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Microwave and submillimeter molecular transition frequen-
cies between nearly degenerated rotational levels, tunnel-
ing transitions, and mixed tunneling-rotational transitions
show an extremely high sensitivity to the values of the fine-
structure constant, α, and the electron-to-proton mass ra-
tio, μ. This review summarizes the theoretical background
on quantum-mechanical calculations of the sensitivity co-
efficients of such transitions to tiny changes in α and μ for
a number of molecules which are usually observed in Galac-
tic and extragalactic sources, and discusses the possibility
of testing the space- and time-invariance of fundamental
constants through comparison between precise laboratory
measurements of the molecular rest frequencies and their
astronomical counterparts. In particular, diatomic radicals
CH, OH, NH+, and a linear polyatomic radical C3H in � elec-
tronic ground state, polyatomic molecules NH3, ND3, NH2D,
NHD2, H2O2, H3O+, CH3OH, and CH3NH2 in their tunneling
and tunneling-rotational modes are considered. It is shown
that sensitivity coefficients strongly depend on the quan-
tum numbers of the corresponding transitions. This can be
used for astrophysical tests of Einstein’s Equivalence Princi-
ple all over the Universe at an unprecedented level of sensi-
tivity of ∼10−9, which is a limit three to two orders of mag-
nitude lower as compared to the current constraints on cos-
mological variations of α and μ: �α/α < 10−6, �μ/μ <

10−7.

1 Introduction

The fundamental laws of particle physics, in our cur-
rent understanding, depend on 28 constants including
the gravitational constant, G, the mass, me, and charge,
e, of the electron, the masses of six quarks, mu, md, mc,
ms, mt, and mb, the Planck constant, �, the Sommer-
feld constant α, the coupling constants of the weak, gw,

and strong, gs, interactions, etc. The numerical values
of these constants are not calculated within the Stan-
dard Model and remain, as Feynman wrote about the fine
structure constant α in 1985, “one of the greatest myster-
ies of physics” [1]. However, it is natural to ask whether
these constants are really constants, or whether they
vary with the age of the universe, or over astronomical
distances.

The idea that the fundamental constants may vary on
the cosmological time scale has been discussing in dif-
ferent forms since 1937, when Milne and Dirac argued
about possible variations of the Newton constant G dur-
ing the lifetime of the universe [2, 3]. Over the past few
decades, there have been extensive searches for persua-
sive evidences of the variation of physical constants. So
far, there was found no one of them. The current lim-
its for dimensionless constants such as the fine structure
constant, α = e2/�c, and the electron to proton mass ra-
tio, μ = me/mp, obtained in laboratory experiments and
from the Oklo natural reactor are on the order of one part
in 1015 − 1017 [4–6] and one part in 1014 − 1016 [7–9] per
year, respectively. The detailed discussion of ideas be-
hind laboratory experiments can be found in a review
[10].

Assuming that the constants are linearly depen-
dent on the cosmic time, the same order of magni-
tude constraints on the fractional changes in �α/α =
(αobs − αlab)/αlab and in �μ/μ = (μobs − μlab)/μlab are
stemming from astronomical observations of extragalac-
tic objects at redshifts z ∼ 1 − 5 [11–15]. Less stringent
constraints at a percent level have been obtained from
the cosmic microwave background (CMB) at z ∼ 103

[16–18] and big bang nucleosynthesis (BBN) at z ∼ 1010
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[19,20]. We note that space and/or time dependence of α

based on optical spectra of quasars and discussed in the
literature [21, and references therein] is still controver-
sial and probably caused by systematic effects since in-
dependent radio-astronomical observations, which are
more sensitive, show only null results for both �α/α and
�μ/μ [22, 23].

Surprisingly, it looks as if the Einstein heuristic prin-
ciple of local position invariance (LPI) — the outcome of
any local non-gravitational experiment is independent of
where and when in the universe it is performed — is valid
all over the universe, i.e., at the level of ∼10−6 neither α

no μ deviate from their terrestrial values for the passed
1010 yr. In the Milky Way, it was also found no statistically
significant deviations of �μ/μ from zero at even more
deeper level of ∼10−8 [24–26].

However, the violation of the LPI was predicted in
some theoretical models such as, for example, the the-
ory of superstrings which considers time variations of α,
gw, and the QCD scale �QCD (i.e., μ since mp ∝ �QCD)
and thereby opening a new window on physics be-
yond the Standard Model [27, and references therein]. If
the fundamental constants are found to be changing in
space and time, then they are not absolute but dynam-
ical quantities which follow some deeper physical laws
that have to be understood. Already present upper limits
on the variation of the fundamental constants put very
strong constraints on the theories beyond the Standard
Model [28, and references therein]. This motivates the
need for more precise laboratory and astronomical tests
of the LPI. Of course, there are also other attempts to look
for the new physics. For example the electric dipole mo-
ments (EDMs) of the elementary particles are very sen-
sitive to the different extensions of the Standard Model.
Present limit on the EDM of the electron significantly
constrains supersymmetrical models and other theories
[29, 30].

In this review we will consider tests of LPI which
are based on the analysis of microwave and submil-
limeter1 astronomical spectra and which are essen-
tially more sensitive to small variations in α and μ

than the test based on optical spectral observations of
quasars.

1 The frequency range 1 GHz ≤ ν ≤ 300 GHz is usually referred to as
a microwave range. Molecular transitions below 1 GHz (wavelength
λ > 30 cm) are from a low-frequency range which is restricted by
the ionospheric cut-off at 10 MHz (λ = 30 m).

2 Differential measurements of �α/α and
�μ/μ from atomic and molecular spectra
of cosmic objects

Speaking about stable matter, as, for example, atoms and
molecules, we have only seven physical constants that
describe their spectra [31]:

G,�QCD, α, me, mu, md, ms.

The QCD scale parameter �QCD and the masses of the
light quarks u, d, and s contribute to the nucleon mass
mp (with �QCD � mu + md + ms) and, thus, the electron-
to-proton mass ratio μ is a physical constant character-
izing the strength of electroweak interaction in terms of
the strong interaction.

In the nonrelativistic limit and for an infinitely heavy
pointlike nucleus all atomic transition frequencies are
proportional to the Rydberg constant, R, and the ratios of
atomic frequencies do not depend on any fundamental
constants. Relativistic effects cause corrections to atomic
energy, which can be expanded in powers of α2 and α2 Z2,
the leading term being α2 Z2 R, where Z is atomic num-
ber. Corrections accounting for the finite nuclear mass
are proportional to Rμ/Z, but for atoms they are much
smaller than relativistic corrections.

Astronomical differential measurements of the di-
mensionless constants α and μ are based on the com-
parison of the line centers in the absorption/emission
spectra of cosmic objects and the corresponding labora-
tory values. It follows that the uncertainties of the labora-
tory rest frequencies and the line centers in astronomical
spectra are the prime concern of such measurements. It
is easy to estimate the natural bounds set by these uncer-
tainties on the values of �α/α and �μ/μ.

Consider the dependence of an atomic frequency ω

on α in the comoving reference frame of a distant object
located at redshift z [32, 33]:

ωz = ω + qx + O(x2), x ≡ (αz/α)2 − 1. (1)

Here ω and ωz are the frequencies corresponding to the
present-day value of α and to a change α → αz at a red-
shift z. In this relation, the so-called q factor is an indi-
vidual parameter for each atomic transition.

If αz 
= α, the quantity x in (1) differs from zero and
the corresponding frequency shift �ω = ωz − ω is given
by

�ω

ω
= Q

�α

α
, (2)
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where Q = 2q/ω is the dimensionless sensitivity coeffi-
cient and �α = (αz − α)/α is the fractional change in α.
Here we assume that |�α/α| � 1. The condition αz 
= α

leads to a change in the apparent redshift of the distant
object �z = z̃ − z:

�ω

ω
= − �z

1 + z
≡ �v

c
, (3)

where �v is the Doppler radial velocity shift.
If ω′ is the observed frequency from the distant object,

then the true redshift is given by

1 + z = ωz

ω′ , (4)

whereas the shifted (apparent) value is

1 + z̃ = ω

ω′ . (5)

Now, if we have two lines of the same element with the
apparent redshifts z̃1 and z̃2 and the corresponding sen-
sitivity coefficients Q1 and Q2, then

�Q
�α

α
= z̃1 − z̃2

1 + z
= �v

c
. (6)

Here �v = v1 − v2 is the difference of the measured ra-
dial velocities of these lines, and �Q = Q2 − Q1 is the
corresponding difference between their sensitivity coef-
ficients. By comparing the apparent redshifts of two lines
with different sensitivity coefficients Q we can study vari-
ation of α on a cosmological timescale.

