

for which the symmetry breaks and the field moves to one of 
the two new minima φ = ±φ0 = ±µ/

√
λ .

The fifth force between two test particles residing in a 
region of space where φ = φlocal is

Fφ

Fgravity
= 2β2

(
φlocal

φ0

)2

,� (96)

where we have defined

β =
φ0Mpl

M2 ,� (97)

for separations within the Compton wavelength 
λlocal = 1/

√
Veff,φφ(φlocal) of the scalar-field. For larger sepa-

rations the force is suppressed by a factor e−r/λlocal. In the cos-
mological background before symmetry breaking φlocal ≈ 0 
and the force is suppressed. After symmetry breaking the field 
moves towards φ = ±φ0 and the force can be comparable 
with gravity for β = O(1). In high density regions, like the 
Sun and our Galaxy, non-linear effects in the field equation 
ensure that the force is effectively screened thereby evading 
local gravity constraints.

It is convenient to introduce the variables

aSSB =

(
ρm0

ρSSB

)1/3

� (98)

and

λφ0 =
1√
2µ

,� (99)

together with the already defined quantities β and ρSSB, which 
are respectively the coupling strength relative to gravity and 
the density at which the symmetry is broken; aSSB is the corre
sponding scale-factor for when this happens in the cosmologi-
cal background and λφ0 is the range of the fifth force when the 
symmetry is broken. Local gravity constraints, discussed in 
[162, 164–166] force the range of the field to satisfy

λφ0 < 1 Mpc h−1� (100)

for symmetry breakings close to the present day, i.e. aSSB ∼ 1.
The electromagnetic field is unaffected by a conformal 

transformation because of the conformal invariance of the 
electromagnetic action,

SEM(Aµ; gµνA2(φ)) ≡ SEM(Aµ; gµν).� (101)

However one can consider generalizations where the electro
magnetic field is coupled to the scalar field via

SEM = −
∫

dx4√−gA−1
γ (φ)

1
4

F2
µν .� (102)

With this coupling it is still the case that perfect fluid radiation 
does not affect the Klein-Gordon equation for the scalar field 
because the stress-energy tensor of the electromagnetic field 
is traceless. This coupling leads to the fine-structure constant 
depending on φ as

α(φ) = α0Aγ(φ)� (103)

where again α0 is the laboratory value.
Now, the simplest choice for Aγ, compatible with the 

φ → −φ symmetry of the symmetron, is

Aγ(φ) = 1 +
1
2

(
βγφ

M

)2

� (104)

where βγ is the scalar-photon coupling relative to the sca-
lar-matter coupling, i.e. a value of βγ = 1 implies that the 
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scalar-photon coupling is the same as the scalar-matter coupling.  
A variation of φ therefore leads to a variation of the fine-struc-
ture constant α with respect to the laboratory value α0 given 
by

∆α

α
= Aγ(φ)− 1 =

1
2

(
βγφ

M

)2

.� (105)

For the symmetron we have [161]

∆α

α
� β2β2

γ

(
0.5

aSSB

)3 (
φ

φ0

)2 (
λφ0

Mpc h−1

)2 (
Ωm0

0.25

)
ppm.

� (106)
For our fiducial model parameters aSSB ∼ 0.5, β ∼ 1, 
λφ0 ∼ 1Mpc h−1 we can therefore have a maximum variation 
of α, achieved in the broken phase φ = φ0, of

(
∆α

α

)

max
� β2

γ ppm,� (107)

which for βγ ∼ 1 will lead to ppm-level variations.
In passing it is worth pointing out that an alternative pos-

sibility would be the well motivated exponential coupling

Aγ(φ) = e
βγφ

Mpl � 1 +
βγφ

Mpl
,� (108)

which we have expanded as a linear function since the argu-
ment of the exponential will clearly be required by observa-
tions to be much less than unity. However, this coupling does 
not respect the φ → −φ symmetry. In this case we would 
find

∆α

α
= βγβ

(
0.5

aSSB

)3 (
φ

φ0

)(
λφ0

Mpc h−1

)2 (
Ωm0

0.25

)
ppm,

� (109)
which for βγ ∼ 1 is again of the same order as found above for 
the quadratic coupling.

Note that in the last scenario the variation is proportional 
to φ instead of φ2. This means that the variation can have both 
signs if the symmetry is broken differently in different places 
in the Universe—in other words, if we have domain walls. At a 
naive, qualitative level, a domain wall based scenario capable 
of accounting for the claimed dipole would simultaneously 
require low tension walls (so they evade other cosmological 
constraints, in particular from the CMB [167]) and presum-
ably a number of walls per Hubble volume of order unity; 
those two requirements are not compatible for the simplest 
domain wall models [168, 169], although they may be made 
so with some fine-tuning [170, 171].

In [161] this scenario was further studied, using N-body 
simulations taken from the earlier work in [164], in which the 
full spatial distribution of α at different redshifts has been cal-
culated. Simulated sky maps for this variation were obtained, 
and their power spectrum calculated. The N-body simula-
tions confirm that in high-density regions of space (such as 
deep inside dark matter halos) the value of α approaches the 
value measured on Earth, while in the low-density outskirts 
of halos the scalar field value can approach the symmetry 
breaking value, leading to significantly different values of 
α. Importantly, these results also show that with low-redshift 
symmetry breaking these models exhibit some dependence 

of α on look-back time (as opposed to a pure spatial dipole) 
which could in principle be detected by sufficiently accurate 
spectroscopic measurements.

The matter power-spectrum is a useful way to characterize 
the clustering scales of matter in the universe [12]. Likewise, 
a power-spectrum of α will track the clustering scales of the 
scalar-field, since its behavior is what determines α. As we 
now discuss, the α power-spectrum is closely related to the 
matter power-spectrum for the symmetron model.

At the linear level and in the quasi-static approximation, 
the perturbations of the scalar field in Fourier space, 
φ(k, a) = φ(a) + δφ(k, a), satisfy [172]

δφ � − ρm

MPl

βa2

k2 + a2m2
φ

(
φ

φ0

)
δm,� (110)

where m2
φ = Veff,φφ(φ) is the scalar field mass in the cosmo-

logical background, δm is the matter density contrast and k is 
the co-moving wavenumber. The Fourier modes of α at linear 
scales then become

α(k, a)
α0

= 1 +
1
2

(
βγ(φ+ δφ)

M

)2

� α(a)
α0

+
β2
γφδφ

M2
� (111)

which we can write

α(k, a)
α0

=
α(a)
α0

−
(

φ

φ0

)2 (
ρm

M2
Pl

β2
γβ

2a2

k2 + a2m2
φ

δm

)
,� (112)

where

α(a) ≡ α0

[
1 +

1
2

(
βγφ(a)

M

)2]
� (113)

is the value of α corresponding to the scalar field value in the 
cosmological background. To construct a power-spectrum of 
α it is convenient to compare α(k, a) relative to α(a) since

α(k, a)− α(a)
α0

� −β2
γβ

2 3Ωm

a
H2

0

k2 + a2m2
φ

δm� (114)

is directly proportional to the matter perturbation δm. We 
therefore define

Pα(k, a) ≡
∣∣∣∣
α(k, a)− α

α0

∣∣∣∣
2

.� (115)

Using equation (114) we find

Pα(k, a) =

[
3ΩmH2

0β
2
γβ

2

a(k2 + a2m2
φ)

(
φ

φ0

)2]2

Pm(k, a),� (116)

where Pm(k, a) = |δm(k, a)|2 is the matter power-spectrum. 
The background field value and the scalar field mass are given 
by [164]
(
φ(a)
φ0

)2

=

(
1 −

(aSSB

a

)3
)

, a � aSSB� (117)

m2
φ(a) =

1
λ2
φ0

(
1 −

(aSSB

a

)3
)

, a � aSSB,� (118)
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and by using H0 = h
2.998·103 Mpc we get

Pα(k, a) =

[
0.33 · Ωm10−6β2

γβ
2

a((k/mφ)2 + a2)

(
λφ0

Mpc h−1

)2
]2

Pm(k, a).

� (119)
The analysis in [161] confirms that the analytic result of equa-
tion  (116), which is based on perturbation theory, gives a 
remarkably good fit (modulo a constant factor) up to k ∼ 3 h 
Mpc−1 which coincides with the particle Nyquist frequency 
of the simulation and the grid used to calculate the power-
spectrum (in other words we cannot trust the results for larger 
wavenumbers). This result implies that the perturbations in 
the scalar field track the matter perturbations very closely 
even in the non-linear regime. In modified gravity models 
with a screening mechanism such as the symmetron this sort 
of effect is expected as the scalar field will sit close to the 
minimum of the effective potential, which is determined by 
the local matter density, in most regions of space.

As we already saw in section  3, at a phenomenologi-
cal level it is common to fit the astrophysical measurements 
with a simple dipole, with or without an additional depend
ence on redshift or look-back time. On the other hand, from 
a theoretical point of view simplistic dipole models would 
require significant fine-tuning to explain such a behavior, and 
as the symmetron example illustrates a physically motivated 
approach would rely on environmental dependencies [163]. 
This therefore calls for more robust methodologies which 
enable accurate comparisons between models and observa-
tions. Early work along these lines was done by Murphy et al, 
who calculated the two-point correlation function of the Keck 
subsample of the aforementioned archival data, finding it to be 
consistent with zero [173].

A more comprehensive and robust methodology to test 
models with spatial variations of the fine-structure constant 
α, based on the calculation of the angular power spectrum of 
these measurements, has been recently introduced in [174]. 
This is based on the calculation of the 2D angular power 
spectrum of these measurements, which can then be related 
to the 3D power spectrum by standard methods [175], includ-
ing the Limber approximation [176]. Applying it to the case 
of symmetron models and using the α measurements already 
described in section  3 of this review, this analysis finds no 
indications of deviations from the standard behavior, with cur
rent data providing an upper limit to the strength of the sym-
metron coupling to gravity

log β2 < −0.9� (120)
when this is the only free parameter, and not able to constrain 
the model when also the symmetry breaking scale factor aSSB 
is free to vary. Future more precise α measurements can sig-
nificantly tighten this constraint.

6.  Dynamical dark energy and varying couplings

Observations suggest that the universe is dominated by an 
energy component whose gravitational behavior is quite simi-
lar to that of a cosmological constant. Although a cosmological 

constant is consistent with existing data, its value would need 
to be so much smaller that particle physics expectations that 
a dynamical scalar field is arguably a more likely explanation 
[177]. Such a field must be slow-rolling close to the present 
day (which is mandatory for p < 0 and acceleration) and be 
dominating the dynamics, providing some 70% or so of the 
critical density (which provides a rough normalization). It 
then follows that if the field couples to the rest of the model—
which as previously mentioned it will naturally do, unless 
some new symmetry is postulated to suppress the couplings—
it will lead to potentially observable long-range forces and 
time dependencies of the constants of nature.

In particular, a coupling to the electromagnetic sector will 
lead to spacetime variations of the fine-structure constant α 
[19–21]. Clearly in this scenario the same dynamical degree 
of freedom is responsible for the dark energy and the variation 
of α; these are therefore Class I models, in the sense described 
in the previous section. Tests of the stability of fundamental 
couplings (whether they are detections of variations or null 
results) will constrain fundamental physics and cosmology. 
This therefore ensures a ‘minimum guaranteed science’: 
theoretical constraints will simply depend on the sensitivity 
of the tests.

