
Journal of Cosmology and
Astroparticle Physics

     

Dark energy and equivalence principle constraints
from astrophysical tests of the stability of the fine-
structure constant
To cite this article: C.J.A.P. Martins et al JCAP08(2015)047

 

View the article online for updates and enhancements.

Related content
The Universe Untangled: In the shadows
of the cosmos: black holes, dark matter,
and dark energy
A Pillitteri

-

E-ELT constraints on runaway dilaton
scenarios
M. Martinelli, E. Calabrese and C.J.A.P.
Martins

-

The status of varying constants: a review
of the physics, searches and implications
C J A P Martins

-

Recent citations
Consistency of local and astrophysical
tests of the stability of fundamental
constants
C.J.A.P. Martins and M. Vila Miñana

-

Stability of fundamental couplings: A
global analysis
C. J. A. P. Martins and A. M. M. Pinho

-

Is there a connection between “dark” and
“light” physics?
Matthew J. Lake

-

This content was downloaded from IP address 128.15.244.92 on 22/10/2019 at 05:55

https://doi.org/10.1088/1475-7516/2015/08/047
http://iopscience.iop.org/book/978-1-6817-4513-8/chapter/bk978-1-6817-4513-8ch6
http://iopscience.iop.org/book/978-1-6817-4513-8/chapter/bk978-1-6817-4513-8ch6
http://iopscience.iop.org/book/978-1-6817-4513-8/chapter/bk978-1-6817-4513-8ch6
http://iopscience.iop.org/article/10.1088/1475-7516/2015/11/030
http://iopscience.iop.org/article/10.1088/1475-7516/2015/11/030
http://iopscience.iop.org/article/10.1088/1361-6633/aa860e
http://iopscience.iop.org/article/10.1088/1361-6633/aa860e
http://dx.doi.org/10.1016/j.dark.2019.100301
http://dx.doi.org/10.1016/j.dark.2019.100301
http://dx.doi.org/10.1016/j.dark.2019.100301
http://dx.doi.org/10.1103/PhysRevD.95.023008
http://dx.doi.org/10.1103/PhysRevD.95.023008
http://iopscience.iop.org/1742-6596/883/1/012001
http://iopscience.iop.org/1742-6596/883/1/012001
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvFAY8THAk9LEdQX0gWDTmgNigRZMwQFmn5lmxAaezDw8sLJMZDSvYyIhELKSzrUVCPiHupyb_F5NTSEeilqTHjdriB36uJNuR2am9iF_E3ut8LEjCt940RKiBOmUdBqkGK5zd_Karl-CcCVoNqQmTSu5RbDRZ8wRjpsxhIncgK-tnONGbu-qmm87yPfe_OIWnpDEi7Lfoo0CDqlyTKW24ajNayOZFcUEFpljTGY0hJn6Ewv7lr&sig=Cg0ArKJSzL9FKIqGgRnG&adurl=http://iopscience.org/books/aas


J
C
A
P
0
8
(
2
0
1
5
)
0
4
7

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Dark energy and equivalence principle

constraints from astrophysical tests of

the stability of the fine-structure

constant

C.J.A.P. Martins,a,b,1 A.M.M. Pinho,a,c R.F.C. Alves,a,c M. Pino,d

C.I.S.A. Rochae and M. von Wietersheimf

aCentro de Astrof́ısica da Universidade do Porto,
Rua das Estrelas, 4150-762 Porto, Portugal

bInstituto de Astrof́ısica e Ciências do Espaço, CAUP,
Rua das Estrelas, 4150-762 Porto, Portugal

cFaculdade de Ciências, Universidade do Porto,
Rua do Campo Alegre 687, 4169-007 Porto, Portugal

dInstitut Domènech i Montaner,
C/Maspujols 21-23, 43206 Reus, Spain

eExternato Ribadouro,
Rua de Santa Catarina 1346, 4000-447 Porto, Portugal

f Institut Manuel Sales i Ferré,
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Abstract. Astrophysical tests of the stability of fundamental couplings, such as the fine-
structure constant α, are becoming an increasingly powerful probe of new physics. Here
we discuss how these measurements, combined with local atomic clock tests and Type Ia
supernova and Hubble parameter data, constrain the simplest class of dynamical dark en-
ergy models where the same degree of freedom is assumed to provide both the dark energy
and (through a dimensionless coupling, ζ, to the electromagnetic sector) the α variation.
Specifically, current data tightly constrains a combination of ζ and the present dark energy
equation of state w0. Moreover, in these models the new degree of freedom inevitably cou-
ples to nucleons (through the α dependence of their masses) and leads to violations of the
Weak Equivalence Principle. We obtain indirect bounds on the Eötvös parameter η that are
typically stronger than the current direct ones. We discuss the model-dependence of our re-
sults and briefly comment on how the forthcoming generation of high-resolution ultra-stable
spectrographs will enable significantly tighter constraints.

Keywords: cosmology of theories beyond the SM, dark energy experiments, dark energy
theory



J
C
A
P
0
8
(
2
0
1
5
)
0
4
7

Contents

1 Introduction 1

2 Varying α, dark energy and the Weak Equivalence Principle 2

3 Available datasets 4

4 The thawing models of Slepian et al. 7

5 A class of freezing models 11

6 Conclusions and outlook 16

A Including Oklo 17

1 Introduction

The discovery of cosmic acceleration at the end of the last century, from luminosity distance
measurements of Type Ia supernovas [1, 2], has led to wide-ranging efforts trying to charac-
terize its observational properties and understand its theoretical origin. While a cosmological
constant Λ remains the simplest explanation consistent with current observational data, the
well-known fine-tuning problems associated with this solution imply that alternative scenar-
ios should be sought and actively tested. The most natural alternative explanation would
involve scalar fields, an example of which is the recently discovered Higgs field [3, 4]. Such
cosmological scalar fields would lead to dynamical dark energy scenarios.