Unfortunately, optical and UV transitions of atoms
and molecules are not very sensitive to changes in α and
μ. The sensitivity coefficients of atomic resonance tran-
sitions of usually observed in quasar spectra chemical el-
ements (C, N, O, Na, Mg, Al, Si, S, Ca, Ti, Cr, Mn, Fe, Co,
Ni, Zn) are very small, Q ∼ (αZ)2 � 1 [34]. The same or-
der of magnitude sensitivity coefficients to μ variations
have been calculated for the UV transitions in the Lyman
and Werner bands of molecular hydrogen H2 [35–37],
and for the UV transitions in the 4th positive band sys-
tem A1� − X1	+ of carbon monoxide CO [38].

Small values of Q and �Q put tough constraints
on optical methods to probe �α/α and �μ/μ. Let
us consider an example of Fe ii lines arising from
the ground state 3d6(5 D)4s. In quasar spectra we ob-
serve 7 resonance transitions ranging from 1608 Å to
2600 Å with both signs sensitivity coefficients: Qλ1608 =
−0.0322, Qλ1611 = +0.0502, and Q  +0.08 for transi-
tions with λ > 2000 Å [39, note a factor of two difference
in the definition of the coefficients Q with the present
work]. This gives us the maximum value of �Q  0.11

which is known with an error of ∼30%. From (6) it fol-
lows that a variance of �α/α ∼ 10−5 would induce a ve-
locity offset �v  0.3 km s−1 between the 1608 Å line
and any of the line with λ > 2000 Å. We may neglect un-
certainties of the rest frame wavelengths since they are
∼0.02 km s−1 [40]. If both iron line centers are measured
in quasar spectra with the same error σv, then the error of
the offset �v is σ�v = √

2σv. The error σ�v is a statistical
estimate of the uncertainty of �v, and, hence, it should
be less than the absolute value of �v. This gives us the
following inequality to adjust parameters of spectral ob-
servations required to probe �α/α at a given level:

σv <
�Q√

2

�α

α
c . (7)

At �α/α ∼ 10−5, the required position accuracy should
be σv <∼ 0.25 km s−1. A typical error of the line cen-
ter of an unsaturated absorption line in quasar spectra
is about 1/10th of the pixel size (the wavelength inter-
val between pixels) [41]. Current observations with the
UV-Visual Echelle Spectrograph (UVES) at the ESO Very
Large Telescope (VLT) provide a pixel size �λpix ∼ 0.05 −
0.06 Å, i.e., at λ ∼ 5000 Å the expected error σv should be
∼0.3 km s−1, which is comparable to the velocity offset
due to a fractional change in α at the level of 10−5. Such a
critical relationship between the ‘signal’ (expected veloc-
ity offset �v) and the error σv hampers measuring �α/α

at the level of ∼ 10−5 from any absorption system taking
into account all imperfections of the spectrograph and
the data reduction procedure. Systematic errors exceed-
ing 0.5 km s−1 are known to be typical for the wavelength
calibration in both the VLT/UVES and Keck/HIRES spec-
trographs [12,42–44]. At this level of the systematic errors
an estimate of �α/α from any individual absorption-line
system must be considered as an upper limit but not a
‘signal’. Otherwise, a formal statistical analysis of such
values may lead to unphysical results (examples can be
found in the literature).

The UV molecular spectra of H2 and CO observed at
high redshifts in the optical wavelength band encounter
with similar difficulties and restrictions. The maximum
difference between the sensitivity coefficients in case of
H2 is �Q ∼ 0.06, the rest frame wavelength uncertainties
are negligible, ∼5 × 10−9 [45], and with the current spec-
tral facilities at giant telescopes it is hard to get estimates
of �μ/μ at a level deeper than 10−5. For carbon monox-
ide such measurements have not been done so far but
the expected limit on �μ/μ should be >∼10−5 since CO
lines are much weaker than H2 [46] and therefore their
line centers are less certain. The analogue of Eq. (6) for
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the μ-estimation from a pair of molecular lines is [47]:

�μ

μ
= �v

c�Q
= v1 − v2

c(Q2 − Q1)
, (8)

and for a given level of �μ/μ, molecular line centers
should be measured with an error

σv <
�Q√

2

�μ

μ
c . (9)

This means that at �μ/μ ∼ 10−5, the required position
accuracy should be σv <∼ 0.13 km s−1, or the pixel size
�λpix <∼ 0.017 Å at 4000 Å. This requirement was realized
in the VLT/UVES observations of the quasar Q0347–383
[48] where a limit on �μ/μ of (4.3 ± 7.2) × 10−6 was set.

At present the only way to probe variation of the
fundamental constants on the cosmological timescale
at a level deeper than 10−5 is to switch from optical to
far infrared and microwave bands. In the microwave, or
submillimeter range there are a good deal of molecular
transitions arising in Galactic and extragalactic sources.
Electronic, vibrational, and rotational energies in molec-
ular spectra are scaled as Eel : Evib : Erot = 1 : μ1/2 : μ. In
other words, the sensitivity coefficients for pure vibra-
tional and rotational transitions are equal to Qμ = 0.5
and Qμ = 1, respectively. Besides, molecules have fine
and hyperfine structures, �-doubling, hindered rotation,
accidental degeneracy between narrow close-lying levels
of different types, which have a specific dependence on
the physical constants. The advantage of radio observa-
tions is that some of these molecular transitions are ap-
proximately 100–1000 times more sensitive to variations
of μ and/or α than optical and UV transitions.

In the far infrared waveband also lie atomic fine-
structure transitions, which have sensitivity to α-
variation Qα ≈ 2 [49]. We can combine observations
of these lines and rotational molecular transitions to
probe a combination F = α2/μ [50]. Besides, radio-
astronomical observations allow us to measure emission
lines from molecular clouds in the Milky Way with an
extremely high spectral resolution (channel width ∼0.02
km s−1) leading to stringent constraints at the level of
∼10−9 [24]. The level 10−9 is a natural limit for radio-
astronomical observations since it requires the rest fre-
quencies of molecular transitions to be known with an
accuracy better than 100 Hz. At the moment only ammo-
nia inversion transitions and 18 cm OH �-doublet tran-
sitions have been measured in the laboratory with such a
high accuracy [51, 52].

In the next sections we consider in more detail the
sensitivities of different types of molecular transitions
to changes in α and μ. We are mainly dealing with

molecular lines observed in microwave and submillime-
ter ranges in the interstellar medium, but a few low-
frequency transitions with high sensitivities are also in-
cluded in our analysis just to extend the list of possible
targets for future studies at the next generation of large
telescopes for low-frequency radio astronomy.

3 Diatomic radicals in the � ground state: CH,
OH, and NH+

We start our analysis of the microwave spectra of
molecules from the simplest systems — diatomic
molecules with nonzero projection of the electronic an-
gular momentum L on the molecular axis. Several such
molecules are observed in the interstellar medium. Here
we will mostly focus on the two most abundant species
— CH and OH. Recently it was realized that �-doublet
transitions in these molecules have high sensitivity to the
variation of both α and μ [53–55]. There are also several
relatively low frequency transitions between rotational
levels of the ground state doublet �1/2 and �3/2 with sen-
sitivities, which are significantly different from the typi-
cal rotational ones [56]. Then we will briefly discuss the
NH+ radical2, which is interesting because it has very low
lying excited electronic state 4	−. This leads to an addi-
tional enhancement of the dimensionless sensitivity co-
efficients Q [58]. The latter are defined as follows:

�ω

ω
= Qα

�α

α
+ Qμ

�μ

μ
. (10)

3.1 �-doubling and �-doubling

Consider electronic state with nonzero projection � of
the orbital angular momentum on the molecular axis.
The spin-orbit interaction couples electron spin S to the
molecular axis, its projection being 	. To a first approxi-
mation the spin-orbit interaction is reduced to the form
Hso = A�	. Total electronic angular momentum J e =
L + S has projection � on the axis, � = � + 	. For a
particular case of � = 1 and S = 1

2 we have two states
�1/2 and �3/2 and the energy difference between them
is: E(�3/2) − E(�1/2) = A.

Rotational energy of the molecule is described by the
Hamiltonian:

2 NH+ has not yet been detected in space, its fractional abundance
in star-forming regions is estimated N(NH+)/N(H2) <∼ 4 × 10−10

[57].