As already emphasized in section  2, the importance of 
improved null results stems from the fact that there is no natural 
expectation for the scale of the putative variations, since they 
are controlled by an unknown parameter. But this also implies 
that any new, improved constraint will rule out some previ-
ously viable models. This is entirely analogous to cosmologi-
cal constraints on dynamical dark energy: one is looking for 
deviations from the canonical behavior wφ = pφ/ρφ = −1, 
without any idea of when (meaning, at what level) or if such 
deviations will be found.

Here we explicitly demonstrate this point, drawing on recent 
work and discussing specific examples, involving both canon-
ical and non-canonical scalar fields which are constrained by 
a combination of background cosmology data (Type Ia super-
nova and Hubble parameter measurements) and astrophysical 
and local measurements of α—the Canonical Data set that 
was already discussed in the previous section when discussing 
Bekenstein models. In passing we note that in all the models 
we will discuss the evolution of α is monotonic. While this 
is a common behavior in the simplest (and thus more natu-
ral) models, one can certainly have models where α displays 
oscillations. An example are the so-called exotic singularity 
models [178], though in this case the value of the present-day 
drift of α tends to be comparatively large and therefore some 
fine-tuning is needed for these models to satisfy atomic clock 
bounds.

6.1.  Canonical scalar fields

Dynamical scalar fields in an effective four-dimensional field 
theory are naturally expected to couple to the rest of the the-
ory, unless a (still unknown) symmetry is postulated to sup-
press this coupling [19–21]. We will assume this to be the case 
for the dynamical degree of freedom responsible for the dark 
energy. Specifically we will assume a coupling between the 
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scalar field, denoted φ, and the electromagnetic sector, which 
stems from a gauge kinetic function BF(φ)

LφF = −1
4

BF(φ)FµνFµν .� (121)

One can assume this function to be linear,

BF(φ) = 1 − ζκ(φ− φ0),� (122)

(with κ2 = 8πG) since, as was pointed out in [20], the absence 
of such a term would require the presence a φ → −φ symme-
try, but such a symmetry must be broken throughout most of 
the cosmological evolution. As is physically clear, the relevant 
parameter in the cosmological evolution is the field displace-
ment relative to its present-day value (in particular φ0 could be 
set to zero). In these models the proton and neutron masses are 
also expected to vary, due to the electromagnetic corrections 
of their masses, and one relevant consequence of this fact is 
that local tests of the Equivalence Principle lead to the con-
servative constraint on the dimensionless coupling parameter 
(see [22] for an overview)

|ζlocal| < 10−3,� (123)
while in [179] an independent few-percent constraint on this 
coupling was obtained using CMB and large-scale structure 
data in combination with direct measurements of the present-
day Hubble parameter.

We note that there is in principle an additional source term 
driving the evolution of the scalar field, due to a F2B′

F term. 
By comparison to the standard (kinetic and potential energy) 
terms, the contribution of this term is expected to be subdomi-
nant, both because its average is zero for a radiation fluid and 
because the corresponding term for the baryonic density is 
tightly constrained by the same reasons discussed in the previ-
ous paragraph. For these reasons, in what follows we neglect 
this term, which would lead to spatial/environmental depend-
encies. We nevertheless note that this term can play a role in 
scenarios where the dominant standard term is suppressed—
an example is the symmetron scenario which was discussed in 
the previous section.

With these assumptions one can explicitly relate the evo
lution of α to that of dark energy, as in [179] whose derivation 
we summarize here. The evolution of α can be written

∆α

α
≡ α− α0

α0
= B−1

F (φ)− 1 = ζκ(φ− φ0),� (124)

and defining the fraction of the dark energy density

Ωφ(z) ≡
ρφ(z)
ρtot(z)

� ρφ(z)
ρφ(z) + ρm(z)

,� (125)

where in the last step we have neglected the contribution from 
radiation (since we will be interested in low redshifts, z < 5, 
where it is indeed negligible), the evolution of the putative 
scalar field can be expressed in terms of the dark energy prop-
erties Ωφ and wφ as [180]

1 + wφ =
(κφ′)2

3Ωφ
,� (126)

with the prime denoting the derivative with respect to the log-
arithm of the scale factor. We finally obtain

∆α

α
(z) = ζ

∫ z

0

√
3Ωφ(z′) (1 + wφ(z′))

dz′

1 + z′
.� (127)

The last relation assumes a canonical scalar field, but the argu-
ment can be repeated for phantom fields [181], leading to

∆α

α
(z) = −ζ

∫ z

0

√
3Ωφ(z′) |1 + wφ(z′)|

dz′

1 + z′
;� (128)

the change of sign stems from the fact that one expects phan-
tom filed to roll up the potential rather than down. As is physi-
cally clear, if one does not detect variations of α, either the 
field dynamics is very slow (in other words, its equation of 
state is very close to w = −1) or the coupling is very small. 
Therefore astrophysical measurements mainly constrain the 
product of a cosmological parameter and a fundamental phys-
ics one.

The realization that varying fundamental couplings induce 
violations of the universality of free fall goes back at least to 
the work of Dicke—we refer the reader to [182] for a recent 
thorough discussion. In our present context, the key point is 
that a light scalar field such as we are considering inevitably 
couples to nucleons due to the α dependence of their masses, 
and therefore it mediates an isotope-dependent long-range 
force. This can be simply quantified through the dimension-
less Eötvös parameter η, which describes the level of violation 
of the Weak Equivalence Principle. One can show that for the 
class of models we are considering η and the dimensionless 
coupling ζ are simply related by [20–22, 36]

η ≈ 10−3ζ2;� (129)
note that the relation is different from the ones obtained for 
Class II models in the previous section.

The first detailed analysis to explore this possibility was 
done in [183], constraining models with a constant equa-
tion of state w(z) = w0, and using the data sets available at the 
time: with respect to the data sets we listed in the previous sec-
tion there were only 28 Hubble parameter measurements and 
only 11 dedicated measurements of α. The present-day values 
of the Hubble parameter and matter density were respectively 
fixed to H0 = 70 km/s/Mpc and Ωm = 0.3, and a flat uni-
verse was assumed, so Ωφ = 0.7. This choice of cosmologi-
cal parameters is consistent with the supernova and Hubble 
parameter data being used, and one can verify that allowing 
H0, Ωm or the curvature parameter to vary (within observation-
ally reasonable ranges) and marginalizing over these param
eters does not significantly change the results. This should be 
intuitively clear: a ppm level variation of α cannot noticeably 
affect these cosmological parameters. It is clear that the criti-
cal cosmological parameter here is w0 itself—it is the one that 
is correlated with ζ. For the models under consideration the 
present-day drift rate, which is constrained by atomic clocks, 
is

1
H0

α̇

α
= ∓ ζ

√
3Ωφ0|1 + w0|,� (130)
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with the  −  and + signs respectively corresponding to the 
canonical and phantom field cases.

Figure 5, which updates the analysis in [183], shows the 
results of this analysis: in a nutshell the data is compatible 
with the null result, although the Webb et al archival data does 
show a weak preference (at about the two sigma level) for a 
non-zero coupling. The cosmological data we are considering 

is insensitive to ζ. (Strictly speaking, a varying α does affect 
the peak luminosity of Type Ia supernovas [184], but as shown 
in [140] for ppm level α variations the effect is too small to 
have an impact on current data sets, so this effect can be 
neglected.) Naturally, the cosmological data does constrain 
w0, effectively providing a prior on it. The analysis of [183] 
found the two-sigma (95.4%) bound

Figure 5.  Top panel: One, two and three sigma constraints on the ζ − w0 plane from the full Canonical Data set discussed in the text; 
the reduced chi-square at the maximum likelihood is χ2

ν = 0.97. This updates the analysis of [183]. Bottom panel: 1D likelihood for ζ, 
marginalizing over w0, for cosmological + Webb et al data (blue dashed), cosmological + the dedicated α measurements of table 1 and 
Oklo (blue dash-dotted), cosmological + Rosenband et al atomic clock bound (red dotted) and the combination of all data sets  
(black solid).
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|ζ| < 5 × 10−6,� (131)

while at three-sigma ζ is was unconstrained. With the addi-
tional measurements of the Hubble parameter and α we now 
find the two-sigma (95.4%) bound

ζ = (0.2 ± 3.9)× 10−6,� (132)
and we can also obtain a three-sigma upper bound

|ζ| < 1.8 × 10−5.� (133)
This leads to the two-sigma indirect bound

η < 1.6 × 10−14,� (134)

a 40% improvement relative to the bound in [183], which as 
η < 2.5 × 10−14. Again, note that this bound is much stronger 
than the current direct bounds that were discussed in the previ-
ous section, see equations (44) and (45).

The above constraints were obtained by assuming a fiducial 
model for the dark energy with a constant equation of state, 
w(z) = w0. This assumption was relaxed in [185], who stud-
ied more general models where the dark energy equation of 
state does vary with redshift, thereby assessing how said 
results depend on the choice of fiducial model for the dark 
energy. Aiming to preserve conceptual simplicity, the alter-
native parametrizations chosen did not increase the number 
of free parameters. We will briefly summarize this analysis, 
though note that unlike the constant equation of state case we 
will not update the constraints in the light of the newest data.

The first such parametization is the one recently introduced 
by Slepian et al [186]. The Friedmann equation has the fol-
lowing form

H2(z)
H2

0
= Ωm(1 + z)3 +Ωφ

[
(1 + z)3

Ωm(1 + z)3 +Ωφ

] 1+w0
Ωφ

.� (135)

One can assume flat universes, so Ωm +Ωφ = 1, and the 
model is therefore characterized by three independent param
eters: H0, Ωm (both kept fixed as previously justified) and w0, 
the latter being still the value of the dark energy equation of 
state today. The dark energy equation of state has the follow-
ing behavior

w(z) = −1 + (1 + w0)
H2

0

H2(z)
.� (136)

Note that for high redshifts this always approaches  −1, and it 
diverges from this value as the universe evolves, reaching w0 
today. This is therefore a parametrization for thawing mod-
els, in the classification of [187]. Apart from its simplicity, 
this choice of parametrization is also motivated by the recent 
result that if physical priors are used, allowed quintessence 
models are mostly thawing [188].

The results of this analysis, presented in [185], are quali-
tatively similar to those for a model with a constant equa-
tion of state. At the two-sigma (95.4%) confidence level one 
finds

|ζSGZ| < 5.6 × 10−6,� (137)

which leads to a constraint on WEP violations

ηSGZ < 3.1 × 10−14.� (138)

Quantitatively, these constraints are slightly weaker than those 
obtained for the constant equation of state model, see equa-
tion (131). Physically, the reason for this is that in a thawing 
model with a given w0 the amount of α variation at a given 
non-zero redshift will be slightly smaller than that in a con-
stant equation of state model with the same w0. In any case, 
the inferred indirect WEP bound is still stronger than the 
available direct bounds.

Having considered thawing models, we can also discuss 
the opposite scenario: that of freezing models where the dark 
energy equation of state evolves towards −1. A further motiv
ation here stems from the fact that in many dilaton-type mod-
els the scalar field depends logarithmically on the scale factor

φ(z) ∝ log (1 + z).� (139)

The runaway dilaton scenario discussed in section  5 is an 
obvious example of this. (By comparison, note that in BSBM 
models the field departs from this behavior and freezes quite 
abruptly at the onset of the acceleration phase [142].) For a 
linear gauge kinetic function as we are assuming here, it fol-
lows that in that case

∆α

α
∝ ln(1 + z).� (140)

It is therefore an interesting exercise to determine what condi-
tion on the dark energy equation of state for Class I models 
will lead to such a behavior for α(z), while bearing in mind 
that some Class II models are also known to display such a 
behavior.

