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Abstract

Inspired by recent claims for a varying fine structure constant, alpha, we investigate the effect of “promoting coupling
constants to variables” upon various parameters of the standard model. We first consider a toy model: Proca theory of the massive
photon. We then explore the electroweak theory with one and two dilaton fields. We find that a varying alpha unavoidably implies
varying W and Z masses. This follows from gauge invariance, and is to be contrasted with Proca theory. For the two dilaton
theory the Weinberg angle is also variable, but Fermi's constant and the tree level fermion masses remain constant unless the
Higgs potential becomes dynamical. We outline some cosmological implications.

0 2004 Elsevier B.MOpen access under CC BY license.

1. Introduction A varying fine structure constant (defined to be
o = e?/4hc) may be interpreted as a varying elec-
There is currently much interest in cosmological ti¢ charge in a theory where andc are held fixed.
theories where the conventional “constants” of Nature A Simple varyinge theory may be set up byrescrib--
may actually vary in space and time. The most obser- I"d thate become a dynamic field, the so-called min-
vationally sensitive of these “constants” is the electro- IMal coupling prescription [6]. This electromagnetic
magnetic fine structure constamt, The new obser-  Varyinge theory, reviewed here in Section 2, has been
vational many-multiplet technique of Webb et al., has thoroughly explored [6-11], and a formal rearrange-
provided the first evidence that the fine structure con- MeNt shows that it is a particular type of dilaton the-
stant may change throughout cosmological time [1-3]. ©7Y- [t is @ theory in which the dilaton (a massless
The trend of these results is that the valuexofvas and gauge neutral scalar that interacts with matter at
lower in the past, withha/a = —0.72+ 0.18 x 10°5 strengths comparable tc_; that of gravity_) couples to the
for redshiftsz ~ 0.5-35. Other investigations have electromagnetic™ term in the Lagrangian, but not to
claimed preferred non-zero values & < 0 to best ~ the other gauge fields [7,17]. _
fit the cosmic microwave background (CMB) and Big Given that we already know that electromagnetic

Bang Nucleosynthesis (BBN) data at~ 10° and and weak interactions are unified, a natural question
2~ 1019, respectively [4,5]. is how this electromagnetic theory extends to the stan-

dard model of particle physics, which rests on various
“constants” in addition ta. The sheer multitude of
E-mail addressj.magueijo@imperial.ac.uk (J. Magueijo). “arbitrary” parameters within the standard model has
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been a source of displeasure among theorists. Thus, in

considering the electroweak extension of the electric
model of [6], we are led to wonder whether some of

Since covariant derivatives take the forn,¢ =
(0 +ieAL)¢, for gauge transformations of the form
8¢ = —ix¢ one mustimposeA, — €A, + x .. The

these parameters become variables, and which are in-gauge-invariant electromagnetic field tensor is then

dependent. Similar issues, in the context of the QCD,

grand-unification, and the quantum vacuum energy, F,, =

have been considered in [12-16].

In this Letter we extend the work of [6,7] and pro-
mote the couplings in the electroweak theory to dy-
namical fields. In preparation for this, in Section 3

we consider general non-abelian gauge groups with Lem= —

a varying coupling, and in Section 4 Proca theory. In
the latter, a “gauge” boson acquires mass by explicitly

breaking gauge invariance. It is possible to simultane-

ously have a varying and a constant boson mass in

this case. We then propose a version of the electroweak™~¢ —

theory in which theSU(2) gauge chargeg’(x#), in
addition to thel/ (1) gauge chargeg(x*), become dy-
namical according to a prescription similar to the one
used in [6,7]. Again, a simplifying formal rearrange-
ment converts the theory into a dilaton theory, this time
with two dilaton fields that couple to th8U(2) and

U (1) gauge fields. A single dilaton variation is also
considered.

We find that the variable couplings inevitably lead
to a theory in which théV and Z masses vary. This
is to be contrasted with Proca theory and is directly
related to gauge invariance. In the two dilaton case

the Weinberg angle becomes a variable too. However,
Fermi’s constant and the tree level fermion masses
remain constan't, unIest we also promote to .varlables and in theF2 = f
the parameters in the Higgs potential. We outline some

astrophysical and cosmological consequences.