C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 455www.ann-phys.org



Re
vi

ew
Ar

tic
le

M. G. Kozlov and S. A. Levshakov: Molecular transitions: frequencies and fundamental constants

Hrot = B( J − J e)2 (11a)

= B J 2 − 2B(JJe) + B J 2
e , (11b)

where B is the rotational constant and J is the total angu-
lar momentum of the molecule. The first term in expres-
sion (11b) describes conventional rotational spectrum.
The last term is constant for a given electronic state and
can be added to the electronic energy.3 The second term
describes �-doubling and is known as the Coriolis inter-
action HCor.

If we neglect the Coriolis interaction, the eigen-
vectors of Hamiltonian (11) have definite projections
M and � of the molecular angular momentum J on
the laboratory axis and on the molecular axis respec-
tively. In this approximation the states |J , M,�,	,�〉
and |J , M,−�,−	,−�〉 are degenerate, E J ,±� = B J (J +
1). The Coriolis interaction couples these states and re-
moves degeneracy. New eigenstates are the states of def-
inite parity p = ±1 [59]:

|J , M,�, p〉 = (|J , M,�〉 + p(−1)J −S|J , M,−�〉)/
√

2.

(12)

The operator HCor can only change quantum number �

by one, so the coupling of states |�〉 and |−�〉 takes place
in the 2� order of the perturbation theory in HCor.

The �-doubling for the state �1/2 happens already in
the first order in the Coriolis interaction, but has addi-
tional smallness from the spin-orbit mixing. The opera-
tor HCor can not directly mix degenerate |�,	,�〉 states
|1,− 1

2 , 1
2 〉 and |−1, 1

2 ,− 1
2 〉 because it requires changing �

by two. Therefore, we need to consider spin-orbit mixing
of the � and 	 states:∣∣∣∣� = 1

2

〉
=

∣∣∣∣1,−1
2
,

1
2

〉
+ ζ

∣∣∣∣0,
1
2
,

1
2

〉
, (13)

where

ζ ∼ A/(E� − E	), (14)

and then

〈
� = 1

2

∣∣∣∣HCor

∣∣∣∣� = −1
2

〉
= 2ζ B

(
J + 1

2

)
〈� = 1|Lx|� = 0〉.

(15)

3 Note that this term contributes to the separation between the
states �1/2 and �3/2. This becomes particularly important for
light molecules, where the constant A is small.

Note that ζ depends on the non-diagonal matrix element
(ME) of the spin-orbit interaction and Eq. (14) is only
an order of magnitude estimate. It is important, though,
that non-diagonal and diagonal MEs have similar depen-
dence on fundamental constants. We conclude that �-
splitting for the �1/2 level must scale as AB J /(E� − E	).
The �-doubling for �3/2 state takes place in the third
order in the Coriolis interaction. Here HCor has to mix
first states �3/2 with �1/2 and �−3/2 with �−1/2 before
ME (15) can be used. Therefore, the splitting scales as
B3 J 3/[A(E� − E	)].

The above consideration corresponds to the coupling
case a, when |A| � B. In the opposite limit the states �1/2

and �3/2 are strongly mixed by the Coriolis interaction
and spin S decouples from the molecular axis (coupling
case b). As a result, the quantum numbers 	 and � are
not defined and we only have one quantum number � =
±1. The �-splitting takes place now in the second order
in the Coriolis interaction via intermediate 	 states. The
scaling here is obviously of the form B2 J 2/(E� − E	).
Note that in contrast to the previous case |A| � B, the
splitting here is independent on A.

We can now use found scalings of the �- and �-
doublings to determine sensitivity coefficients (10). We
only need to recall that in atomic units A ∝ α2 and B ∝ μ.
We conclude that for the case a the �-doubling spectrum
has following sensitivity coefficients:

State 2�1/2 : Qα = 2 , Qμ = 1 , (16a)

State 2�3/2 : Qα = −2 , Qμ = 3 . (16b)

For the case b, when S is completely decoupled from the
axis, the �-doubling spectrum has following sensitivity
coefficients:

State � : Qα = 0 , Qμ = 2 . (16c)

When constant A is slightly larger than B, the spin S
is coupled to the axis only for lower rotational levels. As
rotational energy grows with J and becomes larger than
the splitting between states �1/2 and �3/2, the spin de-
couples from the axis. Consequently, the �-doubling is
transformed into �-doubling. Equations (16) show that
this can cause significant changes in sensitivity coef-
ficients. The spin-orbit constant A can be either posi-
tive (CH molecule), or negative (OH). The sign of the
�-doubling depends on the sign of A, while �-doubling
does not depend on A at all. Therefore, decoupling of the
spin can change the sign of the splitting. In Sec. 3.2 we
will see that this can lead to a dramatic enhancement of
the sensitivity to the variation of fundamental constants.
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3.2 Intermediate coupling

The �-doubling for the intermediate coupling was stud-
ied in detail in many papers, including [63–65] (see also
the book [59]). Here we use the effective Hamiltonian
Heff from [63] in the subspace of the levels �±

1/2 and �±
3/2,

where upper sign corresponds to the parity p in Eq. (12).
The operator Heff includes spin-rotational and hyperfine
parts

Heff = Hsr + Hhf . (17)

Neglecting third order terms in the Coriolis and spin-
orbit interactions, we get the following simplified form
of the spin-rotational part:

〈
�1/2, J , p | Hsr|�1/2, J , p

〉 = −1
2

A + B
(

J + 1
2

)2

(18a)

+ p(S1 + S2)(2J + 1) ,

〈
�3/2, J , p | Hsr|�3/2, J , p

〉 = + 1
2

A + B
(

J + 1
2

)2

− 2B ,

(18b)

〈
�3/2, J , p | Hsr|�1/2, J , p

〉 =
[

B + pS2

(
J + 1

2

)]
(18c)

×
√(

J − 1
2

) (
J + 3

2

)
.

Here in addition to the parameters A and B we
have two parameters which appear in the second or-
der of perturbation theory via intermediate state(s) 	1/2.
The parameter S1 corresponds to the cross term of the
perturbation theory in the spin-orbit and Coriolis inter-
actions, while the parameter S2 is quadratic in the Cori-
olis interaction. Because of this S1 scales as α2μ and S2

scales as μ2. It is easy to see that the Hamiltonian Hsr de-
scribes limiting cases |A| � B and |A| � B considered in
Sec. 3.1.

The hyperfine part of the effective Hamiltonian is de-
fined in the lowest order of perturbation theory and has
the form:

〈�1/2, J , p|Hhf|�1/2, J , p〉 = CF [2a − b − c + p(2J + 1)d],

(19a)

〈
�3/2, J , p|Hhf|�3/2, J , p

〉 = 3CF [2a + b + c] , (19b)

〈
�3/2, J , p | Hhf|�1/2, J , p

〉 = −CF

√
(2J − 1)(2J + 3) b ,

CF ≡ [F (F + 1) − J (J + 1) (19c)

− I (I + 1)][8J (J + 1)]−1 .

Here we assume that only one nucleus has spin and in-
clude only magnetic dipole hyperfine interaction.

The effective Hamiltonian described by Eqs. (18, 19)
has 8 parameters. We use NIST values [60] for the fine
structure splitting A, rotational constant B, and mag-
netic hyperfine constants a, b, c, d. Remaining two pa-
rameters S1 and S2 are found by minimizing the rms devi-
ation between theoretical and experimental �-doubling
spectra.

In order to find sensitivity coefficients Qα we cal-
culate transition frequencies for two values of α =
α0 ± δ near its physical value α0 = 1/137.035999679(94).
The similar procedure is applied to Qμ at the phys-
ical value of the electron-to-proton mass ratio, μ0 =
1/1836.15267247(80). We use scaling rules discussed
above to recalculate parameters of the effective Hamilto-
nian for different values of fundamental constants. Then
we use numerical differentiation to find respective sensi-
tivity coefficient.

3.3 Sensitivity coefficients for �-doublet transitions
in CH and OH

In Ref. [55], the method described in the previous section
was applied to 16OH, 12CH, 7Li16O, 14N16O, and 15N16O.
The molecules CH and NO have ground state 2�1/2 (A >

0), while OH and LiO have ground state 2�3/2 (A < 0).
The ratio |A/B| changes from 2 for CH molecule [66], to
7 for OH [67], and to almost a hundred for LiO and NO.
Therefore, LiO and NO definitely belong to the coupling
case a. For OH molecule we can expect transition from
case a for lower rotational states to case b for higher ones.
Finally, for CH we expect intermediate coupling for lower
rotational states and coupling case b for higher states.