The answer to this question can be found with a little alge-
bra. From equation (127) we infer that the function inside the 
square root therein must be a constant, that is

Ωφ(z)[1 + w(z)] = const.;� (141)

upon differentiation this can be recast into the following 
equation

dw
dz

= −3(1 + w0)
w

1 + z

[
1 + w
1 + w0

− Ωφ0

]
.� (142)

Note that the initial condition for the first derivative is
[

dw
dz

]

0
= −3Ωmw0(1 + w0),� (143)

and for the second one we could also write
[

d2w
dz2

]

0
= 3Ωmw0(1 + w0)[1 + 3w0 + 3Ωm(1 + w0)],� (144)

so w′ ∼ 3Ωm(1 + w0) and w′′ ∼ 6Ωm(1 + w0) near the 
ΛCDM limit. The above equation  can be easily integrated, 
leading to the solution [185]

w(z) =
[1 − Ωφ(1 + w0)]w0

Ωm(1 + w0)(1 + z)3[1−Ωφ(1+w0)] − w0
,� (145)

bearing in mind that we are assuming that Ωm +Ωφ = 1.  
An analogous solution was obtained, in a different context, 
in [180].
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The Friedmann equation in this case has the explicit form

H2(z)
H2

0
= Ωm(1 + z)3

+
Ωφ

[
Ωm(1 + w0)(1 + z)3 − w0(1 + z)3Ωφ(1+w0)

]
Ωm(1 + w0)− w0

,

� (146)
and naturally the evolution of α is given by

∆α

α
(z) = ζ

√
3Ωφ(1 + w0) ln (1 + z).� (147)

One can now treat this parametrization phenomenologically, 
allow for values of w0 < −1 with a flat prior on (1 + w0), and 
fit it to the available data sets. This will lead to slightly tighter 
constraints, for the reason already explained: in a freezing 
model with a given w0 the amount of α variation at a given 
non-zero redshift will be slightly larger than that in a constant 
equation of state model with the same w0. In this case [185] 
does find

|ζ| < 4.6 × 10−6� (148)

at the two-sigma confidence level.
However, the above analysis may be too simplistic, since 

in this case one physically expects that w0 � −1. Discarding 
the phantom part of this parameter space one can instead 
use this model as a testbed for the effects of the choice of 
priors, and replace the flat prior on (1 + w0) with a logarith-
mic one. The analysis of [185] confirms the expectation that, 
in principle, for a value of w0 sufficiently close to w0 = −1 
any value of the coupling would be allowed. In practice, of 
course, this is not so because the local WEP constraints must 
be satisfied. Analogously, in principle, and given the form of 
equations (127)–(128), exactly the same could be said about 
the orthogonal direction (for a sufficiently small ζ any w0 
would be allowed), but in practice this is prevented by the 
strong priors on w0 coming from the cosmological data sets. 
Nevertheless, in this case the bound on the coupling are some-
what weakened. At the one-sigma confidence level [185] find 
for this case

|ζDIL| < 6 × 10−6,� (149)

while at the two-sigma level

|ζDIL| < 2.5 × 10−5;� (150)

translating these into WEP bounds, the one sigma constraint 
is still stronger than the direct bounds: at the one-sigma con-
fidence level

|ηDIL| < 4 × 10−14.� (151)

Therefore, although these constraints do exhibit some model 
dependence (both in terms of the class of models being 
assumed and in terms of the underlying priors), they are gener-
ically competitive with other existing tests of these models.

A possible caveat of the above analyses is that it is based 
on fiducial models where the dark energy equation  of state 
was described by a single parameter (its present day value, 
w0). Since there are degeneracies between the coupling ζ and 

w0 (which are partially broken by the cosmological data sets) 
one may legitimately ask how robust these constraints are. A 
follow-up study in [189] addresses this issue, extending the 
analysis to more general—and, arguably, more realistic—
dark energy models: the well-known Chevallier-Polarski-
Linder [190, 191] (hereafter CPL) and early dark energy [192] 
(hereafter EDE) classes, as well as a parametrization recently 
discussed by Mukhanov [193] (hereafter MKH). Compared 
to the models discussed above, each of these has one addi-
tional free parameter characterizing dark energy, but this extra 
parameter plays a different role in each of the parametriza-
tions. Even in these extended cases it is found that the current 
data constrains the coupling ζ at the 10−6 level (marginalizing 
over other parameters), thus confirming the robustness of ear-
lier analyses. On the other hand, the additional dark energy 
parameter is typically not well constrained. Again we will 
succinctly discuss these results.

In the CPL parametrization the dark energy equation  of 
state has the form

wCPL(z) = w0 + wa
z

1 + z
,� (152)

where w0 is still its present value and wa is the coefficient of the 
time-dependent term. The redshift dependence of this param-
etrization is not intended to mimic a particular model for dark 
energy, but rather to enable the description of possible devia-
tions from the ΛCDM standard paradigm without the assump-
tion of any specific underlying theory. While it is a choice, 
it’s one that is to some extent simple and relatively generic. 
Nevertheless, we can assume that also this kind of dark energy 
is produced by a scalar field, coupled to the electromagnetic 
sector. In this model the fraction of energy density provided 
by the scalar field is easily found to be

ΩCPL(z) =
1 − Ωm

1 − Ωm +Ωm(1 + z)−3(w0+wa)e
3waz
1+z

,� (153)

where Ωm is the present time matter density and we have also 
assumed a flat universe. Using the same cosmological and 
astrophysical data sets as before, [189] find the following 
bounds for the coupling

ζ = (1 ± 3)× 10−6 (95.4% C.L.)� (154)

ζ = (1 ± 8)× 10−6 (99.7% C.L.),� (155)

which implies a bound on the Eötvös parameter

η < 1.6 × 10−14 (95.4% C.L.).� (156)

Compared to the earlier results the constraint on ζ (and con-
sequently that on η) is now stronger. This is to be expected 
since ζ is correlated with the dark energy equation  of state 
parameters: with the equation of state allowed to be further 
away from a cosmological constant, larger variations of α also 
become possible, and the existing α measurements therefore 
impose a tighter constraint on ζ. This effect was also noticed 
in the case of the forecasts discussed in [140].

To assess the model-dependence of the above con-
straints one can again repeat the analysis for an alternative 
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parametrization of the dark energy equation  of state. The 
MKH parametrization provides as useful comparison point. 
This was introduced in an inflationary context [193], but it can 
be trivially applied for the case of the recent acceleration of 
the universe. Here the dark energy equation of state is

wMKH(z) = −1 +
1 + w0

[1 + ln (1 + z)]β
,

� (157)
where w0 is its present day value and the slope β controls the 
overall redshift dependence. Specifically β < 0 corresponds 
to freezing models, β = 0 to a constant equation of state and 
β > 0 to thawing models, in the classification of [187]. This 
corresponds to the following behavior of the dark energy 
density

ρMKH(z)
ρ0

= exp

[
3

1 + w0

1 − β

(
[1 + ln(1 + z)]1−β − 1

)]
,β �= 1

� (158)

ρMKH(z)
ρ0

= [1 + ln (1 + z)]3(1+w0) ,β = 1� (159)

and it is easy to verify that this has the correct behavior in 
the appropriate limits. The analysis shows that freezing mod-
els (with β < 0) are comparatively more constrained than 
thawing ones (with β > 0). Physically the reason for this is 
again clear: for a given value of w0, a freezing model leads to 
a larger variation of α than an thawing one, and is therefore 
more tightly constrained by current data. In this case the 1D 
marginalized constraint on the scalar field coupling is

|ζ| < 6 × 10−6 (95.4% C.L.)� (160)

leading to

η < 3.6 × 10−14 (95.4% C.L.).� (161)

In these case, and as compared to the CPL case, we get weaker 
constraints on ζ.

Finally, in the EDE class of models the dark energy density 
fraction is

ΩEDE(z) =
1 − Ωm − Ωe

[
1 − (1 + z)3w0

]
1 − Ωm +Ωm(1 + z)−3w0

+Ωe
[
1 − (1 + z)3w0

]�
(162)

while the dark energy equation of state is

wEDE(z) = − 1
3[1 − ΩEDE]

d lnΩEDE

d ln a
+

aeq

3(a + aeq)
;� (163)

here aeq is the scale factor at the epoch of equal matter and 
radiation densities. The energy density ΩEDE(z) has a scaling 
behavior evolving with time and approaching a finite constant 
Ωe in the past, rather than approaching zero as was the case 
for the other canonical models just considered. A flat universe 
is also assumed. The present day value of the equation of state 
is w0, and the equation  of state follows the behavior of the 
dominant component at each cosmic epoch, with wEDE ≈ 1/3 
during radiation domination and wEDE ≈ 0 during matter 
domination. Even though this is a phenomenological param-
etrization, we will again assume that this kind of dark energy 

is the result of an underlying scalar field, which couples to the 
electromagnetic sector.

Using a flat prior on w0 and further assuming that w0 � −1, 
[189] obtain non-trivial constraints on the fraction of early 
dark energy

Ωe < 0.033 (95.4% C.L.),� (164)

which is about a factor of 3 weaker than the standard one with-
out allowing for possible α variations. As for the coupling one 
finds

ζ = (−1 ± 5)× 10−6 (95.4% C.L.)� (165)

leading to

η < 3.6 × 10−14 (95.4% C.L.).� (166)

Here, by comparison to the CPL case, the slightly stronger 
constraints on the dark energy sector imply slightly weaker 
constraints on the coupling ζ. If instead a logarithmic (rather 
than flat) prior is used for w0, the 1D marginalized constraints 
now become

Ωe < 0.030 (95.4% C.L.),� (167)

which is about ten percent stronger than the flat prior case, 
while the constraint on the coupling becomes weaker as well 
as asymmetric

ζ = (−1+8
−11)× 10−6 (95.4% C.L.)� (168)

leading to

η < 14.4 × 10−14 (95.4% C.L.);� (169)

note that even in this case this constraint is still marginally 
stronger than the current direct bounds.

6.2.  Rolling tachyons

The previous section  focused on canonical scalar fields. 
However, the aforementioned Class I is more generic, and we 
will illustrate this by considering one example of a different 
class of models. Constraints on Dirac–Born–Infeld (DBI) type 
dark energy models from varying α have first been discussed 
in [194]. This work points out that the DBI action based on 
string theory naturally gives rise to a coupling between gauge 
fields and a scalar field responsible for the universe’s accel-
eration. In other words, the field dynamics itself leads to α 
variations. They place constraints on particular choices of 
potentials, finding that some fine-tuning is needed: the poten-
tials must be quite flat. This analysis was recently extended in 
[195] by exploiting the availability of additional data, carrying 
out the analysis for more generic potentials, and also provid-
ing additional insight into the physical interpretation and rel-
evance of the resulting constraints.

A rolling tachyon is an example of a Born–Infeld scalar, 
and these are well motivated in string theory [196, 197]. The 
interaction of scalar fields with gauge fields will naturally 
lead to fine-structure constant variations. A further relevant 
difference is that whereas the coupling of a quintessence field 
to matter and radiation is not fixed by the standard model of 
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particle physics, these models provide an example where the 
form of the couplings can be obtained more directly from a 
fundamental theory, specifically from an effective D-brane 
action [194]. Therefore, apart form their intrinsic interest, 
they are also useful as a benchmark to study the discriminat-
ing power of future facilities among different classes of mod-
els since, as we will now see, they do have some interesting 
distinguishing features.