2. Varying electromagnetic alpha and dilaton
theories

In the varyinga theories proposed in [6,7] one
attributes variations inx to changes ine, or the
permittivity of free space. This is done by lettiagake

_ (EAV),M -
€

(€AW

1)

which reduces to the usual form for constantThe
electromagnetic Lagrangian density is still

FIVF,,
) 2
. @)

and the dynamics of the field are controlled by the
kinetic term

1 €,¢e*
_Ew ’tz ) (3)

where the coupling constaat is introduced into the
Lagrangian density for dimensional reasons and is
proportional to the inverse square of the character-
istic length scale of the theory, ~ ¢£=2, such that

¢ > L, ~ 10~33cm holds [6]. This length scale corre-
sponds to an energy scate/¢, with an upper bound
set by experiment. Note that the metric signature used
is(—, 4+, +, +).

A simpler formulation of this theory [7] can be con-
structed by defining an auxiliary gauge potentiak=
€Ay, and field tensoy,,, = € F,,, = d,a, —dva,. The
covariant derivative then assumes the familiar form,
D, = 3, + ieoa,, and the dependence of the La-
grangian one occurs only in the kinetic term fo¢
2 /€2 term, not in the rest of the mat-
ter LagrangiarC,, (where it could only have appeared
via the covariant derivativ®,). To simplify further,
we can redefine the variable,~ iy = Ine¢. The total
action then becomes

S= /d4x (Cmat— %3;11#3“1# - %e_zwfuvflw)s
(4)

where the matter Lagrangidhna: does not contaity .
This is a dilaton theory coupling to the electromag-

on the value of a real scalar field which varies in space netic /2 part of the Lagrangian only. Note the scale

and timeeg — e(x*) = ege(x*), wheree(x*) is a
dimensionless scalar field apglis a constant denoting
the present value of(x#). One then proceeds to set

invariance of the action and (that is, their invariance
under the transformation— ke for any constank).
Given this mathematical trick, one may wonder

up a theory based on the principles of local gauge which of the two sets of variables are the physics
invariance, causality, and the scale invariance of the ones? The question is obviously irrelevant regarding
e-field. A, and a,, because both are unphysical due to
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gauge invariance. On the other hand, béth, and
fuv are “physical” and may be used as convenient
(the problem is similar to the use of fiel@ or
displacemenD in dielectric electrostatics). Note that
the homogeneous Maxwell equatiore‘,‘”"‘ﬂavfaﬁ
=0, are not valid forFy.

3. Varying couplingsfor non-abelian gauge groups

The tools derived for electromagnetism carry over
trivially to non-abelian groups (see [12] for an exam-
ple based on QCD). We take as an exanI8). Let
® be a 3-vector, with covariant derivative

D, ®=0,®+gW, A®. (5)

Here the gauge bosai , is a 3-vector. Under a gauge
transformation corresponding to a rotation defined by
vectorE, we have:
SP=—EAND,

gSW, =3,E —EAgW,.

(6)

(7)
Written in this form, these equations are preserved
even ifg’ becomes variableg’ — g’ (x*) = n(x*)go.
The field tensor is now

_ 1 ’ ’
W = ?[%(8 W,) —0,(g Wu)]

+ g/Wu AW, (8)
so that it is covariant,
(SW/W =—Z A W/w, (9)
and a possible Lagrangian is

1
Lyw = _ZW’” -WHY, (10)

As before, we can define an auxiliary gauge boson
g'W, = gow, and an auxiliary fielg'W ,, = g,
or equivalentlyn(x*)W, = w, and n(x*)W,,
w,,,. With these definitions, the fielg(x*) does not
appear in the gauge derivative

Du® =08, + gyw, A ®, (11)

and thus not in the matter Lagrangian. The gauge
Lagrangian becomes

1
L = _Ze*ZXwW WY (12)
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with x =log(g’(x*)/gp), or g'(x*) = gpeX. As we
can see, with a couple of trivial modifications, the tools
previously developed for th& (1) gauge group may
be adapted to any non-abelian gauge theory.