Let us see how this scheme works in practice for the
effective Hamiltonian (18, 19). Figure 1 demonstrates
J -dependence of the sensitivity coefficients for CH and
OH molecules. Both of them have only one nuclear spin
I = 1

2 . For a given quantum number J , each �-doublet
transition has four hyperfine components: two strong
transitions with �F = 0 and F = J ± 1

2 (for J = 1
2 there

is only one transition with F = 1) and two weaker transi-
tions with �F = ±1. The hyperfine structure for OH and
CH molecules is rather small and sensitivity coefficients
for all hyperfine components are very close. Because of
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A

B

Figure 1 Sensitivity coefficients Qα and Qμ for �-doublet lines
with �F = 0 in CH and OH. The difference between lines with
F = J + 1

2 and F = J − 1
2 is too small to be seen. For the state

�3/2 of OH the values for J = 9
2 are too large to be shown on the

plot. They are listed in Table 1.

that Fig. 1 presents only averaged values for strong tran-
sitions with �F = 0.

We see that for large values of J the sensitivity coef-
ficients for both molecules approach limit (16c) of the
coupling case b. The opposite limits (16a, 16b) are not

reached for either molecule even for smallest values of
J . So, we conclude that the coupling case a is not real-
ized. It is interesting that in Fig. 1 the curves for the lower
states are smooth, while for upper states there are singu-
larities. For CH molecule this singularity takes place for
the state �3/2 near the lowest possible value J = 3/2. A
singularity for OH molecule takes place for the state �1/2

near J = 9/2.
These singularities appear because �-splitting turns

to zero. As we saw above, the sign of the splitting for the
coupling case a depends on the sign of the constant A.
The same sign determines which state �1/2, or �3/2 lies
higher. As a result, for the lower state the sign of the split-
ting is the same for both limiting cases, but decoupling
of the electron spin S for the upper state leads to the
change of sign of the splitting. Of course, these singular-
ities are most interesting for our purposes, as they lead
to large sensitivity coefficients which strongly depend on
the quantum numbers. Note, that when the frequency of
the transition is small, it becomes sensitive to the hyper-
fine part of the Hamiltonian and the sensitivity coeffi-
cients for hyperfine components may differ significantly.
The sensitivity coefficients of all hyperfine components
of such �-lines are given in Table 1. We can see that near
the singularities all sensitivity coefficients are enhanced.

In addition to �-doublet transitions and purely ro-
tational transitions there are also mixed transitions be-
tween rotational states of �1/2 and �3/2 states. The tran-
sition energy here includes the rotational and the fine
structure parts. Because of that, such transitions may
have different sensitivities to the variation of fundamen-
tal constants [56]. As an example, Fig. 2 shows mixed
transitions in CH molecule. The sensitivity coefficients
are given in Table 2. The isotopologue CD has mixed
transitions of lower frequencies and higher sensitivities
[56]. Similar picture takes place for OH molecule.

The molecule NH+ is isoelectronic to CH and also
has ground state 2�1/2. However, there is an important
difference: for NH+ the first excited state 4	− lies only
340 cm−1 above the ground state [68, 69]. The spin-orbit
interaction between these states leads to strong pertur-
bations of the rotational structure and of the �-doublet
splittings and to an additional enhancement of the sen-
sitivity coefficients [58]. The spectrum of NH+ is shown
in Fig. 3. The effective Hamiltonian is similar to the one
considered above with two additional terms describing
interaction between the 2� and 4	 states [68]:

〈2
�3/2, J , p | Hso|4	−

3/2, J , p
〉 = −1

2
ζ3/2 , (20a)

〈2
�1/2, J , p|Hso|4	−

1/2, J , p
〉 = − 1

2
√

3
ζ1/2 . (20b)
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Table 1 Frequencies (in MHz) and sensitivity coefficients for hyperfine components (J , F → J , F ′) of �-doublet lines in CH and OH
molecules. Recommended frequencies and their uncertainties are taken from [60–62].

ω (MHz)

Molecule Level J F F ′ Recom. Uncert. Theory Diff. Qα Qμ

12CH 2�1/2 0.5 0 1 3263.795 0.003 3269.40 − 5.61 0.59 1.71

0.5 1 1 3335.481 0.001 3340.77 − 5.29 0.62 1.70

0.5 1 0 3349.194 0.003 3354.11 − 4.92 0.63 1.69

1.5 1 2 7275.004 0.001 7262.25 12.75 − 0.24 2.12

1.5 1 1 7325.203 0.001 7312.02 13.18 − 0.23 2.11

1.5 2 2 7348.419 0.001 7335.30 13.12 − 0.22 2.11

1.5 2 1 7398.618 0.001 7385.08 13.54 − 0.20 2.10

12CH 2�3/2 1.5 2 2 701.68 0.01 682.96 18.72 − 8.44 6.15

1.5 1 2 703.97 0.03 679.83 24.14 − 8.66 6.32

1.5 2 1 722.30 0.03 702.98 19.52 − 8.37 6.17

1.5 1 1 724.79 0.01 699.85 24.94 − 8.07 5.97

16OH 2�3/2 1.5 1 2 1612.2310 0.0002 1595.42 16.81 − 1.27 2.61

1.5 1 1 1665.4018 0.0002 1648.93 16.47 − 1.14 2.55

1.5 2 2 1667.3590 0.0002 1650.66 16.70 − 1.14 2.55

1.5 2 1 1720.5300 0.0002 1704.17 16.36 − 1.02 2.49

16OH 2�1/2 0.5 0 1 4660.2420 0.0030 4638.98 21.26 2.98 0.50

0.5 1 1 4750.6560 0.0030 4729.51 21.15 2.96 0.51

0.5 1 0 4765.5620 0.0030 4744.50 21.06 2.96 0.51

4.5 5 4 88.9504 0.0011 64.34 24.61 − 921.58 459.86

4.5 5 5 117.1495 0.0011 92.35 24.80 − 699.65 349.59

4.5 4 4 164.7960 0.0011 141.20 23.60 − 496.67 248.77

4.5 4 5 192.9957 0.0011 169.22 23.78 − 424.05 212.68

Obviously, the parameters ζ1/2 and ζ3/2 scale as α2.
As mentioned above, for the NH+ molecule the split-
ting between 	 and � states �E	� is only about
340 cm−1. This splitting includes three contributions:
the non-relativistic electronic energy difference, the rela-
tivistic corrections (∼α2 Z2) and the difference in the zero
point vibrational energies for the two states (∼μ1/2). Note
that the accidental degeneracy of these levels for NH+

means that the first contribution is anomalously small.
Because of that, the other two contributions can not be
neglected and modify the scaling of �E	� with funda-

mental constants. This effect has to be taken into ac-
count in the calculations of the sensitivity coefficients
[58].

4 Linear polyatomic radicals in the � ground
state: C3H

The linear form of the molecule C3H (l-C3H) is similar to
the molecule NH+: it also has the ground state 2�1/2 and
two closely lying states 2�3/2 and 2	+

1/2. Here the quasi
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Figure 2 Rotational spectrum of CH from [66]. Vertical and diag-
onal arrows correspond to pure rotational and mixed transitions,
respectively. �-doubling is not to scale.

Table 2 Frequencies (GHz) and sensitivities of the rotational
and mixed transitions in CH.

N, J , p N′, J ′, p′ νtheor νexpt [62] Qα Qμ

1, 3
2 , + 1, 1

2 , − 533.9 532.7 1.59 0.20

1, 3
2 , − 1, 1

2 , + 537.9 536.8 1.57 0.22

2, 3
2 , + 1, 3

2 , − 1477.2 1477.4 0.00 1.00

2, 3
2 , − 1, 3

2 , + 1470.6 1470.7 −0.01 1.00

2, 5
2 , + 1, 3

2 , − 1663.0 1661.1 0.00 1.00

2, 5
2 , − 1, 3

2 , + 1658.8 1657.0 0.00 1.00

2, 3
2 , + 1, 1

2 , − 2011.8 2010.8 0.42 0.79

2, 3
2 , − 1, 1

2 , + 2007.8 2006.8 0.42 0.79

2, 5
2 , + 2, 3

2 , − 193.1 191.1 0.01 1.03

2, 5
2 , − 2, 3

2 , + 180.9 178.9 0.06 0.94

degeneracy of the � and 	 states is not accidental, but is
caused by the Renner-Teller interaction. In the following
section we briefly recall the theory of the Renner-Teller
effect in polyatomic linear molecules [70, 71].