If dynamical scalar fields are indeed present, one naturally expects them to couple to
the rest of the model, unless a yet-unknown symmetry is postulated to suppress these cou-
plings [5]. In particular, a coupling of the field to the electromagnetic sector will lead to space-
time variations of the fine-structure constant α — see [6, 7] for recent reviews on this topic.
Indeed there have been some recent indications of such a variation [8], at the relative level of
variation of a few parts per million, and an ongoing dedicated Large Program at ESO’s Very
Large Telescope (VLT) is aiming to test them [9, 10]. Regardless of the outcome of these stud-
ies (ie, whether they provide detections of variations or just null results) the measurements
have cosmological implications that go beyond the mere fundamental nature of the tests them-
selves. The goal of this work is precisely to address some of these cosmological implications.

Specifically, in the same spirit of [11, 12], we discuss how astrophysical and local tests
of the stability of α can be used as additional tests of the underlying dynamical dark energy
scenarios. We will thus be making the minimal assumption that the same dynamical degree
of freedom is responsible for the dark energy and the α variations — there are known as
Class I models in the classification of [7]. In this case any observational (astrophysical)
or experimental (local) tests of the stability of α will directly constrain dark energy. The
future impact of these methods as a dark energy probe has recently been assessed in some
detail [13–15], in preparation for forthcoming facilities which include these measurements
as a key science driver (we will return to these at the end of the paper). Our goal here is
to describe how current data already yields useful constraints on Class I models, and thus
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provide a proof of concept for these future facilities. (Any model not in Class I is called a
Class II model, and we will also briefly comment on them later.)

In a previous work [16] we obtained a non-trivial constraint on the dimensionless cou-
pling of the scalar field to the electromagnetic sector, ζ, at the two-sigma (95.4%) confidence
level (and marginalizing over the dark energy equation of state w0)

|ζ| < 5× 10−6 , (1.1)

significantly improving upon previous constraints, while the 1D likelihood for w0 (marginal-
izing over ζ) was found to be, at the three-sigma (99.7%) confidence level

− 1.05 < w0 < −0.94 . (1.2)

Both of these were obtained by assuming a fiducial model for the dark energy with a constant
equation of state, w(z) = w0. Here we will relax this assumption, and study models where
the dark energy equation of state does vary with redshift. Presumably these will be some-
what more realistic, but we have also aimed to preserve conceptual simplicity by choosing
parametrizations that do not increase the number of free parameters. Studying and quan-
tifying how the above constraints depend on the choice of models (and priors) is one of the
goals of the present work.

Our second goal is to show that, since in these models the new degree of freedom in-
evitably couples to nucleons (through the α dependence of their masses) and thereby leads
to violations of the Weak Equivalence Principle [17, 18], the new constraints on ζ also corre-
spond to very tight constraints on the Eötvös parameter η quantifying violations of the Weak
Equivalence Principle (WEP). Although these constraints are indirect and model-dependent
(since Class I models are assumed) they are comparable to or even tighter than current direct
constraints. Thus forthcoming tests of the WEP will also provide important consistency tests
of these models.

In what follows we start by briefly reviewing the relation between a varying α and
dynamical energy in the case of Class I models, as well as the relation to the WEP violations.
We then list the local, astrophysical and cosmological datasets we will be considering in our
analysis, and proceed to study two representative classes of models, constraining them with
the aforementioned data. In particular we discuss how the obtained constraints depend on
the model and the choice of priors. Finally we present some conclusions, as well as a brief
discussion of the improvements on the sensitivity of these tests expected from future facilities.
We also provide a brief discussion, in an appendix, of the usage of the Oklo bound to further
constrain these models.

2 Varying α, dark energy and the Weak Equivalence Principle

Dynamical scalar fields in an effective 4D field theory are naturally expected to couple to
the rest of the theory, unless a (still unknown) symmetry is postulated to suppress this
coupling [5, 17, 18]. In what follows we will assume this to be the case for the dynamical
degree of freedom responsible for the dark energy. Specifically we will assume a coupling
between the scalar field, denoted φ, and the electromagnetic sector, which stems from a
gauge kinetic function BF (φ)

LφF = −
1

4
BF (φ)FµνF

µν . (2.1)

– 2 –
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One can assume this function to be linear,

BF (φ) = 1− ζκ(φ− φ0) , (2.2)

(with κ2 = 8πG) since, as has been pointed out in [17], the absence of such a term would
require the presence a φ → −φ symmetry, but such a symmetry must be broken throughout
most of the cosmological evolution. As is physically clear, the relevant parameter in the
cosmological evolution is the field displacement relative to its present-day value (in particular
φ0 could be set to zero). In these models the proton and neutron masses are also expected
to vary, due to the electromagnetic corrections of their masses; while we will not discuss
this in detail in the present work, one relevant consequence of this fact is that local tests of
the Equivalence Principle lead to the conservative constraint on the dimensionless coupling
parameter (see [6] for an overview)

|ζlocal| < 10−3 , (2.3)

while in [11] an independent few-percent constraint on this coupling was obtained using CMB
and large-scale structure data in combination with direct measurements of the expansion rate
of the universe.