4. TheProcatheory and explicit breaking of
gaugeinvariance

Another interesting extension of the varying
electromagnetic model of [6,7] is Proca theory of the
massive photon. It will prove useful as a contrast to
the electroweak results, where gauge bosons acquire a
mass via a quite different mechanism.

The Proca Lagrangian, with a dynamic electromag-
netic coupling given by (x*) = e,e?, may be written
as:

1 1
Lp="Ly— —1/””// = 2P P = émzAMA",

(13)

for a photon with mass:, assumed to be a constant
parameter. The covariant derivative appearingjn
is, say,D, ¢ = (8, +ieA,)¢ for transformations of
the formé¢ = —ix¢ andeA, — €A, + x... Even
though the mass term breaks gauge invariance it is still
possible to define a gauge-invariant electromagnetic
field tensor according to (1).

As before we can defing,, = d,a, — dva,, with
a, =€A,, leading to Lagrangian:
Lp=

——vf Yot — *wa o f1

— }efzwmzaua“, (14)
where the matter Lagrangian now does not contain
(since the covariant derivative becom®s¢ = (9, +
iega,)¢). In terms of these variables it is easy to find
that the dynamical equation fgr is
1 (1 ’ 2 )
Oy =——(zFuwF* +m°A, AR ). (15)
w\2
With loss of gauge invariance, the question of which of
A, ora, is the physical field acquires relevance. From
thea,, formulation it seems that the photon mass has
to be variable in this theory; the opposite conclusion
is reached from thet,, formulation. We can quickly
see, however, that a variable mass is not the correct
physical interpretation. Varying the Lagrangian with
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respect to, sayda* leads to Maxwell’s equations Again, we may avoid the presence gf and yx
Fuv in covariant derivatives by defining auxiliary gauge

€0, — —m2A” =J". (16) boson fields,

The equation of current conservation is né(J* / g (W = goWy, (20)

€) =0, sothatone musthawg (A" /e) =0. Thewave  g(x")Y, = goyy. (21)

equationin free space is therefore Then, considering for example the Higgs field (a

(D _ mZ)Av —...=0, (17) complex doublet), the derivative:

; i i
where the ellipse refers to terms iy One may D, ® = <8M — gt W, — —gYu>¢» (22)
check by direct substitution into (15) and (17) that 2 2

there are plane wave solutions for all reasonable (wheret are theSU(2) generators) becomes
amplitudes and wavelengths (note th&t< ). Their

dispersion relations (for eithet* or a* waves) are _ _r L
E? — k? = m?, that is, the photon has a constant mass Du® = (8” 2 2g0y“>¢' (23)
m regardless of the figld variable used. This_ is also \\e may also define field tensors:
the mass that appears in the propagator for this theory.
More generally, the physical mass should be identified w,,, = 3, W, — 9,W,, — goW,, A Wy, (24)
from the Lagrangian written in terms of variables such
that the gradient terms have no prefactor.

The conclusion is that a varying charge does not or similar expression folW,, and Yy, written in
imply a varying boson mass if the latter is obtained terms ofw, andy, (see (1) and (8)).
by explicitly breaking gauge invariance. Of course, ~ The core electroweak Lagrangian may now be
we can, if we wish, also have a varying photon written as£ = Lwy + Lo + Lyy. The gauge field
mass, by promoting: to a dynamical field; but this ~ Lagrangian is:
is not necessary. The situation will be different for

g(/)t . WM —

Yuv = au)’v - avy;m (25)

the vector boson masses in the electroweak extensionCw, = _ZW“” WA — ZY,WYW
of the Bekenstein model, where gauge invariance is 1 1
preserved. = _Ze—ZwWM W — Zg—ZXy,wyW, (26)

and (as in Proca theory) using variablé#* and
5. The electroweak mode Y# (in terms of which the gauge Lagrangian has no
prefactor) facilitates identifying the physical masses

