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Abstract: We consider fundamental physical constants that are among a few of the most
important pieces of information we have learned about Nature after intensive centuries-long
study. We discuss their multifunctional role in modern physics including problems related to
the art of measurement, natural and practical units, the origin of the constants, their possible
calculability and variability, etc.
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Résumé : Nous étudions les constantes physiques qui sont les porteurs des plus importants
renseignements que nous ayons glanés sur la Nature et ce, après des siècles d’étude. Nous
analysons leur rôle multifonctionnel en physique moderne et leur relation avec l’art de la
mesure, les unités naturelles et conventionnelles, l’origine de ces constantes, la possibilité de
les calculer, leur variance, etc

[Traduit par la Rédaction]

1. Introduction

‘You needn’t say “please” to me about ’em,’ the Sheep said, ...‘I didn’t put ’em there,
and I’m not going to take ’em away.’ Lewis Carroll

There are a number of ways to understand Nature. One can approach it with logic, with guesses,
and with imagination. One way scientists and, especially, physicists address the problem is based on a
comparison of ideas and reality via measurements. Experiment inspires and verifies theory. The soul of
the physical approach is neither logic, nor even a quantitative approach, but common sense. The latter
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is based on centuries-long experience in the investigation of Nature. It tells us to be sceptical. It tells us
that even complicated phenomena are often based on simple pictures, and most of them allow for the
estimation of effects in terms of certain fundamental quantities. It tells us that those simple pictures are
good to start with but should involve more and more detail once we desire a more accurate agreement
between any of our theories and the measured reality.

Fundamental constants play a crucial role in physics in a few different ways and we consider their
significance in this paper. However, to start the subject we need to agree on what the fundamental
constants are. We discover a great variety of approaches to the problem based on a particular role of a
particular constant in a specific field of physics.

Two polar points of view are related to “practical” and “fundamental” physics.

• The practical view addresses the art of measurement, which makes physics physics. There are
a number of beautiful laws such as Maxwell equations or the Dirac equation that pretend to
describe Nature. However, as a quantitative method of exploring the World, physics needs some
quantitative values to be measured. That requires that certain parameters enter basic equations.
We also need certain quantities to be used as units to make proper comparisons of different results.
Some of these parameters enter a number of equations from different branches of physics and are
universal to some extent. That is a “practical” way to define what the fundamental constants are.
A very important property of such constants is that they should be measurable. The fundamental
constants understood in such a way are a kind of an interface to access Nature quantitatively and
apply basic laws to its quantitative description.

• However, not every such constant is truly fundamental. If we, for example, need a unit, we can
consider a property of such a nonfundamental object as the caesium atom. The approach of
fundamental physics is based on the idea that we can explain the World with a few very basic
laws and a few very basic constants. The rest of the constants should be calculable or expressed in
terms of other constants. Such constants are our interface to really fundamental physics but most
of them have a very reduced value in real measurements, because they are often not measurable.
To deduce their values from experiment, one has to apply sophisticated theories and, sometimes,
certain models.

A good illustration of a difference between these two approaches is the situation with the Rydberg
constant

R∞ = α2mec

2h

= e4me

8ε2
0h

3c
(1)

which is expressed in a simple way in terms of certainly more fundamental quantities. However, this
exactness is rather an illusion, because the constant is not measurable in a direct way. The most accurately
measured transition in hydrogen is the triplet 1s–2s transition (see, for example, ref. 1)

νH(1s − 2s, F =1) = 2466 061 102 474 851(34) Hz
[
1.4 × 10−14

]
(2)

and it may be only approximately related to the Rydberg constant (see Fig. 1). To obtain its value, one
has to apply quantum electrodynamics (QED) theory and perform some additional measurements. At
the present time, the fractional accuracy (the number in square brackets) in the determination of this
constant [2]

R∞ = 10 973 731.568 525(73) m−1
[
6.6 × 10−12

]
(3)
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Fig. 1. It is a relation between the 1s–2s transition frequency νH(1s–2s) and the Rydberg constant R∞.
A correction for the difference between the center of gravity of the 1s and 2s hyperfine multiplets and
their triplet component is not included. This figure is an example of a complicated relationship, and is not
intended to be read.

is much lower than that of the measurement of νH(1s–2s) (cf. (2)). One might indeed redefine the
Rydberg constant in some other way, for example,

R̃ = 4

3 c
νH(1s − 2s) (4)

making the accuracy of its determination higher. However, a relationship with more fundamental con-
stants would be more complicated and not exactly known. The practical and fundamental approaches
cannot easily meet each other because we can very seldom both calculate exactly and directly measure
some quantity, which has a certain nontrivial meaning. A choice between the practical and fundamental
options is a kind of trade-off between measurability and applicability, on one side, and calculability and
theoretical transparency, on the other.

There are a number of approaches that lie between the two approaches mentioned above. For
example, quantum electrodynamics (QED) at the very beginning of its development met the problem
of divergencies in simple calculations. A response to the problem was the idea of renormalization,
which states that QED theory should express observable values (such as, for example, the Lamb shift
in the hydrogen atom or the anomalous magnetic moment of an electron) in terms of certain observable
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properties (such as the charge and mass of an electron). The measurable charge and mass are definitely
more fundamental than most practical constants such as the caesium hyperfine constant. However, they
are certainly less fundamental than similar quantities defined at the Planck scale. Such an approach is
in a formal sense not an ab initio calculation of a quantity under question (for example, the Lamb shift),
but rather an ab initio constraint on observable quantities (the energy shifts, the charge, and the masses).

The point that definitely unifies all approaches is that the fundamental constants are dimensional or
dimensionless quantities that are fundamentally important to understand, investigate, and describe our
world. However, the importance is often understood differently. In a finite-size paper, it is not easy to
consider the whole range of problems related to the fundamental constants and part of the discussion
missing here can be found in another recent review of the author [3] (see also ref. 4).