We note that there is in principle an additional source term driving the evolution of
the scalar field, due to a F 2B′

F term. By comparison to the standard (kinetic and potential
energy) terms, the contribution of this term is expected to be subdominant, both because
its average is zero for a radiation fluid and because the corresponding term for the baryonic
density is constrained by the same reasons discussed in the previous paragraph. For these
reasons, in what follows we neglect this term, which would lead to spatial/environmental
dependencies. We nevertheless note that this term can play a role in scenarios where the
dominant standard term is suppressed.

With these assumptions one can explicitly relate the evolution of α to that of dark
energy, as in [11] whose derivation we summarize here. The evolution of α can be written

∆α

α
≡

α− α0

α0
= B−1

F (φ)− 1 = ζκ(φ− φ0) , (2.4)

and defining the fraction of the dark energy density

Ωφ(z) ≡
ρφ(z)

ρtot(z)
≃

ρφ(z)

ρφ(z) + ρm(z)
, (2.5)

where in the last step we have neglected the contribution from radiation (since we will be
interested in low redshifts, z < 5, where it is indeed negligible), the evolution of the putative
scalar field can be expressed in terms of the dark energy properties Ωφ and wφ as [19]

1 + wφ =
(κφ′)2

3Ωφ

, (2.6)

with the prime denoting the derivative with respect to the logarithm of the scale factor. We
finally obtain

∆α

α
(z) = ζ

∫ z

0

√

3Ωφ(z) (1 + wφ(z))
dz′

1 + z′
. (2.7)

– 3 –
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The above relation assumes a canonical scalar field, but the argument can be repeated for
phantom fields [20], leading to

∆α

α
(z) = −ζ

∫ z

0

√

3Ωφ(z) |1 + wφ(z)|
dz′

1 + z′
; (2.8)

the change of sign stems from the fact that one expects phantom filed to roll up the potential
rather than down.

The realization that varying fundamental couplings induce violations of the universality
of free fall goes back at least to the work of Dicke — we refer the reader to [21] for a recent
thorough discussion. In our present context, the key point is that a light scalar field such as we
are considering inevitably couples to nucleons due to the α dependence of their masses, and
therefore it mediates an isotope-dependent long-range force. This can be simply quantified
through the dimensionless Eötvös parameter η, which describes the level of violation of the
Weak Equivalence Principle. One can show that for the class of models we are considering
the Eötvös parameter and the dimensionless coupling ζ are simply related by [6, 17, 18, 21]

η ≈ 10−3ζ2 ; (2.9)

therefore, the constraint on ζ obtained in [16] and reproduced in eq. (1.1) leads to the two-
sigma indirect bound

η < 2.5× 10−14 , (2.10)

which is stronger than the current direct bounds that will be discussed in the following
section. We emphasize that this relation only applies to Class I models, and as we will see
in later sections the numerical pre-factor in eq. (2.10) will be slightly different for different
models within this class.

Two interesting examples of Class II models for which the relation between the Eötvös
parameter and the model’s coupling parameter is different have been described and studied in
the literature. One is the runaway dilaton class of models of Damour et al. [22], for which up-
to-date constraints were recently obtained in [23]. Another one is provided by Bekenstein-type
scenarios such as the so-called Bekenstein-Sandvik-Barrow-Magueijo (BSBM) model [24].
Constraints on ζ in this model were recently updated by [25] who found, at the two-sigma
level and from astrophysical measurements of α alone

|ζBSBM | < 2.2× 10−5 ; (2.11)

in this case, using the relation between η and ζ originally provided by [24], this constraint
leads to

ηBSBM < 5× 10−14 ; (2.12)

we will briefly return to these models in what follows. In general one can say that in Class
II models the proportionality factor between η and the square of the relevant coupling is
smaller that 10−3, and therefore the couplings in such models are less constrained by WEP
tests than those of Class I models.

3 Available datasets

Our goal is to constrain dynamical dark energy models coupled to the electromagnetic sector,
by using the following datasets

– 4 –
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Figure 1. Currently available fine-structure constant measurements, with the relative values ∆α/α
plotted as a function of redshift. The data of [8] is shown on the left panel, while the more recent
data of table 1 is shown on the right panel. In both cases the error bars include both statistical and
systematic uncertainties, added in quadrature. Note the difference in the vertical scales of both panels.

• Cosmological data: we will use the Union2.1 dataset of 580 Type Ia supernovas [26]
and the compilation of 28 Hubble parameter measurements from Farooq & Ratra [27].
These datasets are insensitive to ζ. (Strictly speaking, a varying α does affect the
luminosity of Type Ia supernovas, but as recently shown in [12] for parts-per-million
level α variations the effect is too small to have an impact on current datasets, and
we therefore neglect it in the present analysis.) However, this data does constrain the
dark energy equation of state w0, effectively providing us with a prior on it.

• Laboratory data: we will use the atomic clock constraint on the current drift of α of
Rosenband et al. [28],

α̇

α
= (−1.6± 2.3)× 10−17 yr−1 . (3.1)

which we can also write in a dimensionless form by dividing by the present-day Hubble
parameter,

1

H0

α̇

α
= (−2.2± 3.2)× 10−7 . (3.2)

This is the tightest available laboratory constraint on α only. Other laboratory con-
straints are weaker and also depend on other couplings too; we leave the discussion of
these for subsequent work, but the interested reader can find overviews of atomic clock
tests in [29, 30]

For the models under consideration this translates into

1

H0

α̇

α
= −Σ ζ

√

3Ωφ0|1 + w0| , (3.3)

where Σ denotes the sign of (1+w0), so it is +1 for canonical fields and −1 for phantom
fields.