A

B

Figure 3 Spin-rotational levels of the three lowest electronic
states of the molecule NH+. Panels (A) and (B) correspond to vi-
brational states v = 0 and v = 1 respectively. The energy levels
are labeled with the quantum number J for the � states and with
J and N for the 	 state.
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4.1 Renner-Teller effect

The total molecular angular momentum of the poly-
atomic molecule J includes the vibrational angular
momentum G associated with the twofold degenerate
bending vibration mode(s): J = N + S = R + G + L +
S, where R describes rotation of the molecule as a whole
and is perpendicular to the molecular axis ζ . Other mo-
menta have nonzero ζ -projections: 〈Gζ 〉 = l, 〈Lζ 〉 = �,
〈Nζ 〉 = K = l + �, and 〈Jζ 〉 = �.

Suppose we have � electronic state |� = ±1〉 and v =
1 vibrational state of a bending mode |l = ±1〉. All to-
gether there are 4 states |� = ±1〉|l = ±1〉. We can rewrite
them as one doublet � state |K = ±2〉 and states 	+ and
	−. In the adiabatic approximation all four states are de-
generate. Renner [70] showed that the states with the
same quantum number K = l + � strongly interact, so
the 	+ and 	− states repel each other, while the � dou-
blet in the first approximation remains unperturbed. We
are particularly interested in the case when one of the 	

levels is pushed close to the ground state v = 0. This is
what takes place in the l-C3H molecule [74–76].

Consider a linear polyatomic molecule with the un-
paired electron in the πξ state in the molecular frame
ξ, η, ζ . Obviously, the bending energy is different for
bendings in ξζ and in ηζ planes: V± = 1

2 k±χ2 (here χ is
the supplement to the bond angle). That means that the
electronic energy depends on the angle φ between the
electron and nuclear planes:

H ′ = V ′ cos 2φ , (21)

where 2V ′ = V+ − V− = k′χ2. There is no reason for V ′ to
be small, so k′ ∼ k± ∼ 1 a.u. and to a first approximation
k′ does not depend on α and μ.

As long as interaction (21) depends on the relative an-
gle between the electron and the vibrational planes, it
changes the angular quantum numbers as follows: �� =
−�l = ±2 and �K = 0. This is exactly what is required
to produce splitting between the 	+ and 	− states with
v = 1 as discussed above.

Interaction (21) also mixes different vibrational lev-
els with �v = ±2,±4, . . . . Thus, we have, for example,
the nonzero ME 〈0, 0, 1, 1|H ′|2, 2,−1, 1〉 between states
|v, l,�, K 〉. Such mixings reduce effective value of the
quantum number � and, therefore, reduce the spin-
orbital splitting between the �1/2 and �3/2 states [73],

Hso ≡ Aeff�	 , Aeff = A�eff/� . (22)

Let us define the model more accurately. Following
[73] we write the Hamiltonian as:

H = He + Tv + ALζ Sζ . (23)

Here the “electronic” part He includes all degrees of free-
dom except for the bending vibrational mode and spin.
For l-C3H there are two bending modes, but for simplic-
ity we include the second bending mode in He too. Elec-
tronic MEs in the |�〉 basis have the form:

〈 ± 1|He| ± 1
〉 = V+ + V−

2
= k

2
χ2 , (24a)

〈 ± 1|He| ∓ 1
〉 = k′

2
χ2 exp (∓2iφ) . (24b)

Here χ and φ are the vibrational coordinates for the
bending mode. Kinetic energy in these coordinates has
the form:

Tv = − 1
2MR2

(
∂2

∂χ2
+ 1

χ

∂

∂χ
+ 1

χ2

∂2

∂φ2

)
. (25)

We can use the basis set of 2D harmonic functions in
polar coordinates ρ = χ R and φ for the mass M and the
force constant k:

ψv,l(ρ, φ) = Rv,l(ρ)
1√
2π

exp (ilφ) . (26)

It is important that the radial functions are orthogonal
only for the same l:

〈
Rv′,l|Rv,l

〉 = δv′,v . (27)

This allows for the nonzero MEs between states with dif-
ferent quantum number l. By averaging operator (23)
over vibrational functions we get:

〈
v′, l′|He + Tv|v, l

〉 = [
ωv(v + 1) + A�Sζ

]
δv′,vδl′,l

+ 1
2

〈
Rv′l′ |k′χ2|Rvl

〉
exp (∓2iφ)δl′,l±2.

(28)

The exponent here ensures the selection rule �′ = � ∓ 2
for the quantum number � when we calculate MEs for
the rotating molecule.

4.2 Molecule l -C3H

We solve the eigenvalue problem for Hamiltonian (23)
using the basis set of the 2D-harmonic oscillator. Our
model Hamiltonian has only 3 parameters, namely ωv,
A, and the dimensionless Renner-Teller parameter E :
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Table 3 Low lying energy levels for the bending mode
ωv = 589 cm−1 of l-C3H molecule and their sensitivities qα

and qμ to the variation of α and μ respectively. � is the
distance from the ground state. All values are in cm−1.

�

vnom 〈v〉 K � 〈�〉 E [72] [73] qμ qα

0 1.22 1 0.5 0.50 367.9 0.0 0.0 187.8 −14.6

0 1.35 1 1.5 0.46 381.9 13.9 14.0 187.8 13.3

1 2.32 0 0.5 −0.01 394.2 26.3 27.0 197.3 −0.4

1 3.57 2 1.5 0.21 597.7 229.7 226.0 300.3 −6.1

1 3.65 2 2.5 0.19 603.5 235.5 232.0 300.3 5.5

k′ = Ek. The values for ωv and A for l-C3H are given in
[73]. We varied the Renner-Teller parameter E to fit five
lowest levels for the given bending mode: �1/2, �3/2,
	1/2, �3/2, and �5/2. The optimal value appeared to be
E = 0.788. The results are presented in Table 3. The first
two columns give nominal vibrational quantum number
v and its actual average value. We see that the Renner-
Teller term in (28) strongly mixes vibrational states. This
mixing also affects 〈�〉 and decreases spin-orbital split-
tings as explained by Eq. (22).

The last two columns in Table 3 give dimensional sen-
sitivity coefficients qμ and qα in cm−1:

�E = qα

�α

α
+ qμ

�μ

μ
.

To estimate them we assumed that the parameters scale
in a following way: ωv ∼ μ1/2, A ∼ α2, and E does not de-
pend on α and μ. The dimensionless sensitivity coeffi-
cients (10) for the transitions ωi,k = Ek − Ei can be found
as:

Qi,k = (qk − qi)/ωi,k .

In Table 4 these coefficients are calculated for the same
set of parameters as in Table 3 and for the slightly dif-
ferent parameters which better fit experimental frequen-
cies from [76]. We see that the sensitivity coefficients are
practically the same for both sets.

For the two fine structure transitions, �1/2 −→ �3/2

and �3/2 −→ �5/2, we get sensitivities Qμ = 0 and Qα =
2. This may seem strange as the fine structure is signif-
icantly reduced by the Renner-Teller mixing: the fine-
structure parameter is 29 cm−1 and the splitting between
�1/2 and �3/2 is only 13.9 cm−1. According to (22) the
mixing reduces the splitting. However, this effect de-

Table 4 l-C3H sensitivity coefficients for the transitions
between states from Table 3 and for parameters Aeff and
�E	� defined by (22) and (29) respectively. Frequencies are in
cm−1.

Fit to [73] Fit to [76]

K � K ′ �′ ω Qμ Qα ω Qμ Qα

1 0.5 1 1.5 13.9 0.00 2.00 14.4 0.00 2.00

1 1.5 0 0.5 12.4 0.78 −1.11 13.3 0.77 −1.07

0 0.5 2 1.5 203.5 0.51 −0.03 204.4 0.51 −0.03

2 1.5 2 2.5 5.8 0.00 2.00 6.0 0.00 2.00

Aeff 13.9 0.00 2.00 14.4 0.00 2.00

�E	� 19.4 0.50 0.00 20.5 0.50 0.00

pends on the dimensionless Renner-Teller parameter E
and does not depend on μ and α. Consequently, the ef-
fective parameter Aeff depends on fundamental constants
in the same way as initial parameter A.