2. Physical constants, units, and art of measurement

Speak in French when you can’t think of the English for a thing. Lewis Carroll

When one does a measurement, certain units should be applied to arrive at a quantitative result. A
measurement is always comparison and in a sense we deal with dimensionless quantities only. “Mathe-
matically”, this point of view is true, however, it is counterproductive. To compare two similar quantities
measured separately, we have to go through a number of comparisons. Instead of that, it has been ar-
ranged to separate a certain part of the comparisons and use them to introduce units, certain specific
quantities applied worldwide for a comparison with similar quantities under question. The units (or a
system of units) find an endower as a coherent system of certain universally understood and legally
adopted measures and weights that can be used to measure any physical quantity.

One should not underestimate problems of measurements. Access to the quantitative properties of
Nature is a crucial part of physics and it is a problem of fundamental importance to improve and extend
our accessibility.

Since the very discovery of the world of measurable quantities, we used natural units. But their
degree of naturality was different. We started with values related to our essential life:

• parameters of human beings;

• parameters of water, the most universal substance around us;

• parameters of Earth itself;

• parameters of Earth as a part of the Solar system.

This approach had been followed until the introduction of the metric system two centuries ago,
and, in fact, the very metric system was originally based on properties of the Earth: the metre2 was
defined in such a way that a length of a quadrant (a quarter of a meridian) of a certain meridian was
equal to 10 000 km (exactly); the second was obviously defined by a day and a year; the gram was then
understood as a mass of one cubic centimetre of water and so on.

The metric treaty was signed in 1875 in Paris. Since then, we have changed the contents of our units
but tried to keep their size. Few changes took place after the SI was adopted in 1960 (SI means Système
International d’Unités – International System of Units). The latest version is presented in an CIPM3

brochure [5]. For example, the SI unit of length, the metre, was originally defined via the size of the

2There are two different spellings for this term: the meter is used in USA, while the metre is used in UK and most
of other English speaking countries and in international literature (see, for example, ref. 5). The latter is also
traditionally used in metrological literature.

3 CIPM is the International Committee for Weights and Measures.
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Earth, later was related to an artificial ruler, then to a hot optical emission line, and now to the hyperfine
structure interval in cold caesium atoms

νHFS(
133Cs) = 9192 631 770 Hz (exactly) (5)

and a fixed value of the speed of light

c = 299 792 458 m/s (exactly) (6)

One also has to remember that this unit was introduced as a substitute for numerous units based on
details of the shape of a human body, such as the foot (ft) and the yard (yd) and takes their magnitude
(in a general scale) from them

1 m � 1.1 yd � 3.3 ft (7)

This evolution in the definition of the metre clearly demonstrates two great controversies of the SI:
changing stability and advanced simplicity. First, there has been no single SI at all. We have seen with
time since the very appearance of the metric convention, a number of various, but similar, systems of
units. While the hierarchy and basic relations between the units were roughly the same all the time, the
units themselves and related standards changed drastically. However, for practical reasons, the size of
the units during those revolutionary redefinitions was kept the same as much as possible. Secondly, the
system of units is indeed a product created first of all by nonphysicists for nonphysicists. I dare say,
we, physicists, even do not care what the SI units actually are. For example, most of us have learned
about the mole at a time when we could not recognize that excitations, binding effects in the solid
phase, kinetic energy, etc. would change the mass of the sample (but indeed not a number of particles).
Later, after we learned about all these effects, we assumed that the SI definition is properly adjusted to
them. But it is unlikely that most of us checked the SI definitions for that. Actually, all SI definitions
come historically from nonrelativistic classical physics and similar to their appearance, we also learned
them for the first time as classical nonrelativistic stuff. We do not care about actual SI definitions partly
because we do not consider seriously the legal side of SI and because of that we believe that we may
ourselves interpret and correct SI definitions if necessary.

Physicists serve as experts only while decisions are made by authorities. The SI has been created
for legal use and trade rather than for scientific applications. Because of that crucial features of the SI
convention should be expressed as simply as possible. Meanwhile, these “simply defined” units should
be allowed to apply to the most advanced physical technologies. That makes the SI a kind of iceberg with
a stable and simple visible part, while the underwater part is sophisticated, advanced and changes its
basic properties from period to period. The changes in the definition of the SI metre have demonstrated
a general trend in physical metrology: to use more stable and more fundamental quantities and closely
follow progress in physics. Eventually, we want units to be related to the quantized properties of natural
phenomena and most of all, if possible, to values of fundamental constants. We already have natural
definitions of the metre and the second, and are approaching a natural definition of basic electric units
and, maybe, the kilogram.

Note, however, that a choice of units is not restricted to the International system SI. There are
a number of options. Certain units, such as the unified atomic mass unit, are accepted to be used
together with SI units [5]. There are a number of units such as the Bohr magneton µB = e�/2me and
the nuclear magneton µN = e�/2mp, which do not need any approval since they are well-defined
simple combinations of basic fundamental constants. A number of quantities are measured in terms of
fundamental constants. For example, the electric charge of nuclei and particles is customarily expressed
in that of the positron. Sometimes, instead of introducing units, new values with special normalization
are introduced, such as angular momentum in quantum physics, which is equal to the actual angular
momentum divided by the reduced Planck constant �.
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Fig. 2. Progress in the determination of fundamental constants: the time dependence of the fractional
uncertainty (see the recent paper, ref. 2, and also ref. 6 for earlier results by the CODATA task group).
Here, G stands for the Newtonian gravity constant, NA for Avogadro’s constant, and mp [u] for the proton
mass in the unified atomic mass units.

Fundamental constants (as units) play a very important role in precision measurements and in
special cases. The latter corresponds to a situation when conventional methods cannot be applied. For
example, sometimes to determine a temperature we can not use a thermometer properly calibrated using
primary thermodynamical standards. In some cases, when, for example, the temperature is too high or
too low, or if we have to deal with a remote object, we may rely on the Boltzmann distribution and
measure frequency and the spectral intensity of emitted photons. To interpret the frequency in terms of
temperature, we have to use the values of the Planck constant h and the Boltzmann constant k.