The tree-level D-brane action is a Dirac–Born–Infeld 
type action containing both gauge fields and scalar fields 
such as tachyons [196, 197], and this action naturally gives 
rise to the coupling of the Born–Infeld scalars to the gauge 
fields, which can account for a varying α. Rolling tachyon 
fields have been suggested as a candidate to explain the 
acceleration of the universe [196]. The cosmology of a 
homogeneous tachyon scalar field as dark energy was first 
studied in [198], and the α variation for a Born–Infeld sca-
lar coupled to the gauge field has been previously discussed 
in [194], who obtain some qualitative constraints, and fur-
ther quantified by [195], whose analysis we now summa-
rize and update.

We start by focusing on the tachyon part of the DBI action. 
Generically its Lagrangian can be written

Ltac = −V(φ)
√

1 − ∂aφ∂aφ,�
(170)

with the energy density and pressure being given by

ρφ =
V(φ)√

1 − ∂aφ∂aφ�

(171)

pφ = −V(φ)
√

1 − ∂aφ∂aφ.�
(172)

For a homogeneous field in a Friedmann–Lemaitre–
Robertson–Walker background containing also matter, we 
have

H2 =
8πG

3
(ρm + ρφ)

�
(173)

and

φ̈

1 − φ̇2
+ 3Hφ̇+

1
V

dV
dφ

= 0.
�

(174)

Note that the tachyon field equation of state and sound speed 
are

wφ = φ̇2 − 1 � −1,�
(175)

c2
s = 1 − φ̇2 � 1;�

(176)

it is also useful to write

ρ̇φ = −3H(1 + wφ)ρφ = −3Hρφφ̇
2.�

(177)

As an aside, note that in the case where the tachyon is the 
single component (i.e. neglecting matter as well as radiation) 
there is a well-known solution [199]

a ∝ tn
� (178)

φ =

√
2
3n

t
�

(179)

which ensues for the potential

V(φ) =
n

4πG

(
1 − 2

3n

)1/2 1
φ2 .

�

(180)

To address the case including matter, we start by noting that 
in these models the field is constrained to be slow-rolling (espe-
cially so if it induces α variations, as we will shortly confirm), 
and in that case the scalar field equation can be approximated to

3Hφ̇ ∝ −d lnV
dφ

.
�

(181)

Moreover, the right-hand side of this equation  is a function 
of the field φ and the field is approximately constant. We can 
thus Taylor-expand the field, and write the Friedmann equa-
tion as follows

H2

H2
0
= Ωm(1 + z)3 +Ωφ

[
1 +

(
V ′

V

)

0
(φ− φ0)

]

�

(182)

with, from the scalar field equation,

(φ− φ0) = −1
3

(
1
H

V ′

V

)

0
(t − t0).

�

(183)

We therefore have

H2

H2
0
= Ωm(1 + z)3 + (1 − Ωm)

[
1 −

(
V ′

V

)2

0

(t − t0)
3H0

]
,

� (184)
where we also used Ωm +Ωφ = 1. Now, given the slow-
roll approximation the correction term in square brackets 
is expected to be small, and therefore the calculation of the 
(t − t0) term can be done assuming the ΛCDM limit (in other 
words, the differences will be of higher order), which allows 
an analytic calculation to be done. After some algebra we find

H2

H2
0
= Ωm(1 + z)3 + (1 − Ωm)

[
1 +

2
9
λ2f (Ωm, z)

]
,� (185)

where we have defined the dynamically relevant dimension-
less parameter

λ =
1

H0

(
V ′

V

)

0
,� (186)

and the redshift-dependent correction factor is

f (Ωm, z) =
1√

1 − Ωm
ln

(1 +
√

1 − Ωm)(1 + z)3/2

√
1 − Ωm +

√
Ωm(1 + z)3 + 1 − Ωm

.

� (187)
It is also useful to calculate the dark energy equation  of 

state in these models. This can be straightforwardly done 
using the relation

dρφ
dz

= 3
1 + wφ

1 + z
ρφ,� (188)

and leads to the following result

1 + wφ = φ̇2

=
λ2

9 + 2λ2f (Ωm, z)

√
1 − Ωm +

√
E(Ωm, z)

E(Ωm, z) +
√
(1 − Ωm)E(Ωm, z)

,

�
(189)
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where for convenience we also defined

E(Ωm, z) = Ωm(1 + z)3 + 1 − Ωm.� (190)

As expected the field speed parametrizes the deviation of the 
dark energy equation  of state from the cosmological con-
stant value. Note that this equation  of state (1 + wφ) tends 
to zero at high redshifts; in other words, these are thawing 
dark energy models. In particular, the equation of state at the 
present day is

1 + w0 = φ̇2
0 =

λ2

9
,� (191)

providing further physical insight into the role of the param
eter λ.

Now we consider the interaction part of the DBI Lagrangian 
which is responsible for the α variation. This has the form 
[194, 196, 197]

Lint =
(2παs

′)2

4β2 V(φ)Tr(g−1Fg−1F) + . . . ,� (192)

where g and F are the traces of the four-dimensional metric 
and the Maxwell tensor respectively, αs

′ (not to be confused 
with the fine-structure constant) is related to the string mass 
scale via Ms = 1/

√
αs

′ , and β is a warped factor. We note that 
the DBI Lagrangian contains further terms that are of simi-
lar order in the gauge field, but these are not relevant for our 
present discussion since they do not contribute to the α varia-
tion. (A more systematic discussion of this point can be found 
in [196, 197].) This implies, by comparison to the standard 
Yang–Mills case, that the value of the fine-structure constant 
in this case is

α(φ) =
β2M4

s

2π
1

V(φ)
,� (193)

and therefore in these models the fine-structure constant is 
inversely proportional to the tachyon potential. Expressing 
this in terms of the relative variation of α with respect to the 
present day, we finally obtain

∆α

α
(z) =

V(φ0)

V(φ)
− 1,� (194)

where as usual α0 ∼ 1/137 is the present-day value. Thus a 
negative value of ∆α/α corresponds to a smaller value of α 
in the past (meaning a weaker electromagnetic interaction), 
which in this class of models corresponds to a larger value of 
the potential V(φ).

Given this explicit dependence on the scalar field potential 
we can now use the same Taylor expansion and re-write this as

∆α

α
� −

(
V ′

V

)

0
(φ− φ0) �

1
3H0

(
V ′

V

)2

0
(t − t0).� (195)

This implies that in these models the fine-structure constant is 
always smaller in the past (and varies approximately linearly 
in time). Finally we can write

∆α

α
= −2

9
λ2f (Ωm, z),� (196)

which shows that the dimensionless parameter λ also provides 
the overall normalization for this variation. We could even 
write the suggestive

H2

H2
0
= Ωm(1 + z)3 + (1 − Ωm)

[
1 − ∆α

α
(z)

]
.� (197)

This makes it clear that in this class of models any deviations 
from the ΛCDM behavior must be small, as we now further 
quantify. Indeed, we can trivially write the present-day rate of 
change of the fine-structure constant

1
H0

(
α̇

α

)

0
=

1
3H2

0

(
V ′

V

)2

0
,� (198)

or equivalently, in terms of the present day dark energy equa-
tion of state

1
H0

(
α̇

α

)

0
=

1
3
λ2 = 3φ̇2

0 = 3(1 + w0).� (199)

As usual this drift rate is constrained by laboratory measure-
ments with atomic clocks. Taking for example Rosenband 
et al [37] we have

1
H0

(
α̇

α

)

0
= (−2.2 ± 3.2)× 10−7,� (200)

which immediately shows that in these models w0 is effectively 
indistinguishable from a cosmological constant, although they 
can have a distinctive astrophysical variation of α. In this strict 
sense these models could actually be thought of as a physi-
cal realization of the more phenomenological Bekenstein–
Sandvik–Barrow–Magueijo class of models [142], already 
discussed in the previous section. This constraint also implies 
that the field speed today must be tiny

φ̇0 � 10−3,� (201)

justifying our slow-roll approximation and also motivating the 
choice of a logarithmic prior for λ.

The work of [198] does a simple comparison with early 
Type Ia supernova observations. The recent [195] extends this, 
using both the more recent Union2.1 supernova data set and 
the set of Hubble parameter measurements and α measure-
ments available at the time. The value of the Hubble param
eter was fixed to be H0 = 70 km/s/Mpc, and as previously 
mentioned a flat universe was assumed, so Ωm +Ωφ = 1. 
These choices are again consistent with the cosmological data 
sets being used, and also with constraints from the cosmic 
microwave background [38].

The results of this analysis, updated for the aforementioned 
Canonical data set, are summarized in figure 6. As expected 
the cosmological data sets fix the matter density, with the α 
measurements having very little impact on it since the depend
ence is only logarithmic. Specifically, marginalizing over λ 
one finds the following constraint

Ωm = 0.28 ± 0.03,� (202)

at the three sigma (99.7%) confidence level, which is fully 
compatible with other extant cosmological data sets. On the 
other hand, the α measurements strongly constrain λ, for the 
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reasons already explained. In particular we notice that the 
Webb et al data set would lead to a two-sigma detection of a 
non-zero λ, but the coupling is consistent with zero for other 
measurements of α and also for the combination of all the 
data. In this case we find, marginalizing over Ωm,

λ < 9 × 10−4, 68.3% C.L.� (203)

λ < 1.5 × 10−3, 99.7% C.L..� (204)

In particular, this leads to an extremely strong constraint on 
the value of the present day dark energy equation of state

(1 + w0) < 2.6 × 10−7, 99.7% C.L..� (205)

It is clear that neither current nor foreseen standard probes 
of background cosmology will be able to detect such a small 
deviation from w0 = −1. Thus the only possibilities to distin-
guish these models from the ΛCDM paradigm would be to 
rely on their clustering properties (a possibility that remains 

Figure 6.  Top panel: One, two and three sigma constraints on the λ-Ωm plane from the full Canonical Data set discussed in the text; 
the reduced chi-square at the maximum likelihood is χ2

ν = 0.96. This updates the analysis of [195]. Bottom panel: 1D likelihood for λ, 
marginalizing over Ωm, for cosmological + Webb et al data (blue dashed), cosmological + the dedicated α measurements of table 1  
and Oklo (blue dash-dotted), cosmological + Rosenband et al atomic clock bound (red dotted) and the combination of all data sets  
(black solid).

Rep. Prog. Phys. 80 (2017) 126902



Review

33

to be studied) or to use astrophysical measurements of the red-
shift dependence of α.

At the phenomenological level the interesting feature of these 
models is that a single parameter—effectively the steepness of 
the potential, in dimensionless units—determines both the dark 
energy equation of state and the overall level of the α variations. 
Moreover, these are necessarily thawing models with a mono-
tonically increasing value of α (in other words, they will have 
smaller values of α in the past). The current local and astrophysi-
cal tests of the stability of α therefore place strong constraints 
on the steepness of the potential, and imply that the present-day 
value of the dark energy equation of state, although not exactly 
−1, is effectively indistinguishable from it if one restricts oneself 
to standard observational probes. This highlights the importance 
of testing the stability of nature’s fundamental couplings over 
a broad range of redshifts and accurately mapping their behav-
ior. As this class of models shows, this may turn out to be the 
best way we have of identifying deviations from the ΛCDM 
paradigm, at least in the next decade. Moreover, in the event of 
confirmed detections of variations such a mapping is a powerful 
discriminator, since different classes of models lead to signifi-
cantly different behaviors for the redshift dependence of α.