• Astrophysical data: we will use both the spectroscopic measurements of α of Webb et
al. [8] (a large dataset of 293 archival data measurements) and the smaller but more

– 5 –
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Object z ∆α/α (ppm) Spectrograph Ref.

3 sources 1.08 4.3± 3.4 HIRES [31]

HS1549+1919 1.14 −7.5± 5.5 UVES/HIRES/HDS [10]

HE0515−4414 1.15 −0.1± 1.8 UVES [32]

HE0515−4414 1.15 0.5± 2.4 HARPS/UVES [33]

HS1549+1919 1.34 −0.7± 6.6 UVES/HIRES/HDS [10]

HE0001−2340 1.58 −1.5± 2.6 UVES [34]

HE1104−1805A 1.66 −4.7± 5.3 HIRES [31]

HE2217−2818 1.69 1.3± 2.6 UVES [9]

HS1946+7658 1.74 −7.9± 6.2 HIRES [31]

HS1549+1919 1.80 −6.4± 7.2 UVES/HIRES/HDS [10]

Q1101−264 1.84 5.7± 2.7 UVES [32]

Table 1. Recent dedicated measurements of α. Listed are, respectively, the object along each
line of sight, the redshift of the measurement, the measurement itself (in parts per million), the
spectrograph, and the original reference. The first measurement is the weighted average from 8
absorbers in the redshift range 0.73 < z < 1.53 along the lines of sight of HE1104-1805A, HS1700+6416
and HS1946+7658, reported in [31] without the values for individual systems. The UVES, HARPS,
HIRES and HDS spectrographs are respectively in the VLT, ESO 3.6m, Keck and Subaru telescopes.

recent dataset of 11 dedicated measurements listed in table 1. The latter include the
early results of the UVES Large Program for Testing Fundamental Physics [9, 10],
which is expected to be the one with a better control of possible systematics. Figure 1
depicts these datasets.

We use these datasets to constrain the dynamical dark energy models described in the
following sections. The behavior of α will be determined by eq. (2.7) for canonical equations of
state (w(z) > −1) and eq. (2.8) for phantom equations of state (w(z) < −1). While in [16] we
assumed a model with a constant equation of state w(z) = w0, here we relax this assumption
and study models where the equation of state is redshift-dependent, but nevertheless charac-
terized by a single parameter w0. This is done in the interest of conceptual simplicity and also
because the currently available data can only weakly constrain models with additional free
parameters. In any case, this does not prevent us from studying a fairly broad class of models.

Our main interest is in obtaining constraints on the ζ-w0 plane, and for this reason we
will fix the Hubble parameter to be H0 = 70 km/s/Mpc and the matter density to be Ωm0 =
0.3 (and further assume a flat universe, so Ωφ0 = 0.7). This choice of cosmological parameters
is fully consistent with the supernova and Hubble parameter data we use. Moreover, we
have explicitly verified that allowing H0, Ωm or the curvature parameter to vary (within
observationally reasonable ranges) and marginalizing over them does not significantly change
our results. (This should be clear from the fact that a parts-per-million variation of α cannot
dramatically affect these cosmological parameters.) It is clear that the critical cosmological
parameter here is w0 itself, as in Class I models it will be correlated with ζ. We therefore
consider 2D grids of ζ and w0 values, and use standard maximum likelihood techniques to
compare the models and the data.

– 6 –
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We also list here the available direct constraints on the dimensionless Eötvös parameter,
quantifying violations to the Weak Equivalence Principle. These stem from torsion balance
tests, leading to [35]

η = (−0.7± 1.3)× 10−13 , (3.4)

while from lunar laser ranging one finds [36]

η = (−0.8± 1.2)× 10−13 . (3.5)

Both of these are quoted with their one-sigma uncertainties.

4 The thawing models of Slepian et al.

We will start by studying a dark energy parametrization which is relatively simple, in the
sense that it does not involve any more parameters than we already have. The model was
recently introduced by Slepian et al. [37]. The Friedmann equation has the following form

H2(z)

H2
0

= Ωm(1 + z)3 +Ωφ

[

(1 + z)3

Ωm(1 + z)3 +Ωφ

]

1+w0
Ωφ

. (4.1)

We will be assuming flat universes, so Ωm+Ωφ = 1, and the model is therefore characterized
by three independent parameters: H0, Ωm (which here we keep fixed as previously justified)
and w0. Note that the physical interpretation of these parameters is exactly the standard
one, and in particular, w0 is still the value of the dark energy equation of state today.

The dark energy equation of state has the following behavior

w(z) = −1 + (1 + w0)
H2

0

H2(z)
. (4.2)

Note that for high redshifts this always approaches -1, and it diverges from this value as the
universe evolves, reaching w0 today. This is therefore a parametrization for thawing models.
Apart from its simplicity, this choice of parametrization is also motivated by the recent result
that if physical priors are used, allowed quintessence models are mostly thawing [38]. Figure 2
illustrates the behavior of the dark energy equation of state and the fine-structure constant
for relevant parameter choices.