3. Physical constants and precision measurements

‘You needn’t say “exactly,” ’ the Queen remarked: ‘I can believe it without that. Now
I’ll give you something to believe.’ Lewis Carroll

A precision measurement is another case very closely related to fundamental constants. As we
mentioned, those constants are universal and some may appear in measurements in different branches
of physics. That offers us a unique opportunity to verify our understanding of Nature in a very general
sense. We know that any particular theory is an approximation. Our basic approach always involves
certain laws and certain ideas on what the uncertainty of our consideration is. The most crucial test of
the whole approach is to check if values from different areas of physics agree with each other.

This test has been regularly performed by CODATA4 task group on fundamental constants, which
publishes its Recommended Values of the Fundamental Constants [2] (see also previous CODATA
papers [6]). The progress in the determination of the most important fundamental constants for about
30 years (since the establishment of the CODATA task group) is shown in Fig. 2. The responsibility of
the group is to compare results from different fields and to deliver the most accurate values of constants
important for “precision” measurements of “essential” quantities. Indeed, the precision threshold is
different for different quantities. Note that constants related to cosmology, astronomy, and some from

4 CODATA is the Committee for Data for Science and Technology of the International Council for Science.
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Fig. 3. Determination of the fine structure constant α by different methods as discussed in ref. 2. Among
the results: a free QED value from the anomalous magnetic moment of electron (ae), a bound QED value
from the muonium hyperfine structure (Mu), an atomic interferometer value (Cs), a value involving a lattice
parameter (n), and values dealing with calculable capacitor (RK ) and gyromagnetic ratio of proton and
helion (γ ), measured in SI units with the help of macroscopic electric standards. The grey vertical strip is
related to the CODATA-2002 value [2].

(NIST-95)

particle physics such as the Hubble constant, astronomical unit, and Cabibbo angle are traditionally
excluded from the consideration as not being related to precision physics. Meanwhile, certain properties
of light nuclei (deuterium and both stable helium isotopes 3He and 4He) are included.

The most important lesson we have learned from CODATA’s work is not just their recommended
values, but evidence of the overall consistency of our approach to a quantitative description of Nature.
That is illustrated in Figs. 3 and 4 showing different approaches to the determination of the fine structure
constant α and the Planck constant h [2], which play a central role in the adjustment of the fundamental
constants [2].

Why are the values of these two constants so significant for the CODATA adjustment? The answer
is that when we consider physics from the fundamental point of view, the electron and proton are
just certain particles among many others. However, when we do our measurements, we deal not with
matter in general but, mainly, with atomic substances where electrons and protons are the fundamental
“bricks”. In such a case, electron and proton properties are as fundamental as h and c or even more so.
In particular, these properties determine results of the spectroscopy of simple atoms and macroscopic
quantum electromagnetic effects (see Sect. 5). The experiments, the results of which are presented in
Figs. 3 and 4, involve, directly or indirectly, such constants as the Rydberg constant, the electron and
proton masses, the electric charge, and the magnetic moments of an electron and a proton, the Planck
constant, and the speed of light.

Let us consider the Planck constant in more detail. The accuracy of the determination of the most
important fundamental constants is summarized in Fig. 2. We note, that the fine structure constant

α = e2

4πε0�c
(8)
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Fig. 4. Determination of the Planck constant h by different methods as discussed in ref. 2. The results come
from the measurement of the Faraday constants F = eNA, the Avogadro constant NA, the gyromagnetic
ratio of proton (γp), the volt (KJ), and the watt (KJ · RK) balances. The grey vertical strip is related to the
CODATA-2002 value [2].

and the molar Avogadro constant h · NA are better known than some of their constituents, such as h,
e, and NA. That means that an experimental determination of h is equivalent to a determination of e
and NA and thus, from the experimental point of view, the Planck constant h also becomes related to
classical electrodynamics and atomic and molecular physics of substance. In a practical sense, h is even
more universal than in a fundamental sense. More discussions on this subject can be found in ref. 3.

4. The international system of units SI: Vacuum constant ε0, candela,
kelvin, mole, and other questions

From the point of view of fundamental physics, the SI system [5] is unnecessarily complicated. It
has seven basic units:

• metre, second, and kilogram (which beyond any doubt are crucial units for any system of units
for physical quantities);

• ampere (which is already questionable and, in fact, a number of physicists (see, for example,
ref. 7) strongly believe that it is much better to set ε0 = 1 and to measure electrical quantities in
terms of three basic mechanical units);

• kelvin and mole (which are, in a sense, unnecessary units since the thermodynamic energy and
the number of particles can be measured without introducing any special units);

• candela (which looks like a worse case — an unnecessary unit for a quantity related to the
sensitivity of the human eye, an object, which is rather outside of physics).

© 2005 NRC Canada



Karshenboim 775

4.1. “Unnecessary” units
‘I didn’t say there was nothing better,’ the King replied. ‘I said there was nothing like
it.’ Lewis Carroll

Let us start with the “unnecessary” units. From the philosophical point of view, any measurement
is a comparison of two quantities of the same dimension and thus is a relative measurement. However,
as mentioned above, if we do not like to create a chain of comparisons every time, we should introduce
certain units. A measurement in terms of these units, although still a comparison, is a very special
comparison and we qualify it as an absolute measurement. To be more precise, we like to have a
coherent system of units and thus it is not enough to define any units, we have to define a certain system
of units with

• one unit for each kind of quantity (each dimension);

• most units derived from a few basic units (for example, the newton, a unit of force, is defined
through the metre, the second, and the kilogram: 1 N = 1 kg × 1 m × 1 s−2).

Meanwhile, in certain areas the relative measurements are so much more accurate (or much easier,
or have other big advantages) than the absolute measurements that we face a hard choice: either to
support a minimized coherent system of units, or to introduce some “extra” units (inside or outside
the system). There are several options for a solution. A choice made in the case of temperature and
amount of substance was to extend the system and to introduce new base units. For the mass of atoms
and molecules, the unified atomic mass unit has been introduced as a unit outside of SI, but officially
recognized and recommended for use. Nuclear magnetic moments are customarily measured in units
of the nuclear magneton, which has never been included in any official recommendation of units.