We are now ready to consider the electroweak sec- that appear in the_ dispersion _rela_tions and in the
tor of the standard model [18-20]. Its fundamental de- propagators. The Higgs Lagrangian is
grees of freedom are massless spin 1/2 chiral parti- Lo= (DMcD)T(DM(b) —V(®), (27)
cles¥;, and the gauge symmetry groupS8)(2); ® . .
U (1), whereSU(2) is weak isospin (acting on left ~ with potential
handed fermions only) antl (1) is the weak hyper- m2 N
charge. The co_upling constants @r@_and g for the V(®) = 7@*@ + Z(cb*q))z. (28)
U (1) andSU(2) interactions, respectively. . . . _
As before, we promote the gauge couplings to As in Proca theory with varying electric charge, the

fields, writing g'(x*) = n'(x")g, and g(x") = potential parametera and. may be assumed to be

n(x")go. We may then define fields andx via: constant. Finally, the fieldg andyr acquire dynamics
via

g (x") =gge (18)

w

R p
g(x") = goe”. ag)  Lox=—5 V¥t = Sxax” (29)
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We could also consider a simpler, one-dilaton variation
of this theory by identifying andyr, and keeping just
one of the terms irCy, .

0
In order to induce spontaneous symmetry breaking "W = Eé’/ oce?,

of the SU(2) gauge group we should choos€ < 0.
Then the potential has a minimum Bp|? = v3
—mz/k # 0, so the vacuum state may be(dt)g
( 0) Given that the symmetry is local, a perturbative

D. Kimberly, J. Magueijo / Physics Letters B 584 (2004) 8-15

Once this rotation is performed we find the follow-
ing tree-level masses for the gauge bosons:

v

(34)
_ Y /2 _ Y0 [ 200 ,2,2
= — + gt =— eV + gse4x, (35
z NE 8 8 /2 8o 80 (35)
ma =0, (36)

expansion around the vacuum can always be written aswhere we used the chargem” = (W1 + sz)/f

(30)

0
wy — "
@(.X )—(vo_i_of}c%)).
One may now expand the Lagrangian. The crucial
term for identifying the boson masses is the Higgs
gradient term:

(D) (D")
1 2
= @07+ (W) + (W)°]
2
+ —(8 W3 u)z- (31)

4

We shall not discuss in this Letter radlatlve correctlons
to these formulae.

The variability of these masses is to be contrasted
with Proca theory. There, mass and charge are essen-
tially independent and so it is possible to have a con-
stant photon mass and a varying electric charge. In the
standard model, on the other hand, gauge invariance
precludes an explicit mass term. Gauge bosons acquire
a mass because they couple to the “charged” Higgs
field via the covariant derivative and the Higgs field
undergoes spontaneous symmetry breaking. Thus, the
gauge bosons have mass only because the Higgs field
has charge, and a varying charge necessarily implies a

From this expression we define a massless gauge field,concomitant varying gauge boson mass.

A, and its orthogonal fieldZ,,, with respect to the
fields W2 andy,,

'W3 — gY,
Zuz%zcosewwi—sineuﬂ,
g%+s
W34+ o'y
AMEg nr8 L —sinoy W2+ cosy ¥, (32)

where 6y is the weak mixing angle, or Weinberg
angle, given by
88y
8o
In the two-dilaton theory this is a variable. We could
have defined a similar (but constant) rotation in terms
of the fieIdSwi andy,, and this would still diago-
nalize the mass matrix for a Lagrangian (31) rewritten
in terms of these variables. However, such a rotation
would induce photonZ couplings in the kinetic terms
(24) and therefore would not be the correct Weinberg
rotation. Thus the Weinberg angle must be variable in
the two-dilaton theory. Obviously, in the single dila-
ton theory (wherey andyr are identifiedpy remains
constant.

tanfy = (33)

One may wonder whether the actions presented in
this section may be derived from a more fundamental
theory. It is well known that string theory produces a
dilaton field in what is usually taken to be its first stage
of compactification. But it is also true that in further
stages of compactification it produces a multitude of
dilaton fields, generally coupling differently to the
different terms in the Lagrangian, even at tree level.
This is also true of brane theories. A possible toy
model for our construction may be found in [27],
where action terms associated with different 2-forms
become multiplied by exponentials of different linear
combinations of dilaton fields. It is difficult to find
a fundamental theory leading exactly to our model
because it is awkward to derive (or even incorporate)
the standard model into string/M-theory.