7.  Complementary probes

Whichever way one eventually finds direct evidence for new 
physics, it will only be trusted once it is seen through multiple 
independent probes. This much is clear when looking at how 
the events associated with the discovery of the recent accelera-
tion of the universe unfolded: even though the supernova results 
were independently obtained by two different teams, they were 
only accepted by the wider community once they were con-
firmed through CMB, large-scale structure and other data. It is 
clear that history will repeat itself in the case of varying funda-
mental couplings and/or dynamical dark energy. It is therefore 
crucial to plan and develop consistency tests for this new phys-
ics, in other words, additional astrophysical observables whose 
behavior will also be non-standard (ideally in a specific and 
calculable way) as a consequence of either or both of the above.

An obvious example which we already discussed is that of 
violations of the Einstein Equivalence Principle. Varying fun-
damental couplings trivially violate Local Position Invariance, 
but it has also been shown [36, 182] that variations of α at 
few ppm level naturally lead to Weak Equivalence Principle 
violations within one order of magnitude of current bounds 
on the Eötvös parameter, see equations (44) and (45). In that 
case ongoing experiments such as the MICRSOCOPE satel-
lite, launched on 25 April 2016 and currently operating [151], 
should find these violations. We now explore two other prom-
ising consistency tests. The first is already producing interest-
ing (though not yet ‘competitive’) results, while the second is 
a key goal for the next generation of facilities.

7.1.  CMB temperature and distance duality

An astrophysical consistency test is provided by the com-
parison of the temperature-redshift relation and the distance 
duality (or Etherington) relation. The temperature-redshift 

relation is a robust prediction of standard cosmology, based 
on the assumptions of adiabatic expansion and photon number 
conservation, but it is violated in many scenarios, including 
string theory inspired ones and models where α varies. At a 
phenomenological level one can parametrize deviations to this 
law by adding an extra parameter [200], say β

TCMB = T0(1 + z)1−β ,� (206)
with β = 0 in standard cosmology. The COBE-FIRAS experi-
ment observations provided the most-precise blackbody spec-
trum ever measured, with a temperature at the present epoch, 
z = 0, of [201]

T0 = 2.7260 ± 0.0013 K.� (207)

At higher redshifts, there are presently two main methods used 
to obtain direct estimates of TCMB, and from which constraints 
on β can be derived. The first of these was proposed nearly 40 
years ago [202, 203] and is based on multi-frequency observa-
tions of the Sunyaev–Zel’dovich (SZ) effect [204], a distortion 
of the CMB spectrum produced towards galaxy clusters.

As pointed out by [205], current large galaxy cluster cata-
logs together with very precise CMB data should allow preci-
sions on β of the percent level, a notable improvement with 
respect to initial constrains using a few clusters [206, 207]. 
The availability of the Planck satellite data (and in particular 
of its cluster catalog [208, 209]) as well as analogous catalogs 
from ground-based small angular scale experiments, enabled 
significant improvements in the precision of CMB temper
ature measurements from SZ clusters. Improved method-
ologies were suggested in [205] and subsequently exploited 
[210–213]. Estimations of TCMB(z) through the SZ effect are 
currently limited to z < 1 due to the scarcity of galaxy clus-
ters at high redshifts.

Measurements of the CMB temperature at z > 1 can be 
obtained through the study of quasar absorption line spec-
tra which show energy levels that have been excited through 
atomic or molecular transitions after the absorption of CMB 
photons [214]. The first constraints using this method were 
only obtained 17 years ago [215], taking advantage of the 
enormous progress in high-resolution astrophysical spectr
oscopy; they use transitions in the UV range due to the excita-
tion of fine-structure levels of atomic species like Ci or Cii 
[215–218]. More recently, improved constraints have been 
obtained from precise measurements of CO transitions and 
radio-mm transitions produced by the rotational excitation 
of molecules with a permanent dipole moment [219–222]. In 
passing we note that in this and the previous paragraph we 
are referring to direct constraints—indirect ones may also be 
inferred from spectral distortions [223].

On the other hand the distance duality relation is an equally 
robust prediction of standard cosmology; it assumes a metric 
theory of gravity and photon number conservation, but is vio-
lated if there is photon dimming, absorption or conversion. 
This is also known as the Etherington relation [224]. At a sim-
ilarly phenomenological level one can parametrize deviations 
to this law by adding an extra parameter, say ε 

dL = dA(1 + z)2+ε.� (208)
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In fact, as shown in [225] in many models where photon 
number is not conserved—such as those where α varies—the 
temperature-redshift relation and the distance duality relation 
are not independent. Assuming adiabaticity and achromaticity 
one can in fact show that

β = −2
3
ε,� (209)

but it is easy to see that a direct relation should exist more 
generically. This link allows one to use distance duality mea-
surements to improve constraints on β [139]. The combination 
of all currently available direct and indirect measurements of 
T(z) constrains the phenomenological parameter β to be, at 
the 68.3% confidence level [226]

β = (7.6 ± 8.0)× 10−3,� (210)

which is the first sub-percent constraint on β parameter.
In models where an evolving scalar field is coupled to the 

Maxwell F2 term in the matter Lagrangian, photons can be 
converted into scalar particles violating the photon number 
conservation. Thus, there will be both variations of the fine-
structure constant and violations of the standard TCMB(z) law. 
These can usually be written as [139]

TCMB(z)
T0

∼ (1 + z)
(

1 + ε
∆α

α

)
,� (211)

or alternatively

∆TCMB

T
=

TCMB(z)− TCMB,std(z)
TCMB,std(z)

∼ ε
∆α

α
.� (212)

The coefficient ε, which vanishes in the standard model, 
depends on the specific model being assumed, but it is 
generically expected to be of order unity. In particular, if one 
assumes the somewhat simplistic adiabatic limit, then one 
can show that ε = 1/4 [139]. A subsequent analysis in [227], 
with somewhat different assumptions, confirmed these results. 
Therefore, if one is able to determine the CMB temperature 
with sufficient accuracy, this can be used as a phenomenologi-
cal relation to observationally constrain time or spatial varia-
tions of α.

This relation between α variations and the CMB temper
ature may be relevant, for example, for Planck data analysis. 
If the ppm α dipole of Webb et al [51] is correct, then there 
should be a micro-Kelvin level dipole in the CMB temper
ature, in addition to the standard dipole due to our motion 
relative to the CMB frame, which if unaccounted for could 
bias the analysis and in particular the ensuing cosmological 
parameter estimations. As briefly mentioned in section 3, SZ 
cluster measurements have recently been used to constrain 
possible spatial variations of α and T(z) [106]. Naturally, 
forthcoming spectroscopic measurements from ESPRESSO 
and ELT-HIRES and SZ cluster measurements from CORE 
and ground-based CMB experiments [134] can significantly 
improve current constraints [225].

Photon number non-conservation not only changes observ-
ables such as T(z) and the distance duality relation, but may 
also lead to additional biases, for example for cosmology and 
fundamental physics constraints from Euclid [28]. A study of 

how these models weaken cosmological parameter constraints 
from Euclid (specifically those characterizing the dark energy 
equation of state) was done in [139, 140]. The results show 
that Euclid can, even on its own, constrain dark energy while 
allowing for photon number non-conservation, but stronger 
constraints can be obtained in combination with other probes. 
Interestingly, the ideal way to break a degeneracy involving 
the scalar-photon coupling is to use T(z) measurements to be 
obtained with ALMA, ESPRESSO and ELT-HIRES [139]. 
These three facilities may nicely complement each other in 
terms of the redshift coverage for these measurements with 
ALMA probing the low-redshift acceleration phase while 
ESPRESSO and ELT-HIRES will probe the deep matter era.

7.2.  Redshift drift

When doing cosmological parameter estimation or model 
selection one almost always makes a certain number of explicit 
or implicit assumptions. For example one may be assuming a 
Friedmann–Lemaitre–Robertson–Walker (homogeneous and 
isotropic) background and the validity of General Relativity, 
in addition to more specific assumptions such as a flat universe 
or particular classes of models for dark energy. We also saw in 
the previous sections that there is also a broad range of models 
for varying couplings, relying on different underlying funda-
mental physics and cosmological mechanisms. Thus it is cru-
cial for this analysis that in-built consistency checks exist, so 
that inconsistent assumptions can be identified and corrected. 
Explicit examples of incorrect assumptions in this context that 
can lead to observational inconsistencies, for example assum-
ing that α variations are due to a Class I model when they are 
in fact due to a Class II model, have been discussed in [228].

It is precisely in closing the loop of consistency tests that 
the detection of the redshift drift signal, also known as the 
Sandage test [229, 230], plays a key role. The expected signal 
is

∆z
∆t

= H0(1 + z)− H(z),
�

(213)

and this is a direct probe of the dynamics of the universe, with-
out assumptions on gravity, geometry or clustering. Unlike all 
the other observations of the universe we have done so far, it 
does not map out our (present-day) past light-cone. Instead, 
it directly measures evolution by comparing past light cones 
at different times. Therefore it provides an ideal probe of the 
evolution of the universe, and in particular of its dark sector. 
In practice the observable will be a spectroscopic velocity

∆v
v

=
∆z

1 + z
.

�
(214)

The redshift drift is a key driver for ELT-HIRES, and indeed—
at a fundamental level—a key ELT deliverable. ELT-HIRES 
can measure the redshift drift signal deep in the matter era, 
using the Ly-α forest and various additional metal absorption 
lines [231].

Apart from the fundamental aspect of being able to watch 
the expansion of the universe in real time, one should note that 
when using these observations to constrain specific models 
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their importance is not so much that they are more constrain-
ing than other observational probes but that they tend to probe 
orthogonal directions in the relevant model parameter spaces, 
thereby breaking limiting degeneracies. A study of synergies 
between redshift drift and CMB measurements [232], assum-
ing Planck-like CMB measurements and a dark energy model 
parametrized by a constant equation of state w0, shows that the 
forecasted redshift drift measurements of Liske et al [231] for 
the ELT-HIRES can improve CMB results on w0, H0 and Ωm 
by factors of 3.3, 3 and 2.2 respectively. If one further enlarges 
the parameter space, by assuming the CPL dark energy para-
metrization (with the additional parameter wa), ELT-HIRES 
redshift drift measurements should not able to remove the 
degeneracy between w0 and wa and therefore there is no sig-
nificant improvement on the CMB constraints on these param
eters; nevertheless, significantly tighter constraints on H0 and 
Ωm are again achieved.

More recently it has been realized that other facilities such 
as the SKA [233], ALMA and intensity mapping experiments 
[234] may also be able do measure the redshift drift, though 
this remains to be fully demonstrated. These will typically do 
it at lower redshifts. In the case of the SKA, suggestions have 
been put forth to do it using neutral Hydrogen both at z < 1 in 
emission and at z > 8 in absorption; while the former should 
be easily within the reach of SKA-Phase 2, the latter will 
certainly be much harder. Such low-redshift measurements 
can directly probe the accelerating phase of the universe (at 
redshifts that overlap with Euclid, for example), as well as 
provide much-needed clarification on the issue of the present-
day value of the Hubble parameter, H0. On the other hand, 
these measurements will have a smaller lever arm—only 
ELT-HIRES can really probe the deep matter era, roughly 
2 < z < 5.