For the high frequency transition 	1/2 −→ �3/2,
where the spin-orbital energy can be neglected, we get
Qμ = 0.5 and Qα = 0. These results are expected, be-
cause our model has only two dimensional parameters:
vibrational frequency, which is proportional to μ1/2 and
the fine structure parameter A, which scales as α2. Even
though our vibrational spectrum is far from that of a sim-
ple harmonic oscillator, the non-diagonal MEs (28) of the
Hamiltonian (23) still scale as μ1/2. Therefore, if we ne-
glect spin-orbital splittings, we get Qμ = 1/2 for all tran-
sitions. The only transition in Table 4 where the spin-
orbital energy and vibrational energy are close to each
other is the �3/2 −→ 	1/2 transition. The resultant fre-
quency is roughly half of the vibrational energy differ-
ence between the � and 	 states. This leads to Qμ ≈ 1
and Qα ≈ −1.

The spectrum of the l-C3H molecule is shown on
Fig. 4. The effective Hamiltonian for the rotating
molecule is similar to that of the NH+ molecule. It in-
cludes the effective fine-structure parameter Aeff and the
energy difference between the 	 and � states,

�E	� = E(	+) − E(�1/2) + E(�3/2)
2

. (29)

Numerical values for these parameter are obtained from
the fit to the experimental transition frequencies. Here
we only need to determine the dependence of these pa-
rameters on fundamental constants. Table 4 shows that
Aeff ∼ α2 and �E	� ∼ μ1/2. Once again, this is because
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the Renner-Teller mixing depends on the dimensionless
parameter E and does not depend on α and μ. Calculated
sensitivity coefficients for the K -doublet transitions of
the l-C3H molecule are listed in Tables 5 and 6. The re-
sults for the mixed transitions can be found in [72].

5 Tunneling modes in polyatomic molecules

In this section we consider non linear and non planar
polyatomic molecules. Such molecules generally have
more than one equivalent potential minimum. If the
barriers between these minima are not too high the
molecule can tunnel between them. Ammonia (NH3) is
the best known textbook example of a nonrigid molecule
(see Fig. 5). Interestingly, this molecule is also one
of the most abundoned polyatomic molecules in the
interstellar medium. Other important for astrophysics
molecules with tunneling include hydronium (H3O+),
peroxide (H2O2), methanol (CH3OH), and methylamine
(CH3NH2). We will briefly discuss all of them below.
All these molecules include only light atoms with Z ≤ 8
and have singlet electronic ground states. Thus we can

Figure 4 Spin-rotational levels of the three lowest vibronic states
of the molecule l-C3H. K -doubling is indicated schematically, hy-
perfine structure is shown only for the two lowest K -doublets.
Due to a strong Renner-Teller effect the component 2	+ of the ex-
cited bending state ν4(CCH bending) is shifted towards lower en-
ergies, ∼29 cm−1 above the zero-level of the ground state 2�1/2.

Table 5 Frequencies (MHz), sensitivity coefficients, and
reduced MEs (a.u.) for some K -doubling transitions in �1/2

state of the l-C3H molecule.

J F ′p′, F p ω Qα Qμ ||D||2

1
2 1+, 0− 52.37 0.66(2) 1.7(2) 0.333

1
2 0+, 1− 39.12 0.20(2) 1.9(2) 0.333

1
2 1+, 1− 34.93 −0.02(2) 2.0(2) 0.667

3
2 1−, 1+ 85.55 0.65(2) 1.7(1) 0.166

3
2 2−, 1+ 78.60 0.55(2) 1.7(1) 0.033

3
2 1−, 2+ 75.23 0.43(2) 1.8(1) 0.033

3
2 2−, 2+ 68.29 0.30(2) 1.8(1) 0.299

5
2 2+, 2− 107.19 0.95(2) 1.5(1) 0.132

5
2 3+, 2− 98.97 0.89(2) 1.5(1) 0.009

5
2 2+, 3− 98.83 0.82(2) 1.6(1) 0.009

5
2 3+, 3− 90.61 0.75(2) 1.6(1) 0.188

7
2 3−, 3+ 112.38 1.63(2) 1.2(1) 0.105

7
2 4−, 4+ 96.07 1.56(2) 1.2(1) 0.136

9
2 4+, 4− 95.75 3.22(4) 0.36(7) 0.086

9
2 5+, 5− 79.63 3.45(4) 0.23(7) 0.105

11
2 5−, 5+ 52.81 9.1 (6) −2.6 (3) 0.072

11
2 6−, 6+ 36.85 12.1 (6) −4.1 (3) 0.085

13
2 6−, 6+ 20.25 − 34. (2) 19. (2) 0.062

13
2 7−, 7+ 36.06 − 18. (2) 11. (2) 0.071

15
2 7+, 7− 126.59 −7.6 (2) 5.8 (4) 0.054

15
2 8+, 8− 142.24 −6.5 (2) 5.3 (4) 0.061

17
2 8−, 8+ 268.76 −4.7 (1) 4.4(3) 0.047

17
2 9−, 9+ 284.25 −4.3 (1) 4.2(3) 0.053

19
2 9+, 9− 448.75 −3.59(7) 3.8(3) 0.042

19
2 10+, 10− 464.07 −3.39(7) 3.7(3) 0.046

21
2 10−, 10+ 668.02 −2.97(6) 3.5 (3) 0.038

21
2 11−, 11+ 683.18 −2.85(6) 3.4 (3) 0.041

neglect relativistic corrections and assume that all dis-
cussed transitions have Qα = 0.

It is clear that tunneling frequencies should strongly
depend on the nuclear masses, and we can expect large
sensitivity coefficients Qμ,tun. They can be found using
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Table 6 Frequencies (MHz), sensitivity coefficients, and
reduced MEs (a.u.) for some K -doubling transitions in �3/2

state of the l-C3H molecule.

J F ′p′, F p ω Qα Qμ ||D||2

3
2 1−, 1+ 5.61 −2.63(8) 3.2 (2) 1.493

3
2 2−, 1+ 18.50 0.49(8) 1.7 (2) 0.299

3
2 1−, 2+ −7.30 5.28(8) −0.6 (2) 0.299

3
2 2−, 2+ 5.58 −2.63(8) 3.2 (2) 2.688

5
2 2+, 2− 22.24 −2.60(8) 3.2 (2) 1.186

5
2 3+, 2− 31.50 −1.35(8) 2.6 (2) 0.085

5
2 2+, 3− 12.88 −5.67(8) 4.6 (2) 0.085

5
2 3+, 3− 22.15 −2.60(8) 3.2 (2) 1.694

7
2 3−, 3+ 54.92 −2.57(8) 3.2 (2) 0.943

7
2 4−, 4+ 54.76 −2.57(8) 3.2 (2) 1.223

9
2 +− 108.13 −2.50(8) 3.1 (2) 1.230

11
2 −+ 185.99 −2.46(8) 3.1 (2) 1.007

39
2 −+ 4266.17 −2.9 (1) 2.53(8) 0.224

41
2 +− 4553.04 −3.5 (1) 2.42(5) 0.208

43
2 −+ 4663.43 −4.6 (2) 2.2 (1) 0.192

45
2 +− 4377.16 −7.5 (2) 1.4 (3) 0.174

47
2 −+ 3097.96 −19.0 (4) −2.3 (9) 0.149

49
2 −+ 909.06 132. (2) 53.(8) 0.103

51
2 −+ 19813.69 −3.11(5) −1.6 (4) 0.116

the semi-classical Wentzel-Kramers-Brillouin (WKB) ap-
proximation. Following [77] we can write the ground
state tunneling frequency in atomic units (� = |e| = me =
1) as:

ωtun ≈ 2E0

π
e−S, (30)

where S is the action over classically forbidden region
and E0 is the ground state vibrational energy calcu-
lated from the bottom of the well Umin. If the barrier is
high enough the harmonic approximation gives 2E0 =
ωv, where ωv is the observed vibrational frequency. In
this case Eq. (30) allows to find action S from experimen-
tally known frequencies ωtun and ωv. For lower barriers
we need to know the shape of the potential to estimate
E0. The examples of these two limiting cases are am-

Figure 5 Potential for the tunneling (umbrella) mode of the NH3

molecule. Two lowest vibrational levels lie below the barrier.

monia and hydronium, where tunneling frequencies are
0.8 cm−1 and 55 cm−1 respectively.