6. Lepton chargesand masses

We now consider the leptonic sector of the theory.
For the sake of brevity we will consider only the elec-
tron and the electron neutrino, but our considerations
can be easily extended to include muon and tau lep-
tons, as well as quarks. The left handed fermions are
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placed in weak isospin doublets= () whereas the

right handed fermions are singlets. Bearing in mind
that the covariant derivatives are:
l

D,L= (aﬂ— 5 gYM>L,
DyR=0,R+1gY,R,

l

g/T’WlL—i_ >

(37)
(38)
we arrive at the free fermion Lagrangian
Lr= Lléy“(aﬂ +18Y,)R

+ ziyﬂ(aﬂ +ig¥, — %g/t ~WM)L. (39)
After rotation (32) this becomes:
Lr=1ey"de+1vy"a,v — g sindweyreA,

/

g (sinzewéRy“eR
w

1 _ 1_
-5 cos29w)eryter + Evy“v Z,

+ [y ew;ih) + e, (40)

where h.c. denotes hermitian conjugate. This expres-
sion allows us to identify the electromagnetic and
weak currents. We find that the fiekt* is indeed the
electromagnetic field, and that the electric charge is
given by

/

88
The fine structure “constant! is therefore fixed by a
nontrivial combination of the fieldg- and x, should
there be two dilatons. In the single dilaton case this
reduces t@ = egeX .

One may also identify the weak currents to find the
expression for the Fermi constant. One finds

_\/ég/Z

Gr=—~=
F 4M$V

e = gCoshy = g’ sinfy = (41)

1
B Zﬁvg.

Interestingly, this does not vary. Fermi’'s constant is
determined by the Higgs potential only, and so, for as
long as its parameters are held fixed, varying couplings
in the standard model do not lead to a varying Fermi
constant.

Finally, we consider the Higgs-fermion interaction
Lagrangian, through which fermions acquire their

(42)

13

value. This may be written as

Ls,, =—G(LOR+ RO'L)

int

o(xH)

NZ)
where we have used the vacuum expectation value for
@ chosen earlier, and whel&, is the Higgs—lepton
coupling strength for the electron. The electron mass
is therefore given byn, = v9G.. Again, if the Higgs
potential parameters are kept fixed and the parameters
G; are not promoted to dynamical variables, the tree
level fermion masses remain constant even if the
couplingsg andg’ are promoted to fields.

— —Ge<vo+ )(ELER +ereL), (43)

7. Equationsof motion and applications

We reserve to a future publication a complete study
of the cosmological and astrophysical implications of
this theory, but here we outline some areas of interest.

The Einstein’s equations for this theory are:

Gu = 8JTG(TME‘)N,672¢ + TME\)’Vefzx
+ TV, + TS+ ThY). (44)

that is, one must add the stress energy tensor of fields
x andyr to the right-hand side. In addition, we have

2

=—5-¢ YWy - W (45)
Oy = — =2ty |y (46)
X = 2606 Yuv Y.

For the single dilaton theory one identifigsand x
and the last two equations are replaced by
(47)

1 _
Ox = ~ %0 2X(WW -wHY +ywy’“’).

We can analyze these equations for two general cases.
The first is for spatially-varying, time-independent
coupling fieldsy and x, for which we can find

a spherically symmetric solution to the equations
of motion (an extension of the considerations in
[11,21-23]). These can then be applied to scenarios
in which weak interactions are non-negligible, such
as around massive objects like neutron stars and black
holes. The second case is for time-varying, spatially-
independent fieldgy and x, which is applicable to
cosmological scenarios (an extension of the work