One may think that since the kelvin appeared a long time ago5 (before we realized that temperature
is a kind of energy), it is kept now for historic reasons only. That is not correct. An example of the use of
the foot in the USA shows how the problem is treated. There is no independent foot — this traditional
unit6 is defined as an exactly fixed part of the metre

1 ft = 0.3048 m (exactly) (9)

As a result, for everyday life the use of feet and metres is not quite the same. Meanwhile, for scientific
applications and industrial precision mechanics and electronics, their simultaneous use may be quite
confusing, but it is completely equivalent: the same information, the same accuracy, the same actual
basic definitions. On the contrary, the use of the kelvin and the joule is not the same – interpreting data
from one unit to the other changes the accuracy of the results.

4.2. “Human-related” units
It was labelled ‘Orange marmalade’, but to her great disappointment it was empty.
Lewis Carroll

The case of candela presents an additional problem, which is not a question of units, but a question
of quantities. Why did the original foot and similar units fail? One of the reasons is that they were
ill-defined. But that is half-truth only. The truth is that they were related to nonphysical quantities. The

5To be more precise, the Celsius temperature scale is meant since the value of degrees Celsius and Kelvin is the
same.

6Actually there are a number of different versions of the foot. Equation 9 corresponds to the international foot.
There is also the U.S. survey foot which is equal to 1200/3937 m. The number is chosen in such a way that 1 m
= 39.37 in (see Sect. B.6 in ref. 8 for legal details; historical details can be found in ref. 9).
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original foot was first related to the size of the foot of a particular person (a king/queen), later some
approaches were related to an “average” person. And only eventually, the “human” foot was substituted
by an artificial ruler.

When we rely on properties of a particular or average human being, we are dealing with a biological
object. If we now reverse the problem and try to check a value related to the foot in its original sense,
we meet a biological problem. We need to make a decision on the selection of people, to address the
problem that the result may depend on geography etc. Eventually, the ultimate decision will choose
either a “conventional foot” (as it is), which is not related anymore to any person, or a “conventional
person”, which should be a subject of a real measurement. In other words, even measuring some property
in well-defined units, we may need in certain cases an arbitrary agreement on what this property is.
We qualify this kind of agreement as arbitrary because within certain margins we are free to adopt any
parameters.

In fact, the problem of the average size of a human body is not so important now, however, there are
a number of questions due to ecology, safety, and medicine that involve interactions of certain physical
effects and a human being. We can easily characterize these phenomena by a complete description of
their physical properties. However, for obvious practical reasons, we often need an integral estimation
of the influence that involves a number of parameters, which values vary in a broad range (such as
frequency), and we certainly know that the human sensitivity depends on frequency and other various
parameters. Such integral characteristics are not of a physical nature. To determine them we need to
perform two kinds of measurements on

• physical details of the effects (a kind of the spectral distribution);

• spectral sensitivity of a human being.

If we accept the sensitivity as a real quantity, which is determined by effects beyond physics, the
whole integral characteristic is not purely physical but becomes a combined nature: physics + biology. If
we accept a model for the sensitivity, we can do simple calculations within this model and obtain a pure
physical result, which will be related to the model rather than to reality. In other words, the result will
be in well-defined units but for a conventional quantity. In some cases (for example, in radiology [10])
real and conventional quantities are clearly distinguished. In others, the separation is less clear. But in
any case, quantities, related to the sensitivity of an [average] human eye, cannot be accepted as physical
quantities and it is does not matter how their units are defined.

What is also important is the status of the SI as an international treaty. Everything related to the SI is
a part of this agreement. Otherwise, it is not a part of the SI. A unit has to be a unit for a certain quantity.
If a quantity is not well-defined, the unit is also ill-defined. If we deal with a quantity for which an
additional agreement is needed, we have to put it into the SI, because it has to be a part of a definition
of the related unit.

The question of the candela is very doubtful. The candela itself is defined as a part of the SI in “rigid
physical terms”.7 As we mentioned above, there may be a need to have a convention on properties, but
never on all physical quantities of one kind. We define the metre in the SI and we can use it. Length,
in general, is well defined and does not need any additional agreement. However, if we like to measure
particular properties of certain objects, which are related to length, we may need an additional agreement
on these properties. For example, when we deal with an average parameter of a human body.

This problem of a “conventional” characteristic or a “conventional” object is not only for human-
related (or life-related) cases. It is due to the peculiarity of classical objects. A number of well-known
not-life-related examples of conventional properties are related to those of Earth such as the “standard

7The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of
frequency 540 × 1012 hertz and that has a radian intensity in that direction of 1/683 watts per steradian [5].
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acceleration due to gravity” (gn = 9.806 65 m/s2), adopted by the General Conference on Weights and
Measures, the “standard pressure” (of 1 atm = 101 325×105 Pa), various conventional days and years.
From a formal point of view, these values have nothing to do with the real acceleration of free fall, which
varies from place to place and during the day. As we mentioned in Sect. 2, the metric treaty first relied to
properties of Earth (the metre, the second, and, indirectly, the kilogram), which were believed to be well
defined. Later, it was realized that they are not and the units were redefined via artificial objects (which
are now partly substituted by natural quantum objects). Earth as a whole also presents an example of
a conventional object, when its shape is simplified and a number of properties are “projected” to sea
level. A convention is not necessary related to a peculiar object, a reason for a convention may be the
specific conditions of an experiment. A recommendation for the practical realization of the metre [11]
gives a list of accurately measured optical atomic and molecular transitions. However, some transitions
are to be measured under specific conditions, i.e., their given frequencies are related to real transition
frequencies not necessarily identical to them.

The case of the candela and photometry is very specific and quite different from any other basic
unit. Without accepting, as a part of the SI, a convention either on the spectral sensitivity of a human
eye8or on what are “the same sensation” and “an [average] human eye” we see a very reduced field
for measurements. Actually, there are two kinds of photometrical quantities: visual and physical. To
introduce the candela as a unit for both, we need both kinds of conventions.