The action S depends on the tunneling mass, which in
atomic units is proportional to μ−1. Differentiating (30)
over μ we get [78, 79]

Qμ,tun ≈ 1 + S
2

+ S E0

2(�U − E0)
, (31)

where �U = Umax − Umin is the barrier hight. Numerical
solution of the Schrödinger equation for realistic poten-
tials agrees with this WKB expression within few percent
for all molecules considered so far.

5.1 Ammonia

Equations (30), (31) show that sensitivity coefficient log-
arithmically depends on the tunneling frequency. For ex-
ample, for the symmetric isotopologues of ammonia we
get:

NH3 : ωtun = 24 GHz, Qμ,tun = 4.5 , (32a)

ND3 : ωtun = 1.6 GHz, Qμ,tun = 5.7 . (32b)

Such a weak dependence on the tunneling frequency
limits possible values of the sensitivity coefficients for
tunneling transitions in the microwave range: Qμ,tun � 8.
This is quite good, compared to the rotational sensitivity
Qμ,rot ≈ 1, but smaller than the best sensitivities in linear
molecules considered above.
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Let us consider mixed tunneling-rotational transi-
tions, where tunneling goes along with the change of the
rotational quantum numbers. If we neglect interaction
between tunneling and rotational degrees of freedom
we can write approximate expressions for the frequency
and the sensitivity of the mixed inversion-rotational
transition:

ωmix = ωr ± ωtun , (33a)

Qμ,mix = ωr

ωmix
± Qμ,tun

ωtun

ωmix
. (33b)

We are particularly interested in the case when the mi-
nus sign in (33) is realized and ωmix � ωtun. For this
case the tunneling sensitivity is enhanced by the fac-
tor ωtun/ωmix � 1 and resultant sensitivity of the mixed
transition is inversely proportional to the transition fre-
quency ωmix. Therefore, for the mixed transitions we can
have much higher sensitivities in the observable frequency
range, then for the purely tunneling transitions.

Another important advantage of the mixed transi-
tions is that there are usually many of them each having
different sensitivity. This means that we can have very
good control on possible systematics and reliably esti-
mate the accuracy of the results for μ-variation.

The mixed transitions can not be observed in the
symmetric isotopologues of ammonia (32), but they are
observed in the partly deuterated species NH2D and
NHD2. Unfortunately, for both of them the tunneling fre-
quency is much smaller then all rotational frequencies
and sensitivities (33b) are not large [80]:

NH2D : 0.10 ≤ Qμ,mix ≤ 1.61 ,

NHD2 : 0.27 ≤ Qμ,mix ≤ 1.54 .
(34)

Relatively small sensitivity coefficients for deuterated
isotopologues of ammonia (34) and their low abundance
does not allow to get strong limits on μ-variation, so we
need to use tunneling ammonia line (32a). It was ob-
served from the several objects with the redshifts about
unity. Measuring radial velocities for rotational lines and
for the ammonia tunneling line we have �Q = 3.5 in
Eq. (8), which is two orders of magnitude larger than
for optical lines. Because of that the ammonia method
allowed to place more stringent bounds on μ-variation
than bounds, which follow from the optical spectra of
the hydrogen molecule. However, recent observations of
the molecules with mixed tunneling-rotational transi-
tions provide even higher sensitivity to μ-variation.

5.2 Mixed tunneling-rotational transitions and effective
Hamiltonians

Equations (33) show that high sensitivity mixed transi-
tions are possible when tunneling frequency is of the
same order of magnitude as rotational constants. How-
ever, in this case tunneling and rotational degrees of free-
dom start to interact and the accuracy of approxima-
tion (33) decreases. A much better approximation can
be reached with the help of the effective Hamiltonians,
which describe rotational and tunneling degrees of free-
dom and their interactions with each other. At present
the state of the art effective Hamiltonians can include on
the order of hundred parameters. These parameters are
fitted to the experimentally known transitions and pro-
vide an accuracy on the ppm scale, or better.

When such Hamiltonians are used to find sensitivity
coefficients Qμ we need to know how all the parameters
depend on μ. It was shown in [25] that this can usually
be done only within an accuracy of a few percent. The
final accuracy for the large Q-factors is somewhat lower
because of the instability of Eq. (33b). Because of that we
need not complex effective Hamiltonians but their sim-
plified versions with considerably smaller numbers of fit-
ting parameters can be used instead.

5.3 Hydronium and peroxide

Let us start with hydronium molecule H3O+ [81]. This
molecule is a symmetric top. It is similar to ammonia, but
flatter. Tunneling frequency is almost 50 times larger and
comparable to rotational intervals. The tunneling um-
brella mode does not change the symmetry and does not
contribute to the angular momentum of the molecule.
Because of that the tunneling-rotational interaction is re-
duced to the centrifugal corrections to the tunneling fre-
quency [82].

The tunneling-rotational spectrum of hydronium is
shown in Fig. 6. It consists of the J ladders for each quan-
tum number K , where K is projection of the angular
momentum on the molecular axis. Due to the tunneling
each rotational level is split in two states with different
parity p. For K = 0 the permutation symmetry of the hy-
drogen nuclei allows only one of these levels, while for
K > 0 both levels are present.

In Fig. 6 we see four mixed transitions with frequen-
cies around 300 GHz, which is few times smaller than
the tunneling frequency that is about 1.6 THz. Table 7
shows that these transitions have enhanced sensitivity to
μ variation (Qμ,tun = 2.0 ± 0.1). Those transitions, whose
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frequencies decrease when tunneling frequency in-
creases have negative sensitivity coefficients Qμ. We con-
clude that hydronium has several mixed transitions with
sensitivities of both signs and the maximum �Qμ is
around 10. Other isotopologues of hydronium have even
higher sensitivities [79], but up to now they have not
been observed in the interstellar medium.

Another molecule where tunneling frequency is com-
parable to rotational constants, but tunneling-rotational
interaction is rather weak, is peroxide H2O2 [83, 84].
In equilibrium geometry H2O2 is not flat; the angle
2γ between two HOO planes is close to 113◦. Two flat
configurations correspond to local maxima of poten-
tial energy; the potential barrier for trans configura-
tion (2γ = π) is significantly lower, than for cis config-
uration (γ = 0): Uπ ≈ 400 cm−1 and U0 ≈ 2500 cm−1.
To a first approximation one can neglect the tunnel-
ing through the higher barrier. In this model perox-
ide is described by a slightly asymmetric oblate top
with inversion tunneling mode, similar to ammonia and
hydronium.

The sensitivity coefficients for the mixed transitions
in peroxide were calculated in [86]. Results of these cal-
culations are shown in Table 8. Molecular states are la-
beled with the rotational quantum numbers J , K A, and
KC and the tunneling quantum number τ [83]. Transi-
tions with the frequencies below 100 GHz were found to

Figure 6 Tunneling-rotational spectrum of H3O+ molecule. Sev-
eral low-frequency tunneling and mixed transitions are marked
with vertical arrows. Their frequencies are shown in GHz.

Table 7 Sensitivities of the low frequency mixed
inversion-rotational transitions in hydronium H3O+.
Molecular states are labeled with quantum numbers J p

K .

Transition Frequency (MHz)

Upper Lower Theory Exper. Qμ

1−
1 2+

1 307072 307192.4 6.4(5)

3+
2 2−

2 365046 364797.4 −3.5(5)

3+
1 2−

1 389160 388458.6 −3.1(4)

3+
0 2−

0 397198 396272.4 −3.0(4)

0−
0 1+

0 984690 984711.9 2.7(2)

4+
3 3−

3 1031664 1031293.7 −0.6(2)

4+
2 3−

2 1071154 1069826.6 −0.5(2)

3−
2 3+

2 1621326 1621739.0 2.0(1)

2−
1 2+

1 1631880 1632091.0 2.0(1)

1−
1 1+

1 1655832 1655833.9 2.0(1)

Table 8 Numerical calculation of the Q-factors for low
frequency mixed transitions in peroxide H2O2 using effective
Hamiltonian. Experimental frequencies are taken from JPL
Catalogue [61]. Eup is upper state energy in Kelvin.