masses once the Higgs acquires a vacuum expectatiorin [7]).
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From this exercise we may expect that the Webb We already know that electromagnetism and weak in-
results imply significant variations in th&# and Z teractions are unified. Hence, a varying alnalies
masses and in the Weinberg angle in the very early variability for the two coupling “constants” of the elec-
universe, in neutron stars, or near black holes and their troweak theory. These variations may be controlled by
accretion disks. This has obvious implications for the one or two independent “dilaton” fields.
physics of neutron stars, BBN, and the electroweak  We found that with coupling variability, the gauge
phase transition. But perhaps the most dramatic im- boson masses must also vary. This conclusion is hardly
plication may be the stability of solitonic solutions surprising and can be qualitatively understood. In
in the standard model. Semi-local strings are defects Proca theory an explicit mass term is added to the
that owe their stability to non-topological considera- “photon” Lagrangian, thereby breaking gauge invari-
tions [24]. They are present in the electroweak theory, ance. This mass term is independent of the charge cou-
and their region of stability has been studied [25,26]. It plings and so it is possible to accommodate both a
appears that this region does not include the parametervarying electromagnetic coupling and a constant “pho-
values observed in the “actual” standard model. How- ton” mass.
ever, according to the theory presented in this Letter,  The origin of theW* andZ masses is quite differ-
these parameter values are not constants of Nature. Itisent. In the standard model, gauge invariance is fully
conceivable that the region of stability for electroweak preserved, and gauge bosons have mass because the
strings may be realized in the very early universe or Higgs field undergoes spontaneous symmetry break-
near neutron stars. ing. But more importantthe gauge bosons only have

We include a final word on the applicability of
this theory. As in [7], we find that the Webb et al.
results [1-3] imply that the couplings and«’ are of
the order of the Planck scale. Thfisand x should be
regarded as gravitational fields (fifth force type) and
the applicability of this theory (should it be confirmed
by further astrophysical observations) is similar to

mass because the Higgs field carries chartpat is,
it couples to the gauge bosons tkdll acquire mass.
Thus, it is impossible to have a standard model with
varying charges without passing this variability on to
the W* and Z masses, and ultimately also the Wein-
berg angle (in the two-dilaton case).

The situation is again different for the tree level lep-

ton masses. These are not due to charge, but to the
interaction with the Higgs field via “Yukawa” cou-

that of general relativity. At the quantum level the
interactions proposed—ijust like general relativity—
are likely to be non-renormalizable. Hence, we should plings. Unless the Higgs potential becomes dynamical,
always treatyy and y—and the metric—as classical fermion masses do not change even if the couplings
fields, and we should never consider phenomenado. It would be interesting to explore a variation of

at energy scales near the Planck scale. We shouldthe theory proposed in this Letter where the Higgs po-

regard our theory as an effective phenomenological tential becomes dynamical and so the fermion masses
theory (a view that may also be applied to general can vary too. Perhaps such a theory could explain the

relativity), useful for studying particle cosmology but
not quantum cosmology.

However, unlike general relativity, the couplings
proposed violate the equivalence principle. But as
shown in [11] current experiments are not sensitive
enough to rule out this type of theories. Interestingly,
upcoming satellite experiments would be sensitive to
this important effect.

8. Conclusions

In this Letter we examined the implications of a
varying alpha in the light of the electroweak theory.

mystery of the fermion masses, but this is merely a
speculation.

In summary, we have explored the implications of
a varying alpha for other parameters of the standard
model. If in a future experiment we were to find that
the observed variations in alpha are not accompanied
by specific variations in thé¥ and Z masses we
should be very worried indeed. Such a finding would
imply a violation of gauge invariance and contradict
the standard model. If we found that the Weinberg
angle did not change that would be less apocalyptic.
It would simply imply that the observed variation
in alpha is due to a single dilaton field within the
framework of the standard model. If, on the other
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hand, we were to find that the Fermi constant varied,

[8] K. Olive, M. Pospelov, Phys. Rev. D 65 (2002) 085044.

or that the fermion tree-level masses varied, then we [9] G. Dvali, M. Zaldarriaga, Phys. Rev. Lett. 88 (2002) 091303.

would know that the theory presented in this Letter i
too tight a framework. We would need to “promote to

S [10] J. Moffat, astro-ph/0109350.

[11] J. Magueijo, J.D. Barrow, H.B. Sandvik, Phys. Lett. B 549
(2002) 284.

variables” the parameters in the Higgs potential. The [12] s. Landau, P. Sisterna, H. Vucetich, Phys. Rev. D 63 (2001)

Mexican hat would have to become dynamical.
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