Naturally the combination of low and high redshift meas-
urements will lead to optimal constraints and will enable the 
discrimination between models that would otherwise be indis-
tinguishable. Indeed, the prospect of a model-independent 
mapping of the expansion of the universe from z ∼ 0 to z ∼ 5, 
by a combination of SKA, intensity mapping and ELT-HIRES 
data is a particularly exciting prospect. Last bust not least, the 
cosmological relevance of measurements of time or redshift 
derivatives of this drift has recently been highlighted [235]. 
The combination of first and second redshift derivatives is a 
powerful test of the ΛCDM cosmological model—and there-
fore of any deviations from it. In particular, the second deriva-
tive can be obtained numerically from a set of measurements 
of the drift at different redshifts. Such a measurement is well 
within the reach of the ELT-HIRES and SKA Phase 2 array 
surveys.

8. The road ahead

In previous sections we discussed how current data already 
provides useful constraints on fundamental physics and 
cosmology. Still, the imminent availability of more precise 
measurements will have a dramatic impact in the field. The 
ESPRESSO spectrograph will be commissioned at the VLT in 

2017, and since it will be located at the combined Coudé focus 
it will be able to incoherently combine light from the four 
VLT unit telescopes [25]. Looking further ahead the European 
Extremely Large Telescope), with first light expected in 2024, 
will have a 39.3 m primary mirror. The larger telescope col-
lecting areas are one of the reasons behind the expected 
improvements in the sensitivity of these measurements (which 
are photon-starved), the other such reason pertaining to tech-
nological improvements in its high-resolution spectrograph 
ELT-HIRES enabling, among others, higher resolution and 
stability [27]. We will now describe how current constraints 
are expected to improve, and some of the potential impact of 
these improvements on fundamental cosmology.

We start by looking at α measurements by themselves and 
considering three Class I fiducial dynamical dark energy mod-
els where the scalar field also leads to α variations according 
to equation (127), all of which were already introduced in pre-
vious sections:

	 •	A constant equation of state, w0 = const.
	 •	A dilaton-type model where the scalar field behaves as 

φ(z) ∝ (1 + z), leading to a relatively complicated dark 
energy equation of state

w(z) =
[1 − Ωφ(1 + w0)]w0

Ωm(1 + w0)(1 + z)3[1−Ωφ(1+w0)] − w0
,� (215)

		 (where as usual we are assuming flat universes, so 
Ωm +Ωφ = 1) but simpler behavior for α

∆α

α
(z) = ζ

√
3Ωφ(1 + w0) ln (1 + z).� (216)

		 This case is also useful since it allows analytic calcul
ations which can be used to validate numerical codes.

	 •	The well-known Chevallier–Polarski–Linder (CPL) para-
metrization [190, 191],

w(z) = w0 + wa
z

1 + z
.� (217)

Forecasts can be done with a Fisher matrix analysis  
[236, 237]. If we have a set of M model parameters 
( p1, p2, ..., pM) and N observables—that is, measured 
quantities—( f1, f2, ..., fN), then the Fisher matrix is

Fij =

N∑
a=1

∂fa
∂pi

1
σ2

a

∂fa
∂pj

.� (218)

For an unbiased estimator, if we do not marginalize over any 
other parameters (meaning that all are assumed to be perfectly 
known) then the minimal expected error is θ = 1/

√
Fii. The 

inverse of the Fisher matrix provides an estimate of the param
eter covariance matrix: its diagonal elements are the squares 
of the uncertainties in each parameter marginalizing over the 
others, while the off-diagonal terms yield the correlation coef-
ficients between parameters. The marginalized uncertainty is 
always greater than (or at most equal to) the non-marginalized 
one: marginalization cannot decrease the error, and only has 
no effect if all other parameters are uncorrelated with it.
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Previously known uncertainties on the parameters, known 
as priors, can be trivially added to the calculated Fisher 
matrix. This is manifestly the case here: a plethora of stand-
ard cosmological data sets provide priors on our cosmological 
parameters (Ωm, w0, wa), while local constraints on the Eötvös 
parameter from torsion balance and lunar laser ranging exper-
iments [146, 147], see equations (44) and (45), provide priors 
on the dimensionless coupling ζ. Here, following [238], we 
assume the following fiducial values and prior uncertainties 
for our cosmological parameters

Ωm,fid = 0.3, σΩm = 0.03� (219)

w0,fid = −0.9, σw0 = 0.1� (220)

wa,fid = 0.3, σwa = 0.3,� (221)

while for the coupling ζ we will consider three different 
scenarios

ζfid = 0, ζfid = 5 × 10−7, ζfid = 5 × 10−6,� (222)

always with the same prior uncertainty

σζ = 10−4.� (223)

Thus we will consider both the case where there are no α 
variations (ζ = 0), and the case where they exist: the case 
ζ = 5 × 10−6  corresponds to a coupling which saturates con-
straints from current data (as discussed in sections 5 and 6), 
while ζ = 5 × 10−7 illustrates an intermediate scenario.

The first ESPRESSO measurements of α should be 
obtained in the context of the consortium’s Guaranteed Time 
Observations (GTO). The target list for these measurements 
has recently been selected [153]. Note that a key limitation 
of ESPRESSO which must be taken into account in the target 
selection is its wavelength coverage range, which is narrower 
than the ones of its predecessors (HARPS, UVES and Keck-
HIRES). Other than that, the basic selection criteria are for 
targets that

	 •	can be observed from the VLT site (Cerro Paranal in 
Chile, implying declination δ < 30 degrees); 

	 •	contain transitions that allow a high sensitivity (specifi-
cally, with ∆q > 2000); 

	 •	have a reported uncertainty of σ∆α/α < 5ppm.

The last of these comes from the fact that simple spectra 
should have already produced measurements with statisti-
cally lower uncertainties. Strictly speaking there is also the 
possibility that new bright quasars are discovered, but since 
the GTO targets should be fixed soon the probability of such 
an occurrence is low. Additional criteria that are relevant for 
prioritizing the targets are:

	 •	QSO brightness; 
	 •	high number of transitions available in the system, which 

leads to smaller overall uncertainties and also allows for 
several independent measurements using different sets of 
transitions (an important test of possible systematics); 

	 •	presence of at least one red shifter, one blue shifter, and 
one anchor; this is partially ensured by the requirement of 
a large ∆q; 

	 •	simpler velocity structure systems (strong but not satur
ated absorption features; narrow lines and large number 
of components, provided these are resolved or at least 
partially resolved); 

	 •	systems for which the dipole model of Webb et al [51] 
predicts a higher variation of α, that is, the ones closer to 
the poles of the putative dipole; 

	 •	possibility to perform in the same system additional 
measurements, such as μ or TCMB, enabling key tests of 
many theoretical paradigms (as explained in previous 
sections).

Full details of this process, which leads to the target list pre-
sented in table 8 can be found in [153, 239]. Note that the order 
in which they are presented should not be seen as any ranking 
among them: they are simply ordered according to their Right 
Ascension. A more detailed prioritization will require the gen-
eration of simulated ESPRESSO-like spectra of these targets, 
and is currently ongoing. Indeed, the first listed target does 
not fulfill all the criteria, but it is the only system accessible to 
ESPRESSO where the proton-to-electron mass ratio and the 
temperature-redshift relation can also be measured. This fact 
makes it a theoretically interesting target for testing theories 
where a relation between these three parameters is predicted.

Bearing this target list in mind one can consider the follow-
ing three scenarios:

	 •	ESPRESSO Baseline: this assumes that each of the 
targets on the list can be measured by ESPRESSO with 
an uncertainty of σ∆α/α = 0.6 ppm; this represents what 
one can currently expect to achieve on a time scale of 3–5 
years (though this expectation needs to be confirmed at 
the time of commissioning of the instrument); 

	 •	ESPRESSO Ideal: this case assumes a factor of three 
improvement in the uncertainty, σ∆α/α = 0.2 ppm; 
this represents somewhat optimistic uncertainties but 
provides a useful comparison point. Nevertheless, such 
an improved uncertainty should be achievable with addi-
tional integration time; 

	 •	ELT-HIRES: this is representative of a longer-term data 
set, on the assumption that the same targets are observed 
with the ELT-HIRES spectrograph [27]. An improvement 
in sensitivity by a factor of six relative to the ESPRESSO 
baseline scenario is assumed, coming from the larger col-
lecting area of the telescope and additional improvements 
at the level of the spectrograph. Although at present not 
all details of the instrument and the telescope have been 
fixed, this scenario is meant to be representative of the 
expected sensitivity of measurements on a 10-15 year 
time scale.

These choices of possible theoretical and observational 
parameters span a broad range of possible scenarios. As a sim-
ple illustration of this point, let us consider a single measure-
ment of α at redshift z = 2. In the case of the dilaton model 
we have the simple relation ∆α/α(z = 2) ∼ 0.5ζ . Thus if 
ζ = 5 × 10−7 a single precise and accurate measurement of 
α with ESPRESSO baseline sensitivity would not detect its 
variation, while ELT-HIRES would detect it at 2.5 standard 
deviations. On the other hand, for ζ = 5 × 10−6  (which as 
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previously mentioned saturates current bounds) a single z = 2 
ESPRESSO baseline measurement would detect a variation at 
4σ and ELT-HIRES would detect it at 25σ.

It is instructive to provide a discussion of the analytic result 
of the Fisher Matrix analysis for the dilaton model. For sim-
plicity let’s further assume that Ωφ (or equivalently, assuming 
a flat universe, Ωm) is perfectly known, so we are left with a 
two-dimensional the parameter space (ζ, w0). Including priors 
on both, the Fisher matrix is

[F(ζ, w0)] =


Q2(1 + w0) +

1
σ2
ζ

1
2 Q2ζ

1
2 Q2ζ Q2ζ2

4(1+w0)
+ 1

σ2
w


 ,

where for convenience we have defined

Q2 = 3Ωφ

∑
i

[
log(1 + zi)

σαi

]2

.� (224)

The un-marginalized uncertainties are

θζ =
σζ√

1 + (1 + w0)Q2σ2
ζ

� (225)

θw =
σw√

1 + ζ2

4(1+w0)
Q2σ2

w

,
� (226)

while the determinant of F is

det F = Q2

[
1 + w0

σ2
w

+
ζ2

4(1 + w0)σ2
ζ

]
+

1
σ2

wσ
2
ζ

;� (227)

this would be zero in the absence of priors—a point already 
discussed in [140]—but as mentioned above cosmological 
data and local tests of the WEP do provide us with these pri-
ors. As expected, if ζ = 0 the two parameters decorrelate, and 
there is no new information on the equation of state (θw = σw): 

if ζ = 0 we will always measure ∆α/α = 0 regardless of the 
experimental sensitivity.

Now we can calculate the covariance matrix

[C(ζ, w0)] =
1

det F




Q2ζ2

4(1+w0)
+ 1

σ2
w

− 1
2 Q2ζ

− 1
2 Q2ζ Q2(1 + w0) +

1
σ2
ζ


 ,

and the correlation coefficient is

ρ =

[
1 +

4(1 + w0)

Q2ζ2σ2
w

+
1

(1 + w0)Q2σ2
ζ

+
4

ζ2Q4σ2
ζσ

2
w

]−1/2

.