The candela and photometrical quantities were designed to deal with all visible frequencies. How-
ever, at the present time the SI does not include any convention that allows us to go beyond the frequency
of 5.4 × 1014 Hz at which the candela is defined. That means that the candela definition as an SI unit is
incomplete and completely compromises it as such, because the SI denies any quantity to be measured
in candelas. Within the SI alone, we cannot measure photometrical quantities related to, for example,
red light.

For really physical quantities (such as electrical current or amount of substance) those definitions
are rigid, however, for the human-related quantities, the definitions are quite flexible and need additional
assumptions to be adopted. There may be different opinions on what the best way to treat the candela
is and how to modify the SI for that. However, we have to acknowledge that in the current version
of the SI [5] the candela, as an SI unit, is much compromised and cannot be used as an SI unit for
any application. The physical quantities are defined through physical laws and that means that they are
“defined by Nature”, not by us.

4.3. Vacuum constant ε0 and Gaussian units

‘You can call it “nonsense” if you like’, she said, ‘but I’ve heard nonsense, compared
with which that would be as sensible as dictionary!’ Lewis Carroll

Although the candela is the most questionable among the basic SI units, it has never been the subject
of a world-wide discussion as the ampere and the Gaussian units have been. Obviously, that is because of
the significance of electromagnetic phenomena in modern physics. There is no doubt that the Gaussian
units, in which ε0 = 1, are better for the understanding of electrodynamics. However, there are a number

8Appendix 2 of the official SI booklet [5] contains some details of practical realizations of all basic SI units. In
the case of the candela, it reads: The definition of the candela given on page 98 [of ref. 5] is expressed in strictly
physical terms. The objective of photometry, however, is to measure light in such a way that the result of the
measurement correlates closely with the visual sensation experienced by a human observer of the same radiation.
For this purpose, the International Commission on Illumination (CIE) introduced two spectral functions V (λ)
and V ′(λ)... One of them, V (λ), is applied in photometry. However, the recommendations of CIPM on practical
realizations do never (except of the case of the candela) contain any information which is needed for the realization.
They are supposed to deliver certain information which follows from the main body of the SI brochure and may
be used to simplify the realization (see, for example, Sects. 5.4 and 9).
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of units very well suited for some classes of phenomena (see, for example, Sect. 8) and that does not
mean that these units are proper units for general purposes. In this short chapter, I will try to explain
why the units with ε0 = 1 have never been good for general use.

First, we have to be reminded that the units are needed mainly to express results of measurements
(done or predicted). If these practical units are not good for theory, we may do calculations in more
appropriate units, but in the end, we have to present the final results in some practical units.

Secondly, we remark that there are some areas and, in particular, a field of electrotechnical measure-
ments (of electric potential, current, resistance, inductance, and capacity), where relative measurements
can be taken much more easily and accurately (in respect to absolute measurements of the same values).
Why is it so? The answer is simple: both the SI and Gaussian definitions of the basic electromagnetic
units involve calculations of the magnetic or electric fields and the building of a macroscopic bulk
setup with well-controlled values of these fields. In other words, the absolute measurements deal with
completely different kind of experiments. The absolute measurements correspond to electrodynamics,
while the relative measurements of quantities listed above are related to electrotechnics.

For this reason, nearly all electric measurements are realized as relative measurements done in
special “electrotechnical” units. Separate experiments are performed in a limited number of metrological
laboratories to cross check these units and to calibrate them properly in terms of the SI. At earlier times,
the standards were built on classical objects. They were artificial and in this sense similar to the present
standard of mass. However, in contrast to a prototype of the kilogram, they were much more vulnerable.
There are a number of effects that may affect the properties of classical objects and shift them. However,
it is much easier to “break” an electric device than a weight. Thus, the electrical units evolved and their
calibration was not a simple procedure. They were quasi-independent. That produced a strong need to
have an independent unit for electrical effects and to provide it one has to have ε0 �= 1. A value of ε0
has been fixed within the SI, but it was unknown in practical units and had to be measured.

Now, we have taken an advantage of the application of macroscopic quantum effects (see Sects. 5.4
and 9 for details) and may be sure that the practical electrical units do not evolve, but still we need to
calibrate them. While a value of ε0 is calculable in terms of SI units

ε0 = 1

c2µ0

= 107

4π (299 792 458)2
F/m

= 8.854 187 817...× 10−12 F/m (10)

it is still unknown in practical units (such as, for example, ohm-1990, �90, [12,13]) and is a subject of
measurement. Likely in future, we will decide to reverse a situation accepting quantum definitions of
the ohm and the volt. That will upgrade today’s practical units�90 [12,13] and V90 [14] up to the status
of SI units, but will make ε0 a measurable quantity and will substitute the prototype of the kilogram by
an electrical balance. In such a scenario, the values of the Planck constant h and the elementary charge
e would be fixed and, with a value of the speed of light already fixed, one can see that

ε0 = e2

4πα�c
(11)

where the fine structure constant α as a dimensionless constant has an unknown value, which is a subject
of measurement. Thus, ε0 becomes a measurable quantity certainly not equal to unity in any sense. That
is why we should not like to set a simple identity ε0 = 1 now.

There is one more issue about the constants of vacuum ε0 and the fine structure constant α. We
may wonder whether the fine structure constant is calculable or not. We cannot answer this question
now, however, there is a certain constraint on a scheme, how α might be predicted. The most expected
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scenario is that we would be able to predict α0 (a value of the fine structure constant related to the Planck
scale) as a kind of a geometric factor (see Sect. 7, 10 and 13). In such a case, the electric charge would
not be a new independent property, but a kind of a derivative from mechanical properties and should be,
in principle, measured in mechanical units with ε0 = 1. However, if α has a value chosen because of the
spontaneous breakdown of symmetry (see Sects. 10 and 11) it may be any. Perhaps, we should treat the
electric charge as a new independent quantity and measure it in separate units with a dimensional value
of ε0 as a consequence. A situation with the Coulomb (or Ampere) law is different from, for example,
that with the Newtonian gravity. For the latter, we already know that the gravitational charge (i.e., the
gravitational mass), due to a deep physical reason (the equivalence principle), is not a new property, but
a derived property completely determined by the inertial mass. Indeed, the question of the calculability
of α and thus of the origin of the electric charge will not be answered soon and, indeed, such a general
view would never affect any decision on units, because of the practical importance of the question. The
practice of electrical measurements has obviously pointed to the proper choice.