We can now proceed to comparing this class of models with the available data. Figure 3
shows the results of this comparison, separately for the Webb et al. data (top left panel),
and for the table 1 data (top right panel) — in both cases, the constraints from the astro-
physical data are shown by the thin red lines. It’s well known that the Webb et al. data
is not consistent with the null result, and a weighted mean of the dataset yields a negative
value, corresponding to a slightly smaller value of α in the past [8]. In our analysis we cor-
respondingly find a one sigma preference for a non-zero coupling ζ (with a negative sign for
a canonical field, and a positive sign for a phantom field). However, the data is compatible
with the null result at two sigma.

On the other hand, the table 1 data is fully compatible with the null result. It’s worth
noting that in the former case the reduced chi-square of the best-fit model (for the α data
alone) is χ2

min,Webb = 1.04, while in the latter case it is χ2
min,table = 1.29; this may be an indi-

cation that some of the uncertainties in the table 1 measurements have been underestimated.
For comparison we also show in the bottom panel of figure 3, in the same scale as before (and

– 7 –
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Figure 2. Redshift dependence of relevant parameters in the model of Slepian et al. [37]. Top panel:

the dark energy equation of state, w(z), for various choices of w0. Bottom left panel: relative variation
of the fine-structure constant, ∆α/α, for various choices of w0, assuming a coupling ζ = 5 × 10−6.
Bottom right panel: relative variation of the fine-structure constant, for various choices of ζ, assuming
w0 = −0.95. A flat universe with Ωm0 = 0.3 has been assumed throughout.

also in thin red lines), the local atomic clock constraint of Rosenband et al. [28]; it is clear
from the plot that this is currently more constraining than the astrophysical measurements.

In figure 3 the cosmological data constraints are shown by the blue vertical lines, while
the combined (cosmological plus astrophysical, or cosmological plus atomic clock) constraints
are shown by the thick black lines. The role of the cosmological datasets in constraining
w0, and thus breaking the ζ-w0 degeneracy, is manifest. Naturally, we can obtain tighter
constraints by combining all the datasets; this is straightforward to do since the Webb et al.,
table 1 and atomic clock measurements of α are all independent. The results of this analysis
are shown in figure 4. We note that the results of this analysis are fairly similar to those
of [16], where a model with a constant equation of state, w(z) = w0, was assumed. The main
reason for this is that the atomic clock bound, which currently dominates the constraints (as
can be seen from figure 3), is only sensitive to the present value of the equation of state (ie,
w0 itself) and not to its evolution.

Finally, we can also obtain the 1D constraint on the coupling ζ by marginalizing over
the dark energy equation of state w0. The results of this analysis are shown in the left panel
of figure 5. Again we confirm that in the case of the Webb et al. dataset there is a one-sigma
preference for a non-zero coupling, while in the other cases the null result provides the best
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Figure 3. One, two and three sigma constraints on the ζ−w0 plane for the model of Slepian et al. [37],
from Webb et al. data (top left panel), table 1 data (top right panel) and the atomic clock bound
(bottom panel). In each panel the thin red lines correspond to the constraints from the astrophysical
or clock data alone, the blue vertical ones correspond to the cosmological data (which constrain w0

but are insensitive to ζ) and the black thick lines correspond to the combined datasets.

fit. The full dataset allows us to obtain a non-trivial constraint on ζ. At the two-sigma
(95.4%) confidence level we find

|ζSGZ| < 5.6× 10−6 , (4.3)

which leads to a constraint on WEP violations

ηSGZ < 3.1× 10−14 . (4.4)

These constraints are very slightly weaker than those obtained in [16] for the constant equa-
tion of state model (cf. eqs. (1.1) and (2.10) respectively). Physically, the reason for this
is that in a thawing model with a given w0 the amount of α variation at a given non-zero
redshift will be slightly smaller than that in a constant equation of state model with the same
w0. In any case, our indirect WEP bound is still stronger than the available direct bounds,
cf. eqs. (3.4)–(3.5).
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Figure 4. One, two and three sigma constraints on the ζ − w0 plane for the model of Slepian et
al. [37], from the full dataset considered in our analysis: Webb et al. data plus table 1 data plus
atomic clock bound plus cosmological (Type Ia supernova and Hubble parameter) data. The reduced
chi-square of the best fit is χ2

min,full = 0.97.

−3 −2 −1 0 1 2 3

x 10
−5

0

1

2

3

4

5

6

7

8

9

10

ζ

∆χ
2

−1.1 −1.08 −1.06 −1.04 −1.02 −1 −0.98 −0.96 −0.94 −0.92 −0.9
0

1

2

3

4

5

6

7

8

9

10

w
0

∆χ
2

Figure 5. 1D likelihood for ζ marginalizing over w0 (left panel) and for w0 marginalizing over ζ (right
panel), for the model of Slepian et al. [37]. Plotted is the value of ∆χ2 = χ2 − χ2

min, for cosmological
+ Webb data (blue dashed), cosmological + table 1 data (blue dash-dotted), cosmological + atomic
clock data (red dotted) and the combination of all datasets (black solid).

We can similarly obtain the 1D likelihood for w0 by marginalizing over ζ; this is shown
on the right panel of figure 5. In this case we find at the three-sigma (99.7%) confidence level

− 1.05 < w0 < −0.92 , (4.5)

which is again slightly weaker than the one for the constant equation of state model (cf.
eq. (1.2)). Note that, as can be seen in the blue contours in figure 3, from our cosmology
data alone we would get at three-sigma −1.11 < w0 < −0.87, so the improvement provided
by the α data is significant. Therefore this is nominally a very strong bound, though we note
that it should be interpreted cautiously, both due to our assumptions on other cosmological
parameters and also because the likelihood is clearly not Gaussian near the minimum. This
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raises the issue of the choice of priors — specifically, of the choice of a flat prior for 1 + w0.
We will discuss this point in the following section.