� (228)
We thus confirm the physical intuition that in the limit ζ → 0, 
the two parameters become independent (ρ → 0). The general 
marginalized uncertainties are

1
σ2
ζ,new

=
1
σ2
ζ

+
1
σ2

w

(1 + w0)Q2

ζ2Q2

4(1+w0)
+ 1

σ2
w

� (229)

1
σ2

w,new
=

1
σ2

w
+

1
σ2
ζ

ζ2Q2

4(1 + w0)

1
(1 + w0)Q2 + 1

σ2
ζ

;� (230)

In the particular case where the fiducial model is ζ = 0 the 
former becomes

1
σ2
ζ,new

=
1
σ2
ζ

+ (1 + w0)Q2
� (231)

while the latter trivially gives σw,new = σw. These analytic 
results have been used to validate a more generic numerical 
code (where furthermore Ωm will also be allowed to vary), 
which in turn was used for a more detailed discussion of the 
forecasts for the various cases which can be found in [238]. In 
what follows we briefly summarize these results.

Table 8.  The best currently available measurements of α, among the targets accessible to ESPRESSO. Column 1 gives the quasar name; 
the redshifts of the absorption system are given in Column 2; Column 3 gives the current measurement. Column 4 gives the ranges 
of sensitivity coefficients associated with the transitions of the absorption systems. Column 5 gives the number of transitions in each 
absorption system and column 6 the elements that can be detected, displayed differently according to whether they are an anchor (roman), a 
blue shifter (bold) or a red shifter (italic). The last column gives the references for each measurement.

Name zabs
∆α
α  (ppm) Max(∆q)

# 
trans. Transitions Reference

J0350−3811 3.02 −27.9 ± 34.2 1350 2 SiII, FeII [240]

J0407−4410 2.59 5.7 ± 3.4a 2984 13 AlII,AlIII,SiII, CrII, FeII, FeII, NiII, ZnII [241]

J0431−4855 1.35 −4.0 ± 2.3a 2990 17 MgI,AlII,SiII, CrII, MnII, FeII, NiII [241]

J0530−2503 2.14 6.7 ± 3.5a 2990 7 AlII, CrII, FeII, FeII, NiII [241]

J1103−2645 1.84 3.5 ± 2.5 2890 4 SiII, FeII, FeII [66, 242]

J1159+0112 1.94 5.1 ± 4.4a 2990 12 SiII, CrII, MnII, FeII, FeII, NiII [241]

J1334+1649 1.77 8.4 ± 4.4 2990 15 MgII,AlII,SiII, CrII, MnII, FeII, FeII, NiII, ZnII [241]

HE1347−2457 1.43 −21.3 ± 3.6 2790 3 FeII, FeII [242]

J2209−1944 1.92 8.5 ± 3.8 3879 16 AlII,SiII, CrII, MnII, FeII, FeII, NiII, ZnII [64, 241]

HE2217−2818 1.69 1.3 ± 2.4 2890 6 AlIII, FeII, FeII [56]

Q2230+0232 1.86 −9.9 ± 4.9 3879 14 SiII, CrII, FeII, FeII, NiII, ZnII [240]

J2335−0908 2.15 5.2 ± 4.3a 3879 16 AlIII, CrII, FeII, FeII, NiII, ZnII [241]

J2335−0908 2.28 7.5 ± 3.7a 2610 7 SiIV, CrII, FeII, FeII, NiII [241]

Q2343+1232 2.43 −12.2 ± 3.8a 3879 11 AlII,SiII, CrII, FeII NiII, ZnII [240]

a Identify targets for which some of the transitions used in the current measurement are outside the wavelength range of ESPRESSO.
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In the case where there is no coupling between the scalar 
field and the electromagnetic sector of the theory (such that 
ζfid = 0) precise α measurements will find null results which 
can be translated into bounds on ζ, whose one-sigma uncer-
tainties, marginalized over Ωm , w0 and (for the case of the 
CPL model) wa, are displayed in table 9. Comparison with 
current bounds on ζ [183, 185, 189], see section  6, shows 
that in this case we expect ESPRESSO to improve current 
bounds by about one order of magnitude. Naturally these 
improvements also lead to stronger bounds on the Eötvös 
parameter: indeed constraints from ESPRESSO should be 
stronger than those expected from the ongoing tests with the 
MICROSCOPE satellite [151], whose sensitivity is expected 
to be

ση ∼ 10−15.� (232)

Looking further ahead, those from ELT-HIRES should be 
competitive with those of the proposed STEP satellite [243] 
(though at present the sensitivity of the latter is relatively 
uncertain).

Table 9 also shows that there is a mild dependence on the 
choice of underlying dark energy model. This has been previ-
ously studied, and is well understood—refer to section 6, or to 
[140, 185, 189] for further discussion of this point. The dilaton 
model is a ‘freezing’ dark energy model. Thus, according to 
equation (127), a dilaton model with a given value of w0 will 
have a value of ∆α/α(z) that is larger than the corresponding 
value for a model with a constant equation of state with the 
same value of w0. Thus, for similar cosmological priors, null 
measurements of α will provide slightly stronger constraints 
for the dilaton case. The same argument applies for the CPL 
case, where the additional free parameter wa further enlarges 
the range of possible values of α.

Now consider the case where an α variation does exist, 
corresponding to a non-zero fiducial value of the dimension-
less coupling ζ. In this case the marginalized sensitivity on 
the parameter ζ will be weakened due to its correlations with 
other parameters. On the other hand, the α measurements can 
themselves help in constraining the cosmological parameters. 
Here we only consider the CPL case, whose results are sum-
marized in table 10, referring the reader to [238] for a more 
detailed discussion as well as a comparison of the results 
obtained for the various fiducial models.

The strong anticorrelation between ζ and w0 (which natu-
rally is weaker for smaller values of the coupling) is confirmed 
by the analysis, as is a similar anticorrelation between ζ and 
wa. On the other hand, the present-day value of the matter den-
sity is not significantly correlated with the other parameters. 
Overall, with the range of assumed couplings the ESPRESSO 
GTO measurements would detect a non-zero ζ at between one 
and two standard deviations, while the same observations with 
the foreseen ELT-HIRES would ensure a two-sigma detection. 
We also note that for the largest permissible values of the cou-
pling, ELT-HIRES measurements can improve constraints on 
the dark energy equation of state w0 by up to ten percent. In 
the case of the largest currently allowed value ζ = 5 × 10−6  
ELT-HIRES observations of the ESPRESSO GTO sample 
would detect a non-zero ζ at the 99.7% (3σ) confidence level.

It is particularly worthy of note that the two dark energy 
equation of state parameters, w0 and wa, are not significantly 
correlated. This occurs because measurements of α typically 
span a sufficiently large redshift range (in the case of the simu-
lated data set under consideration, roughly 1 < z < 3) to make 
the roles of both in the redshift dependence of α sufficiently 
distinct. The practical result of this is that in the case of large 
values of ζ these measurements can significantly improve 
constraints on wa—by more than a factor of two for the case 
of ELT-HIRES, and by about 30% for the ESPRESSO ideal 
scenario, in the case of a large coupling—see the last line in 
table 10. Thus α measurements can ideally complement cos-
mological probes in mapping the behavior of dynamical dark 
energy.

Note that the above analysis is conservative in at least one 
sense: the sample of α measurements consisted only of the 
14 measurements in the range 1 < z < 3 foreseen for the fun-
damental physics part of the ESPRESSO GTO [153]. This is 
to be compared to the 293 archival measurements of Webb 
et al, in the approximate redshift range 0.5 < z < 4.2; while 
the latter contains data gathered over a period of about ten 
years from two of the world’s largest telescopes, and the 14 
GTO targets were chosen on the grounds that they are the best 
currently known targets for these measurements (and are vis-
ible from the location of the VLT, at Cerro Paranal in Chile) 
it is clear that in a time scale of 5–10 years a significantly 
larger data set could be obtained, also including contributions  
from the other extremely large telescopes, TMT [244] and 
GMT [245].

However, this is not all. Standard observables such  
as supernovae are of limited use as dark energy probes  
[246, 247], both because they probe relatively low redshifts 
(at least at the present time—future facilities may be able 
to detect and characterize them at higher redshifts [248]) 
and because to ultimately obtain the required cosmological 
parameters one effectively needs to take second derivatives of 
noisy data. A clear detection of varying w(z) is crucial, given 
that we know that w ∼ −1 today. Since the field is slow-roll-
ing when dynamically important (once the acceleration epoch 
has started, close to the present day), a convincing detection 
of a varying w(z) will be tough at low redshift, and we must 
probe the deep matter era regime, where the dynamics of the 
hypothetical scalar field is fastest.

Table 9.  The first three lines show the one sigma forecasted 
uncertainties on the dimensionless coupling parameter ζ, 
marginalizing over the remaining model parameters, for the 
various choices of fiducial cosmological model and data set of α 
measurements. The fiducial value of the coupling is ζfid = 0 in all 
cases. The last line shows the corresponding one-sigma uncertainty 
on the Eötvös parameter η, in the least constraining case of the 
w0 = const. model. See [238] for further details on these results.

Model
ESPRESSO 
baseline

ESPRES-
SO ideal ELT-HIRES

w0 = const. 4.6 × 10−7 1.5 × 10−7 7.6 × 10−8

Dilaton 3.2 × 10−7 1.1 × 10−7 5.3 × 10−8

CPL 3.1 × 10−7 1.0 × 10−7 5.1 × 10−8

η 2.1 × 10−16 2.3 × 10−17 5.8 × 10−18
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Varying fundamental couplings are ideal for probing sca-
lar field dynamics beyond the domination regime [180]: as 
we saw, in the case of α such measurements can presently 
be made up to redshift z = 4.2, and future facilities such as 
the ELT should be able to further extend this redshift range. 
Thus ALMA, ESPRESSO and ELT-HIRES can realize the 
prospect of a detailed characterization of dark energy prop-
erties all the way until z = 4, and possibly beyond. This 
possibility was first discussed in [249, 250], and further 
explored in [239, 251]. These works also studied synergies 
between these measurements and those of Type Ia superno-
vas. In the case of ELT-HIRES a reconstruction of the dark 
energy equation of state using quasar absorption lines can be 
more accurate than using supernova data, its key advantage 
being huge redshift lever arm. Importantly, these measure-
ments have the additional key role of breaking degeneracies, 
when combined with more ‘classical’ probes, for constrain-
ing dynamical dark energy models. A case in point is that 
of ESA’s Euclid mission [28], as was studied in [140]. 
These degeneracies are broken not necessarily because 
measurements of varying couplings are intrinsically more 
constraining (that regime will only ensue for sufficiently 
large samples, corresponding to large amounts of telescope 
time) but because the extended redshift lever arm effectively 
makes these data sets sensitive to different directions in the 
relevant parameter space.

In the interest of brevity we will only provide a simple 
‘straw man’ illustration of how a reconstruction of the dark 
energy equation of state using measurements of the fine-struc-
ture constant α compares with a reconstruction using type Ia 
supernovas. This mostly follows [250], whose analysis is based 
on PCA techniques, the formalism having first been described 
in [249]. One should bear in mind that PCA is a non-para-
metric method for constraining the dark energy equation of 
state. In assessing its performance, one should not compare 
it to parametric methods. Indeed, no such comparison is pos-
sible (even in principle), since the two methods are address-
ing different questions. Instead one should compare it with 
another non-parametric reconstruction, and for our purposes 
with varying couplings the type Ia supernovae provide a rel-
evant comparison.