4.4. “Unnecessary” units, II
While discussing necessary and unnecessary units, we would like to mention a point that is important

for practical use. When we speak about most phenomena, we often apply a “jargon” dropping important
words. In such cases to understand anything properly, redundant information would be helpful. For ex-
ample, we often speak about a magnetic field not clearly discerning magnetic inductionB and magnetic
field strength H (which are not simply related in media), or even about a field not specifying whether
we mean magnetic or electric field. In such a case, the use of different units is very helpful to understand
the practical situation. The same story is true for units and their biological equivalents, which from a
theoretical point of view should be the same. However, naming the unit we immediately explain which
property of, for example, radiation we have in mind: their energy or their effect on a human body. A
choice of a unit plays the role of a flag allowing us to drop a number of words. Use of four different
units for the electromagnetic field (for E,D, B, andH ) makes theory less transparent and unnecessary
complicated, however, these four units may be helpful in describing an experiment in a much shorter
way.

5. Physical phenomena governed by fundamental constants

It’s as large as life and twice as natural! Lewis Carroll

We mentioned above a quantum approach to standards of electrical units. They superseded classical
standards providing universal values that do not depend upon the time or location of the measurement.9

It is also very useful that we can determine them from certain experiments not related to electricity.
That is because they are based on fundamental constants. However, fundamental constants, if they
are really fundamental in some sense, should show themselves only at a fundamental level, while any
particular measurements deal with objects and phenomena far from fundamental. How can we access
any fundamental quantity? The obvious answer is that we have to try to find a property of a certain
nonfundamental object, which we can calculate. There are two general kinds of such objects.

• First, we can study relatively simple objects, whose properties can be calculated by us. The
simplest are particles, and only recently have we learned how to study a single particle in a trap.
In earlier times, we dealt with beams and clouds of interacting particles trying to eliminate their
interactions. The next in the row of simple objects are simple atoms and simple molecules.

• Another option are macroscopic quantum effects, such as, for example, the Josephson effect. Once
we realized proper conditions, we can see the same result for various samples and the result is

9We discuss possible time and space variations of fundamental constants in Sects. 11 and 12.
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simply expressed in terms of fundamental constants. An important feature of this kind of effects
is that when conditions are not perfect, they often make the effect harder or even impossible to
observe, but seldom affect the basic parameters of the effect. So, certain quantities coming from
this kind of effect are quite immune to the conditions of the experiment.

Before we discuss any application of properties of elementary and compound particles, let us un-
derline that an important detail for the interpretation of such measurements is that particle properties
are the same for each species. A measurement may be even of classical nature aiming to determine
the Avogadro or Faraday constant, however, the output is very different in the classical and quantum
framework. For example, the Faraday constant

F = e NA (12)

in the classical consideration is defined for an average charge carried by the Avogadro number of
electrons (correcting for the sign of the charge) or single-charged ions, while NA is in turn an average
number of carbon atoms needed to form 12 g of a carbon material. In the quantum case, we know
that carbon atoms or electrons are the same and we can drop a word average. In the quantum case the
electron charge e is certainly a fundamental constant, while from a classical point of view it is about
the same as an average mass of dust particles or rain drops.

Classical physics is unable to deal with identical objects. What does “identical” mean? If there is
no interference, we can always distinguish between two electrons. From the point of view of classical
statistics “identical” means “different recognizable objects for which in a particular consideration we
do not care which is which”.10 But if we did care, we could always recognize them. If two electrons
have approximately the same mass and charge, classical mechanics cannot check if they are the same
exactly or approximately, because there is always an experimental uncertainty. It may be in principle
reduced to any level but never removed completely.

Quantum physics introduces interference between particles. The physics of two slightly different
electrons and two identical electrons is by far not the same. And what is very important, we do not need
to perform any interferometric experiments. They have already been performed for us by Nature. The
Pauli principle governs the atomic levels and nuclear shells. All electrons are identical as well as all
protons and neutrons. The very existence of lasers showed the identity of all photons as particles. The
identity of objects of the same class makes their properties to be natural constants. However, if we want
them to be really fundamental from a theoretical point of view, we have to study simple objects.

5.1. Free particles
Studying free particles offers relatively limited access to the fundamental constants. We can measure

their masses and magnetic moments. Their electric dipole moments have been searched for (because of
different supersymmetrical theories) but have not yet been detected. Their charge is known in relative
units and seems to be trivial. Sometimes, but very seldom, they have calculable properties. Two of the
most important of them are related to the anomalous magnetic moment of the electron and the muon.

Briefly speaking, if we like to learn something beyond basic properties (such as mass) of an object,
we have to study interactions. An interaction with a classical field is not a good case because we can
hardly provide configurations of the classical electromagnetic field controlled with a high accuracy. Only
one kind of classical fields is suited for precision measurements, namely, a homogeneous magnetic field
with a fixed, but unknown (in the units of SI) strength. That allows us to compare masses and magnetic
moments. A quantum interaction is under much better control, because its strength is controlled by
Nature and not by us. Measuring the mass or the magnetic moment, one determines certain fundamental

10 Historically, statistical analysis appeared in an attempt to describe social phenomena dealing with people. Defi-
nitely, that is just a case when the objects are clearly distinguishable.
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Table 1. Fundamental constants determined through properties of elementary and
compound particles.