5 A class of freezing models

In the previous section we provided constraints on thawing models. Here we will consider the
opposite scenario: that of freezing models where the dark energy equation of state evolves
towards −1. Our motivation here stems from the fact that in many dilaton-type models the
scalar field depends logarithmically on the scale factor

φ(z) ∝ log (1 + z) . (5.1)

Therefore, for a linear gauge kinetic function as we are assuming here, it follows that in that
case ∆α

α
∝ ln(1 + z). We will presently calculate the condition on the dark energy equation

of state for Class I models to have a such a behavior for α(z), but it is worth emphasizing at
this point that some Class II models are also known to display such a behavior. Indeed, for
runaway dilaton scenarios this behavior is even approximately true after the onset of dark
energy domination (see for example [22, 23]). By contrast, in BSBM models (another Class
II model) the field departs from this behavior and freezes quite abruptly at this epoch [24].

One may therefore ask what kind of dark energy equation of state would lead to this
behavior. From eq. (2.7) we infer that the function inside the square root therein must be a
constant, that is

Ωφ(z)[1 + w(z)] = const. ; (5.2)

this can be recast into the following equation

dw

dz
= −3(1 + w0)

w

1 + z

[

1 + w

1 + w0
− Ωφ0

]

(5.3)

Note that the initial condition for the first derivative is
[

dw

dz

]

z=0

= −3Ωmw0(1 + w0) , (5.4)

and for the second one we could also write
[

d2w

dz2

]

z=0

= 3Ωmw0(1 + w0)[1 + 3w0 + 3Ωm(1 + w0)] , (5.5)

so w′ ∼ 3Ωm(1 + w0) and w′′ ∼ 6Ωm(1 + w0) near the ΛCDM limit.
The above equation can be easily integrated, leading to the solution

w(z) =
[1− Ωφ(1 + w0)]w0

Ωm(1 + w0)(1 + z)3[1−Ωφ(1+w0)] − w0

, (5.6)

where as usual we are assuming that Ωm + Ωφ = 1. An analogous solution was obtained, in
a different context, in [19].

The Friedmann equation in this case has the explicit form

H2(z)

H2
0

= Ωm(1+z)3+
Ωφ

Ωm(1 + w0)− w0

[

Ωm(1 + w0)(1 + z)3 − w0(1 + z)3Ωφ(1+w0)
]

, (5.7)
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Figure 6. Redshift dependence of relevant parameters in the dilaton-like class of models. Top panel:

the dark energy equation of state, w(z), for various choices of w0. Bottom left panel: relative variation
of the fine-structure constant, ∆α/α, for various choices of w0, assuming a coupling ζ = 5 × 10−6.
Bottom right panel: relative variation of the fine-structure constant, for various choices of ζ, assuming
w0 = −0.95. A flat universe with Ωm0 = 0.3 has been assumed throughout.

and naturally the evolution of α is given by

∆α

α
(z) = ζ

√

3Ωφ(1 + w0) ln (1 + z) . (5.8)

Figure 6 shows the behavior of the dark energy equation of state and the fine-structure
constant in this class of models for relevant parameter choices.

We could treat this parametrization phenomenologically, allow for values of w0 < −1
(with a flat prior on 1 + w0), and fit it to our datasets as was done in the previous section.
This would lead to slightly tighter constraints, for the reason already explained: in a freezing
model with a given w0 the amount of α variation at a given non-zero redshift will be slightly
larger than that in a constant equation of state model with the same w0. The full dataset
constraints on the ζ − w0 plane are shown in figure 7, which should be compared to the
analogous plot for thawing models, figure 4. As for 1D marginalized likelihoods, these would
now become |ζ| < 4.6 × 10−6 at the two-sigma confidence level and −1.04 < w0 < −0.96 at
the three sigma confidence level.

However, the above analysis may be too simplistic, since in this case one physically
expects that w0 ≥ −1. We therefore discard the phantom part of this parameter, and use
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Figure 7. One, two and three sigma constraints on the ζ−w0 plane for dilaton-like models, from the
full dataset considered in our analysis: Webb et al. data plus table 1 data plus atomic clock bound
plus cosmological (Type Ia supernova and Hubble parameter) data. The reduced chi-square of the
best fit is χ2

min,full = 0.97. For this analysis we phenomenologically allowed for values of w0 < −1.
Compare to the analogous plot for thawing models, figure 4.

this model as a testbed for the effects of the choice of priors: instead of the flat prior on
1 + w0 we have used up to this point, we will now assume a logarithmic one.

Figure 8 shows the results of this analysis for the individual α datasets, alone and in
combination of the cosmological data. Again we see that for the Webb et al. data there
is a one-sigma preference for a non-zero value of the coupling while the data of table 1 is
compatible with the null result. The reduced chi-square values for the best-fit model, for the
α data alone, are now χ2

min,Webb = 1.05 and χ2
min,table = 1.28 respectively.