One considers Class I quintessence type models, as dis-
cussed in section 6, with the simplest (linear) coupling to the 
electromagnetic sector. Then the evolution of α is as given 
above, and in this case three fiducial forms for the equation of 
state parameter were considered

	 •	a constant one, which remains close to a cosmological 
constant throughout the probed redshift range

wc(z) = −0.9,� (233)

	 •	a step one, which evolves towards a matter-like behavior 
by the highest redshifts probed

ws(z) = −0.5 + 0.5 tanh (z − 1.5) ,� (234)

	 •	a bump one, which has non-trivial features over a limited 
redshift range, perhaps due to a low-redshift phase trans
ition associated with the onset of acceleration [252]

wb(z) = −0.9 + 1.3 exp
[
− (z − 1.5)2

0.1

]
.� (235)

At a phenomenological level, these therefore aim to describe 
the three qualitatively different interesting scenarios. A 
flat universe is assumed, and the matter density is fixed at 
Ωm = 0.3. (This is a standard procedure in dark energy PCA 
studies, and this specific choice of Ωm has a negligible effect 
on the main result of the analysis.) For simplicity it is also 
assumed that the α measurements are uniformly distributed in 
the redshift range under consideration.

Finally one assumes 20 PCA bins and α measurements 
uniformly distributed in the redshift range 0.5 < z < 4.0, and 
estimates the number of observation nights needed to obtain 
the same sensitivity on the first PCA mode as ‘classical’ data 
set of 3000 supernovas (in this case assumed to be uniformly 
distributed up to z ∼ 1.7). Unsurprisingly we find that this 
is not possible at all with current UVES data (and the same 
should apply to current spectrographs at Keck or Subaru), 
while our estimates for ESPRESSO and ELT-HIRES are listed 
in table 11. We thus see that a few tens of nights are sufficient 
for ELT-HIRES: this would fit comfortably within a GTO pro-
gram, further highlighting the key role that the ELT will be 
able to play on fundamental cosmology.

Table 10.  Results of the Fisher matrix analysis for the case of the CPL parametrization—see [238] for further details. The first six lines 
show the correlation coefficients ρ for each pair of parameters and the last three the one-sigma marginalized uncertainties for the coupling ζ 
and the dark energy equation of state parameters w0 and wa.

ESPRESSO Baseline ESPRESSO Ideal ELT-HIRES
Parameter ζ = 5 × 10−7 ζ = 5 × 10−6 ζ = 5 × 10−7 ζ = 5 × 10−6 ζ = 5 × 10−7 ζ = 5 × 10−6

ρ(ζ, w0) −0.412 −0.728 −0.650 −0.822 −0.705 −0.914
ρ(Ωm, w0) 1.6 × 10−7 1.6 × 10−5 4.0 × 10−6 3.3 × 10−4 1.7 × 10−5 1.2 × 10−3

ρ(w0, wa) 6.2 × 10−9 4.6 × 10−7 1.8 × 10−5 1.3 × 10−3 7.9 × 10−5 3.4 × 10−3

ρ(ζ,Ωm) −0.057 −0.095 −0.089 −0.080 −0.095 −0.067
ρ(ζ, wa) −0.395 −0.663 −0.620 −0.557 −0.663 −0.387
ρ(Ωm, wa) −9.3 × 10−5 −8.9 × 10−3 −8.4 × 10−4 −6.0 × 10−2 −3.3 × 10−3 −1.5 × 10−1

σ(ζ) 3.8 × 10−7 2.1 × 10−6 2.4 × 10−7 1.9 × 10−6 2.2 × 10−7 1.7 × 10−6

σ(w0) 0.100 0.100 0.100 0.100 0.100 0.100

σ(wa) 0.300 0.285 0.299 0.214 0.294 0.137
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The table also shows a strong dependence of the required 
number of nights on the underlying fiducial model. This is 
mostly due to our assumption of a uniform redshift distri-
bution of the α measurements (which was chosen partially 
out of simplicity but partially also precisely to flesh out this 
dependence). To a first approximation (i.e. ignoring astro-
physical factors such as the fact that not all QSOs have the 
same brightness) uniformly sampling the redshift range where 
measurements can be made turns out to be the ideal observa-
tional strategy for the case of a constant equation of state. On 
the other hand this is far from ideal in the case of the ‘step’ 
model where the equation of state of dark energy has larger 
deviations from w = −1 at higher redshifts (in that case a bet-
ter strategy would be to spend more time at higher redshifts, 
where for a given instrumental sensitivity the larger variations 
can be detected at higher statistical significance). As expected 
the ‘bump’ case leads to intermediate values between the pre-
vious two fiducials. Further discussion of these points can be 
found in [250, 251].

For ESPRESSO, something of the order of a thousand 
nights would be needed—a large but not unrealistic number 
as VLT time will become progressively ‘cheaper’ (and more 
focused on cutting-edge surveys) in the ELT era. In terms of 
cost, a back-of-the-envelope estimate would indicate compara-
ble numbers in the two cases—something of order 60 MEuro, 
even including the cost of building a specific instrument. This 
is incomparably cheaper than any space-based facility.

The range of redshifts considered for the measurements 
also plays a role: since one will effectively be calculating 
derivatives of the α data (note that this is only first derivatives, 
to be contrasted with the case of type Ia supernovas where sec-
ond derivatives are needed) one needs the range of redshifts 
probed to be as wide as possible. Since different transitions 
sensitive to α will fall within the range of the spectrograph at 
different redshifts, one also needs a spectrograph with a rela-
tively broad wavelength coverage: specifically for UV/optical 
measurements, one ideally wants to start at the atmospheric 
cutoff. (This is an even more pressing problem for optical/UV 
measurements of μ or the CMB temperature since in that case 
the number of known targets is much smaller and the critical 
absorption lines fall on the blue part of the spectrum.) Indeed, 
should ESPRESSO confirm variations of α, the construction 
of a UV/blue-optimized new generation high-resolution spec-
trograph for the VLT to map out the redshift dependence of 
α in combination with ELT-HIRES would be a compelling 
project.

Obviously, in addition to the reconstruction of the dark 
energy equation of state using fundamental couplings, super-
novas and other cosmological observables will still provide 
reconstructions at lower redshifts on their own, so one can 
combine the two reconstructions, as discussed in [239, 249]. 
Alternatively, one can simply compare the two types of 
reconstructions, which will be a test of whether or not they 
are consistent with one another (at least in the intermediate 
redshift range where the two will overlap), and assuming that 
they are consistent one can also infer a posterior likelihood for 
the coupling ζ, since the fundamental couplings reconstruc-
tions depends on it but the one based on supernovas does not. 
Finally, this reconstruction will also provide a prediction for 
the value of the redshift drift signal at various redshifts, ena-
bling a model-independent consistency test with the ELT or 
the SKA (depending on the redshift in question), as discussed 
in the previous section.

9.  Conclusions

Tests of the stability of fundamental couplings are crossing a 
threshold. The first Large Program dedicated to them is draw-
ing to a close, and while its results were limited by the spectral 
distortions inherent to current spectrographs it provided key 
information on what constitutes a good target for these mea-
surements and how to improve analysis pipelines. The lessons 
thus learned will be valuable as a new generation of high-res-
olution ultra-stable spectrographs becomes available. So far 
everyone agrees that nothing is varying at the few ppm level 
out to redshifts z ∼ 4, with weaker constraints at higher red-
shifts and somewhat stronger ones within the Galaxy (z ∼ 0). 
Local tests with atomic clocks also provide very tight con-
straints. Note that a few ppm constraint is already a very tight 
one: to give just two examples, it is stronger than the Cassini 
bound on the Eddington PPN parameter [157], and as we dis-
cussed in sections 5 and 6 it leads to indirect constraints on 
WEP violations that are about one order of magnitude more 
stringent that the local direct ones. Improvements in sensitiv-
ity of more than one order of magnitude may be foreseen in 
the coming years.

Whether these forthcoming measurements will lead to 
detections of variations or to improved null results, they will 
have important implications for cosmology as well as for 
fundamental physics. In the scenario where there are no α 
variations, ESPRESSO can improve current bounds on Weak 
Equivalence Principle violations by up to two orders of mag-
nitude: such bounds would be stronger than those expected 
from the MICROSCOPE satellite. Similarly, constraints from 
the high-resolution spectrograph at the ELT should be com-
petitive with those of the proposed STEP satellite (although in 
this case one should be mindful of the caveat that both facili-
ties are currently still in early stages of development). Thus 
astrophysical and local tests will nicely complement each 
other: should one detect violations in astrophysical tests while 
local ones give null results at the same level of sensitivity, 
this could be an indication for scenarios with environmental 
dependencies, or screening mechanisms [253].

Table 11.  Number of nights of telescope time needed to achieve, 
with α measurements uniformly spaced in redshift, an uncertainty 
in the best-determined PCA mode equal to that expected from a 
SNAP-like data set of 3000 Type Ia supernovas, for the ESPRESSO 
and ELT-HIRES spectrograph and the various fiducial models 
discussed in the text. Further details can be found in [250].

Model ESPRESSO ELT-HIRES

Constant 649.8 19.5
Step 2231.6 66.9
Bump 1420.1 42.6
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In the opposite case where α variation be detected, and 
quite apart from the direct implications (direct evidence of 
Einstein Equivalence Principle violation, falsifying the notion 
of gravity as a purely geometric phenomenon, and exhibit-
ing the presence of a fifth interaction in nature [22]), one will 
be able to map and constrain additional dynamical degrees of 
freedom not only through the acceleration phase of the uni-
verse (using supernovae and other standard probes) but also 
deep in the matter era—out to redshift z ∼ 4, and possibly 
beyond. Indeed in the context of the ELT there is at least in 
principle no reason why similarly tight measurements cannot 
be made well beyond z = 4. This can be achieved either by 
doing the measurement in the infrared (though at present it 
is not clear what sensitivity can be achieved, due for example 
to contamination from telluric lines) or by using transitions 
whose lab wavelengths are shorter than 1600 A (the bottle-
neck here being that currently the wavelengths of these trans
itions are not well know in the laboratory).

Finally, let us again stress the crucial role of consistency 
tests when one is searching for new physics. Taken together, 
tests of the stability of fundamental couplings, the redshift 
drift and constraints on the temperature-redshift relation and 
the distance duality relation will provide a unique opportu-
nity for a precision mapping of the dark side of the universe. 
The realization of the deep connections between these vari-
ous seemingly unrelated observational probes is one of the 
major developments in the field in recent years. The ELT will 
enable further relevant tests, including tests of strong grav-
ity around the galactic black hole [254, 255], which were not 
discussed in this review. Last but not least, this new probe of 
the dark universe has many interesting synergies with other 
facilities, particularly ALMA, Euclid and the SKA, some of 
which remain to be fully explored.

Let us conclude by stressing again that the observational 
evidence for the recent acceleration of the universe demon-
strates that our canonical theories of cosmology and parti-
cle physics are incomplete—if not incorrect—and that new 
physics is out there, waiting to be discovered. This review has 
highlighted the key role of astrophysical and local tests of the 
stability of fundamental couplings in this quest for new phys-
ics, discussing both the main developments in the past few 
years and also the ones that can be foreseen in the coming 
years, enabled by forthcoming high-resolution ultra-stable 
spectrographs. As is often the case in science, the most excit-
ing developments may well be the ones we can not foresee.
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