Particle Constant Comment

Electron me via comparison to proton
α via QED

Muon aµ via comparison to proton
µµ/µp via comparison to proton

Neutron α via comparison to lattice spacing and R∞
Deuteron mn via a measurement of binding energy and comparison to proton
Caesium α via atomic interferometry and Raman scattering

parameters directly, while dealing with a calculable interaction and calculable properties, we access
fundamental constants indirectly. A quantum electrodynamical self-interaction allows us to present
the anomalous magnetic moment of an electron ae in terms of the fine structure constant with a high
accuracy [15]

ae = 1

2

α

π
− 0.328 478 696

(α
π

)2 + 1.181 241
(α
π

)3 − 1.737(39)
(α
π

)4 + . . .

+ near negligible effects of weak and strong interactions (13)

A measurement of ae [16]

ae = 1.159 652 188 3(42)× 10−3
[
3.2 × 10−9

]
(14)

delivered the most accurate value of α

α−1
g−2 = 137.035 998 80(52)

[
3.4 × 10−9

]
(15)

In Table 1, we list the fundamental constants that may be obtained studying particles. An example
of a nonelementary particle is the deuteron. Measuring its binding energy and masses of proton and
deuteron, one can obtain the neutron mass (see Sect. 5.3).

5.2. Simple atoms and molecules
From the very beginning of studies of classical effects, we distinguished kinematics (i.e., the theory

of particle motion due to a given force or a given potential field) and dynamics (i.e., the theory of forces:
fields, their sources and their interactions with particles). The classical theory of Maxwell equations is the
dynamics of charged particles and the kinematics of photons. Quantum mechanics introduced quantized
properties and identical objects. That, in addition to dynamics and kinematics, opens up an opportunity
for a prediction of the structure of certain objects. Indeed, classical physics could successfully consider
compound objects, which consist of “simple” constituents such as the Solar system formed by the
Sun and the planets. However, there has been no chance for any ab initio calculation, because physics
deals only with particular objects and in classical physics any particular object is a peculiar object: the
parameters are peculiar and the initial conditions are peculiar. Quantum physics introduced fundamental
particles: a few kinds of particles that form everything in our World. We still need to know some of
their parameters, but with these few parameters determined, we can try to calculate everything. We can
also reverse the problem: predicting the structure properties in terms of the fundamental parameters of
the constituent particles and determining the properties experimentally, we deduce actual values for the
parameters.
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If we study a few-particle system, we have a better chance of studying the interactions of its
constituents. However, different simple atoms are treated within QED in very different ways. The most
obvious case is lepton quantum electrodynamics (electron and muon are the most important leptons in
QED). It needs very few input data: the elementary charge and the lepton masses. Any other property
(for example, the magnetic moment) can be, in principle, derived from these few.

Indeed, the proton cannot be treated this way. Generally speaking, QED is a theory of electromagnetic
interactions of leptons, photons and “external” sources. A proton is such a source and we need a number
of parameters to describe it: its charge qp, magnetic moment µp, details of its charge and magnetic
moment distribution as well as more sophisticated parameters. What we only know is that this approach
is consistent — we can measure these parameters and they are the same for very different kinds of
experiments.

The theory of hydrogen-like atoms involves a few dimensionless parameters (which actually are
small parameters for a number of important applications and allow various perturbative expansions):

• the fine structure constant α, the exponential factor of which indicates how many QED loops are
taken into account;

• the Coulomb strength Zα, with the nuclear charge Z changing in a very broad range from Z = 1
to Z � 90;

• the mass ratio of the orbiting particle to the nucleus, which is me/Amp � 10−3/2A (A is the
nuclear mass number) for a conventional (“electronic”) atom;me/mµ � 1/207 for muonium (the
nucleus is a positive muon); unity for positronium (the nucleus is a positron); and mµ/Amp �
1/9A for a muonic atom;

• various parameters related to the nuclear structure.

It is clear that an exact calculation with all these parameters is not possible. Some calculations for
conventional atoms are exact in Zα, while positronium calculations apparently must be done exactly
in the electron-to-nucleus mass ratio. Still, an expansion in other small parameters has to be applied
and an accurate theory is possible not for any simple atoms. A proper estimation of uncalculated terms
is sometimes a difficult problem [17]. Various details of theoretical calculations can be found in the
review, ref. 18.

In light atoms, the perturbative approach is dominant and to demonstrate how far we can go with
theoretical predictions, we summarize in Table 2 crucial (for a comparison with experiment) orders
of QED theory for energy levels in various two-body atoms. We note that the leading nonrelativistic
binding energy is of order of (Zα)2mec

2.
Various simple atoms and certain simple molecules can deliver much more information on funda-

mental constants than free particles, because we are able to express their properties in terms of such
fundamental constants such as the Rydberg constant R∞, the fine structure constant α, various masses
(me, mp, mµ, mπ , etc.), magnetic moments (µp, µd, µµ, etc.) and some other constants. Working with
atoms and molecules we can apply various spectroscopic methods, which are the most accurate at the
moment.

Simple molecules are much more complicated than simple atoms and their use is rather limited. For
example, studies of hydrogen deuteride (HD) provide us with the most accurate value of µp/µd [19]. A
summary on the use of simple atoms and molecules to determine precision values of various fundamental
constants is given in Table 3. More details on simple atoms can be found in refs. 20 and 21, while a
popular history of applications of hydrogen to fundamental problems is presented in ref. 22.

5.3. Free compound particles
Free particles, which we can study, are not necessarily elementary particles. We can treat nuclei,

atoms, and molecules as compound particles and study their simplest properties (such as the mass or the
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Table 2. Crucial (for a comparison of QED theory and experiment)
orders of magnitude for corrections to the energy levels in units of
(Zα)2mec

2 (see ref. 17 for details). Here: M stands for the nuclear mass.