These plots, as well as the corresponding constraints from the combined datasets shown
in figure 9, also make it clear that for a value of w0 sufficiently close to w0 = −1 any value of
the coupling would in principle be allowed — although in practice the local WEP constraints
should of course be satisfied. In principle, and given the form of eqs. (2.7)–(2.8), exactly the
same would also happen in the orthogonal direction (for a sufficiently small ζ any w0 would
be allowed), but in practice this is prevented by the strong priors on w0 coming from the
cosmological datasets.

The 1D marginalized likelihoods for ζ and w0 are depicted in figure 10. The bounds on
the dark energy equation of state are unaffected, as we again find

w0 < −0.96 (5.9)

at the three sigma confidence level (as compared to w0 < −0.92 from the cosmology data
alone, cf. figure 8), while those on the coupling are somewhat weakened. At the one-sigma
confidence level we now have

|ζDIL| < 6× 10−6 , (5.10)

while at the two-sigma level

|ζDIL| < 2.5× 10−5 ; (5.11)

– 13 –



J
C
A
P
0
8
(
2
0
1
5
)
0
4
7

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3
x 10

−5

log10(1+w
0
)

ζ

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3
x 10

−5

log10(1+w
0
)

ζ

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3
x 10

−5

log10(1+w
0
)

ζ

Figure 8. One, two and three sigma constraints on the ζ − w0 plane for dilaton-like models with
a logarithmic prior on the dark energy equation of state, from Webb et al. data (top left panel),
table 1 data (top right panel) and the atomic clock bound (bottom panel). In each panel the thin red
lines correspond to the constraints from the astrophysical or clock data alone, the blue vertical ones
correspond to the cosmological data (which constrain w0 but are insensitive to ζ) and the black thick
lines correspond to the combined datasets.

translating these into WEP bounds, our one sigma constraint is still stronger than the direct
bounds, cf. eqs. (3.4)–(3.5): we have at the one-sigma confidence level

|ηDIL| < 4× 10−14 . (5.12)

We thus conclude that although our constraints do exhibit some model dependence (both in
terms of the class of models being assumed and in terms of the underlying priors), they are
generically competitive with other existing tests of these models.

As previously mentioned, in this class of models the logarithmic dependence of the
scalar field, and therefore that of α, is assumed to persist until the present day. Implicitly
this assumes that the field is not significantly slowed down by the onset of dark energy
domination. It is instructive to compare our constraints with those obtained in models
where the field is significantly slowed down at this epoch. The BSBM class of models is
the simplest toy model where this occurs. It can be shown that in this case the drift of the

– 14 –



J
C
A
P
0
8
(
2
0
1
5
)
0
4
7

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3
x 10

−5

log10(1+w
0
)

ζ

Figure 9. One, two and three sigma constraints on the ζ − w0 plane for dilaton-like models with a
logarithmic prior on the dark energy equation of state, from the full dataset considered in our analysis:
Webb et al. data plus table 1 data plus atomic clock bound plus cosmological (Type Ia supernova and
Hubble parameter) data. The reduced chi-square of the best fit is χ2

min,full = 0.97.
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Figure 10. 1D likelihood for ζ marginalizing over w0 (left panel) and for w0 marginalizing over ζ
(right panel), for dilaton-like models with a logarithmic prior on the dark energy equation of state.
Plotted is the value of ∆χ2 = χ2−χ2

min, for cosmological + Webb data (blue dashed), cosmological +
table 1 data (blue dash-dotted), cosmological + atomic clock data (red dotted) and the combination
of all datasets (black solid).

fine-structure constant at the present day is to a good approximation given by [39]

1

H0

α̇

α
= −ζBSBM

Ωm0

2π
e−H0t0 . (5.13)

Unlike eq. (3.3) which applies to the models we have been studying, this one does not depend
on the dark energy equation of state, the reason being that in these models the α variation
is crafted onto the theory in such a way that it does not significantly affect the background
dynamics (and therefore a cosmological constant is still assumed to provide the dark energy).
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In this case the Rosenband et al. bound given by eq. (3.2) leads to

ζBSBM = (0.8± 1.2)× 10−4 (5.14)

at the one-sigma confidence level. As expected, for the BSBM scenario the fact that the field
dynamics is strongly damped close to the present time implies that the atomic clocks bound
is much weaker than the one obtained in [25] from the astrophysical measurements of α, cf.
eq. (2.11).

6 Conclusions and outlook

In this work we used a combination of astrophysical spectroscopy and local laboratory tests
of the stability of the fine-structure constant α, complemented by background cosmological
datesets, to constrain the simplest examples of Class I dynamical dark energy models (in the
terminology of [7]), where the same degree of freedom is responsible for both the dark energy
and a variation of α. In these models the behavior of α depends both on a fundamental physics
parameter (the dimensionless coupling ζ of the scalar field to the electromagnetic sector) and
on the background dark cosmology parameters. For the classes of models we have studied
these are the dimensionless dark energy density Ωφ and the dark energy equation of state
w0, the latter being the crucial one.

We have obtained new, tighter constraints on the dimensionless coupling ζ, and also
studied their model dependence. Our results indicate that current constraints on Class I mod-
els will be dominated by the atomic clock bound of [28]. However, this is not the case for Class
II models — the BSBM model provides an explicit example of this point. The constraints are
somewhat dependent on the choice of (flat or logarithmic) prior for the dark energy equation
of state, but regardless of this choice these constraints are non-trivial and competitive.