J K A,KC (τ ) ω (MHz)

upper lower Eup (K) theory exper. Qμ

Transitions below 100 GHz

00,0(3) 11,0(1) 17 14818.8 14829.1 +36.5(2.9)

21,1(1) 10,1(3) 21 37537.0 37518.28 −13.0(1.2)

10,1(3) 11,1(1) 19 67234.5 67245.7 +8.8(6)

20,2(3) 21,2(1) 24 68365.3 68385.0 +8.7(6)

30,3(3) 31,3(1) 31 70057.4 70090.2 +8.5(6)

40,4(3) 41,4(1) 41 72306.0 72356.4 +8.3(6)

50,5(3) 51,5(1) 53 75104.6 75177.4 +8.0(6)

60,6(3) 61,6(1) 68 78444.7 78545.4 +7.7(6)

31,2(1) 20,2(3) 28 90399.8 90365.51 −4.8(5)

Transitions observed from ISM in [85]

30,3(3) 21,1(1) 31 219163.2 219166.9 +3.4(2)

61,5(1) 50,5(3) 66 252063.6 251914.68 −1.1(2)

40,4(3) 31,2(1) 41 268963.7 268961.2 +3.0(2)

50,5(3) 41,3(1) 53 318237.7 318222.5 +2.7(1)
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have rather high sensitivities of both signs. Several tran-
sitions of peroxide were recently observed from interstel-
lar medium (ISM) in [85]. These transitions have higher
frequencies and smaller sensitivities to μ-variation. Nev-
ertheless, even for these transitions the maximum value
of �Qμ is about 4.5.

5.4 Molecules with hindered rotation: methanol
and methylamine

Hindered rotation is one of the examples of the large
amplitude internal motions in non rigid molecules. In
the discussion of the peroxide molecule in the pre-
vious subsection, we neglected the tunneling through
the higher cis barrier. For the excited vibrational states
tunneling through both barriers can take place lead-
ing to the hindered rotation of one HO group in re-
spect to another. Many molecules which include CH3

group have three equivalent minima at 120◦ to each
other. Hindered rotation in such molecules can take
place already for the ground vibrational state. When the
tunneling frequencies are comparable to the rotational
ones, such molecules have very rich microwave spectra
with a large number of mixed transitions. Another dis-
tinctive feature of these molecules is strong interaction
between the internal (hindered) and overall rotations.
One of the simplest molecules of this type is methanol
CH3OH.

The basic theory of the non-rigid tops with internal
rotation was established in the 1950s [87, 88] and the
main features of the methanol spectrum were explained.
Later on the theory was refined many times and currently
there is a very impressive agreement between the theory
and experiment [89–92].

The sensitivity coefficients to the μ-variation for
methanol microwave transitions were calculated in-
dependently in [93, 94] and in [25]. The first group
used the state of the art effective Hamiltonian [91],
which included 120 fitting parameters. The second
group used a much simpler model [95]. The rota-
tional part Hrot was that of the slightly asymmetric
top and included the rotational constants A, B, and C
(A ≈ B). The hindered rotation was described by the
Hamiltonian

Hhr = −F
d2

dω2
+ V3

2
(1 − cos 3ω) , (35)

where the kinetic coefficient F was proportional to μ and
the electronic potential V3 was independent on μ. The
angle ω described position of the OH group in respect to
the CH3 top. This model did not include centrifugal dis-

Figure 7 Comparison of the sensitivity coefficients for CH3OH
from [93] and [25]. The former used the sensitivity coefficients Kμ

defined as Kμ = −Qμ. This corresponds to the different defini-
tion of the mass ratio: mp/me instead of me/mp, which is used
in the present review.

tortions. The interaction of the internal rotation with the
overall rotation was described by a single parameter D,
which scaled linearly with μ [87]. Altogether this model
had 6 parameters.

Both effective Hamiltonians were diagonalized for
several sets of parameters, which correspond to an in-
creased and decreased μ and the sensitivity coefficients
were found by the numerical differentiation. The com-
parison of the two calculations is given in Fig. 7. We see
that in spite of a significant difference in complexity of
the models the results are in good agreement and of the
comparable accuracy. As we discussed above, the latter
is mostly determined by ambiguity in the μ-scaling of
model parameters.

The sensitivity coefficients for the mixed transitions
in methanol span from −17 to +43, which corresponds
to |�Qμ| ∼ 60. This is more than an order of mag-
nitude larger than in ammonia method. Moreover, in
methanol we have a large number of strong lines with
different sensitivities and can effectively control pos-
sible systematic effects. Until very recently methanol
was observed only at small redshifts, but in 2011 it
was first detected in the microwave survey towards
the object PKS 1830-211 at redshift z = 0.89 [96]. This
means that at present methanol can be used as a very
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Figure 8 Schematic representation of methylamine and variation of the potential energy of methylamine as function of the relative
rotation γ of the CH3 group with respect to the amine group about the CN bond and the angle τ of the two hydrogen atoms of the
NH2 group with respect to the CN bond. The two large amplitude motions, corresponding to inversion h2v and hindered rotation h3v are
schematically indicated by the arrows. Note that inversion of the NH2 group is accompanied by a π/3 rotation about the CN bond of
the CH3 group with respect to the amine group.

sensitive tool to probe μ-variation on a cosmological
timescale [23, 97].

In the same survey [96], a large number of rather com-
plex molecules were detected for the first time at high
redshift. In particular, the list includes methylamine —
yet another molecule with tunneling motion. In con-
trast to all previously discussed molecules, methylamine
has two tunneling modes. First is hindered rotation of
the NH2 around CH3 top, which is similar to that in
methanol. Second is a wagging mode when the NH2

group flips over to the other side (see Fig. 8). Both modes
contribute to the angular momentum of the molecule
and, therefore, strongly interact with the overall rotation.

The spectrum of methylamine is also very rich. The
effective Hamiltonian must include both tunneling mo-
tions and their interactions with each other and with the
overall rotation. Therefore, even the simplest form of this
Hamiltonian is quite complex and we will not discuss it
here. Calculations of the sensitivity coefficients were re-
cently done in [98]. It was found that they lie in the range
−24 ≤ Qμ ≤ 19. However, the lines, which were observed
in [96] at z = 0.89 have sensitivities close to 1. Up to now
neither of the more sensitive lines of methylamine has
been observed at high redshifts.

There are several other molecules with mixed
tunneling-rotational spectra, for example N2H4 and
CH3SH. The former has three tunneling modes which
strongly interact with rotation. Thus, we should expect

very complex spectrum. This molecule is predicted
to form in Jupiter’s and Titan’s atmospheres [99, 100].
The latter is similar to methanol and exhibits hindered
rotation and complex spectrum [101]. Effective Hamil-
tonians for many of these molecules are known, but no
other calculations of the sensitivity coefficients have
been done so far (preliminary results for CH3SH show
that there are transitions with high sensitivities of both
signs). If any new sufficiently low frequency mixed
transitions are observed from the interstellar medium, it
is possible to calculate respective sensitivity coefficients
using the methods outlined in this section.

6 Summary and conclusions

As we discussed in the previous sections the constraints
on the possible variation of fundamental constants are
an efficient method of testing the equivalence principle
which is a basic assumption of General Relativity. These
constraints can be derived from a wide variety of atomic
and molecular transitions observed in laboratory, solar
and extra solar systems, and at very early cosmological
epochs up to a redshift of order z ∼ 5 − 6 where molec-
ular and atomic transitions have been recently detected
and observed with a sufficiently high spectral resolu-
tion [14,15]. Radio astronomical observations of the NH3

molecule in two distant galaxies provide tight constraints
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at the �μ/μ < 1 × 10−6 level at z = 0.89 [102] and z =
0.69 [13]. Even deeper bounds were deduced from ob-
servations of the CH3OH molecule in the z = 0.89 galaxy:
�μ/μ < 3 × 10−7 [97], and �μ/μ < 1 × 10−7 [23].

To probe α and μ at the level of 10−8 or 10−9, at
least two main requirements should be fulfilled: (i) in-
creasing precision of the laboratory measurements of
the rest frame frequencies of the most sensitive molecu-
lar transitions discussed in this review, and (ii) increas-
ing sensitivity and spectral resolution of astronomical
observations.

The most promising molecular transitions are those
of a mixed nature, where there are two, or more, compet-
ing contributions to the transition energy. We get strong
enhancement of the sensitivity to the variation of the
fundamental constants when the resultant transition fre-
quency is much smaller than individual contributions.
This happens, for example, for some mixed tunneling-
rotational transitions. Diatomic radicals give another ex-
ample, where spin-orbit interaction is competing with
Coriolis interaction. As a result we have strong enhance-
ment of the sensitivity coefficients for the �-doublet
transitions. There are other known examples, which are
more relevant for the laboratory experiments [103,104]. It
is possible that more examples will be found both for the
laboratory and astrophysical studies. The methods de-
scribed in this review allow us to calculate sensitivity co-
efficients for any microwave and submillimeter molecu-
lar transitions of interest.
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