We note that different currently available astrophysical measurements of α — specifi-
cally the archival data of Webb et al. and the dedicated measurements of table 1 — lead to
somewhat different constraints, with the former leading to a mild (statistically not significant)
preference for non-zero couplings. For the combined measurements we always find results
consistent with the standard paradigm. In any case these discrepancies highlight the impor-
tance of obtaining improved astrophysical measurements of α (both in terms of statistical
uncertainty and in terms of control over possible systematics), not only for their own sake but
also because there can have a strong impact on dark energy studies. The ongoing UVES Large
Program should further improve the status quo, and the next generation of high-resolution
ultra-stable spectrographs such as ESPRESSO (due for commissioning in late 2016) and ELT-
HIRES will be ideal for this task. A broad roadmap for these studies is outlined in [7], and
some specific forecasts of the future impact of these measurements may be found in [14, 15].

In the classes of models under consideration the new degree of freedom inevitably couples
to nucleons (through the α dependence of their masses) and leads to violations of the Weak
Equivalence Principle. We have therefore used our bounds on ζ to derive indirect bounds
on the Eötvös parameter η. Despite the aforementioned model dependence, our indirect
bounds are stronger than the current direct ones, in some cases by as much as one order of
magnitude: in other words, they are at the η ∼few×10−14 level. We note that the forthcoming
MICROSCOPE mission, currently scheduled for launch in April 2016, should reach η ∼ 10−15

sensitivity [40]. Should this measure a value of η larger than that in our bounds, this would
rule out the Class I models we have studied here (or alternatively would imply that the
measurements of α on which they rely are incorrect and dominated by systematics).
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Finally, we note that the forthcoming generation of high-resolution ultra-stable spec-
trographs will also provide significantly tighter constraints on η. Specifically, for Class I
models and based on the forecasts of [14], we may expect a sensitivity of η ∼few×10−16 for
ESPRESSO and η ∼ 10−18 for ELT-HIRES. The latter is similar to the expected sensitivity
of the proposed STEP satellite [41]. Therefore null results from STEP and the E-ELT would
force any putative coupling of light scalar fields to the standard model to be unnaturally
small, implying that either WEP violating fields do not exist at all or that these couplings
are suppressed by some currently unknown symmetry mechanism — whose existence would
be as exciting and significant as that of a light scalar field itself.
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A Including Oklo

The Oklo natural nuclear reactor also provides a complementary probe of the stability of
fundamental couplings. In particular, it nominally provides a strong constraint on α, but
it only does so if one assumes that everything else is not varying. This is very a poor
assumption, as has been amply documented in the recent literature. We refer the interested
reader to a recent review on the subject [42] and references therein. It is clear that this is
not as ‘clean’ and reliable a measurement as the atomic clock and QSO measurements, and
for this reason we have not used it in the main text of this work.

Nevertheless, one may legitimately ask what impact the α constraint on Oklo, taken at
face value, would have on our analysis. This constraint, from the analysis of [43], is

∆α

α
= (0.5± 6.1)× 10−8 , (A.1)

at an effective redshift zOklo = 0.14. This nominally strong bound ultimately exploits the
presence of a 97.3 meV resonance in the neutron capture by the Samarium-149 isotope
(whereas the typical energy scale of nuclear reactions is of order MeV). We note that even
stronger bounds have been obtained in [44, 45], but these rely on additional assumptions; in
what follows we will use the more conservative bound of [43].

That said we can revisit the analysis done in section 4 for the model of Slepian et al.,
now also including the Oklo constraint. The thawing class of models (of which this model
is an example) is the one for which Oklo should have a larger relative effect, since in these
models the deviations from w = −1 are larger at low redshifts. In freezing models (or even
the model with a constant equation of state (w(z) = w0) the impact of Oklo will be smaller.

Figures 11 and 12 depict the Oklo impact: we show the 2D and 1D marginalized like-
lihoods for ζ and w0, with and without adding Oklo to our datasets. Table 2 compares the
derived constraints in the two cases. One sees that the effects of the Oklo constraint are
certainly discernible, but by no means dramatic. The qualitative reason for this is that this
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Figure 11. One, two and three sigma constraints on the ζ − w0 plane for the model of Slepian et
al. [37], for the full dataset considered in the main part of our analysis (solid black lines, cf. figure 4)
and for the same dataset augmented by adding the Oklo bound (red dashed lines). In both cases
reduced chi-square of the best fit is χ2

min,full = 0.97.
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Figure 12. 1D likelihood for ζ marginalizing over w0 (left panel) and for w0 marginalizing over ζ
(right panel), for the model of Slepian et al. [37]. Plotted is the value of ∆χ2 = χ2−χ2

min, for the full
dataset considered in the main part of our analysis (solid black lines, cf. figure 5) and for the same
dataset augmented by adding the Oklo bound (red dashed lines).

Parameter Confidence level Without Oklo With Oklo

Coupling 95.4% |ζSGZ| < 5.6× 10−6 |ζSGZ| < 4.5× 10−6

Eötvös 95.4% ηSGZ < 3.1× 10−14 ηSGZ < 2.0× 10−14

eq. of State 99.7% −1.05 < w0 < −0.92 −1.04 < w0 < −0.93

Table 2. Constraints on the relevant parameters of the model of Slepian et al. [37]. The middle
column shows the constraints discussed in section 4, which do not include the Oklo bound. Th right
column shows the same constraints also including the Oklo constraint of [43] and interpereted as a
constraint on α.
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is a constraint at very low redshift (as compared to the astrophysical measurements), and
only a factor of 3 stronger than the atomic clock constraint. Thus a reasonable fraction of
models that fit the latter constraint also fit the former.
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