Order
Value [in units of (Zα)2mec

2]

Hydrogen, deuterium (gross structure) α(Zα)5, α2(Zα)4

Hydrogen, deuterium (fine structure) α(Zα)5, α2(Zα)4

Hydrogen, deuterium (Lamb shift) α(Zα)5, α2(Zα)4

3He+ ion (2s HFS) α(Zα)5me/M , α(Zα)4m2
e/M

2,
α2(Zα)4me/M , (Zα)5m2

e/M
2

4He+ ion (Lamb shift) α(Zα)5, α2(Zα)4

N6+ ion (fine structure) α(Zα)5, α2(Zα)4

Muonium (1s HFS) (Zα)5m2
e/M

2, α(Zα)4m2
e/M

2,
α(Zα)5me/M

Positronium (1s HFS) α5

Positronium (gross structure) α5

Positronium (fine structure) α5

Table 3. Fundamental constants determined through simple atomic and molecular
systems

System Constant Comment

Muonium α via bound state QED
mµ/me via bound state QED
µµ/µp via bound state QED and comparison to proton

Hydrogen R∞ via bound state QED
µp/µe via bound state QED

Deuterium R∞ via bound state QED
µd/µe via bound state QED

Helium α via bound state QED
Hydrogen-like carbon me/mp via bound state QED
Hydrogen-like oxygen me/mp via bound state QED
Muonic atoms mµ/me via bound state QED
Pionic atoms mπ/me via bound state QED
HD molecule µd/µp via bound state QED
HT molecule µt/µp via bound state QED

magnetic moment). We can also rely on conservation laws. For example, the best value for the neutron
mass comes from deuteron studies. The deuteron mass [23]

md = 2.013 553 212 70(35) u
[
1.7 × 10−10

]
(16)

combined with an accurate value of its binding energyEd of approximately 2.2 MeV [24] and the proton
mass [25]

mp = 1.007 276 466 89(14) u
[
1.4 × 10−10

]
(17)
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provides us with such a possibility [2, 23]11

mn = md −mp − Ed

c2 = 1.008 664 915 60(55) u
[
5.5 × 10−10

]
(18)

Another example of an application of compound particles is the determination of the fine structure
constant α via the scattering of photons on a caesium atom and measuring their recoil shift [26]. In this
experiment, one should deal with absorption and stimulated emission, however, dynamical details of
the interaction of the photons and the atom are unimportant. Once we know the direction and frequency
of the photons, we need to know only about the atom as a whole: its energy and momentum. If we treat
the atom in such a way as a compound particle, it is “simple” in a sense.

We are reminded that the properties of certain atoms and molecules play a crucial role in the definition
of SI units: the hertz is defined via the hyperfine interval in the caesium-133 atom and the kelvin via the
triple point of water. The unified atomic mass unit (a non-SI unit acceptable along with the SI) and the
mole are defined via the mass of the carbon-12 atom. However, considering atomic properties as units,
we should indeed not care if they may be calculated.

5.4. Macroscopic quantum phenomena
Macroscopic quantum phenomena offer us certain properties that may be presented in terms of

fundamental quantities. For example, the Meissner effect provides us with a quantized magnetic field.
The magnetic flux through a superconducting loop can take only very specific values such as

�n = n�0 (19)

where

�0 = h

2e
(20)

is the magnetic flux quantum and n is an integer number. As we have mentioned, for applications it is
most important to consider macroscopic quantum phenomena that are related to the quantized values
of the electrotechnical properties. Two such effects play a crucial role in practical use. These are the
quantum Hall effect and the Josephson effect. The former offers us a quantized value of the resistance

Rn = RK

n
(21)

proportional to the von Klitzing constant

RK = h

e2 ≈ 25.8 k� (22)

while the latter allows to quantize the voltage related to some frequency ν

Un′ = n′

KJ
· ν (23)

where

KJ = 2e

h
≈ 483.6 THz/V (24)

is the Josephson constant and n and n′ are certain integer numbers.
We note that a direct measurement of these constants in SI units is very complicated, and consider

different approaches to the application of these two quantized phenomena in Sect. 9.

11This value of the neutron mass also involves data similarly related to other, more complicated, nuclei [23]. Note
that the data on the binding energy may differ from the originally published results because of the recalibration
of the lattice parameter.
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Table 4. CODATA 2002 recommended values of some fundamental constants [2] and methods
applied to achieve their values. Here MQE stands for macroscopic quantum effects and ADN for
effects due to the atomic discrete nature of the substance

Constant CODATA 2002 values Method

R∞ 10 973 731.568 525(73) m−1 [6.6×10−12] bound state QED
mp 1.007 276 466 88(13) u [1.3×10−10] free particles
mp/me 1 836.152 672 61(85) [4.6×10−10] bound state QED, free particles
ae 1.159 652 185 9(38) ×10−3 [3.2×10−9] QED, free particles
α−1 137.035 999 11(46) [3.3×10−9] QED, free particles, bound state QED, MQE
µp/µB 1.521 032 206(15) ×10−3 [1.0×10−8] bound state QED
mµ/me 206.768 283 8(54) [2.6×10−8] bound state QED
µµ/µp −3.183 345 118(89) [2.6×10−8] bound state QED
e 1.602 176 53(14) ×10−19 C [8.5×10−8] MQE, ADN
F 96.485 383 3(83) ×1023 C/mol [8.6×10−8] MQE, ADN
µp 1.410 606 71(12) ×10−26 J/T [8.7×10−8] free particles, MQE, ADN
h 6.626 069 3(11) ×10−34 J s [1.7×10−7] MQE, ADN
NA 6.022 141 5(10) ×1023 mol−1 [1.7×10−7] MQE, ADN
aµ 1.165 919 81(62) ×10−3 [5.3×10−7] free particles, QED

5.5. Atomistics and discrete classical phenomena
As already mentioned, even certain classical constants such as the Avogadro and Faraday constants

have quantum origins. First, they originate from the atomic nature of a substance, which is a consequence
of quantum mechanics, and, secondly, they receive their meaning because of the identity of species of
the same kind.

We collect in Table 4 the most accurately known fundamental constants [2] that have been obtained
through studies of calculable objects.

6. Fundamental constants and renormalization: operational philosophy
of physics

And she tried to fancy what the flame of a candle is like after the candle is blown out,
for she could not remember ever having seen such a thing. Lewis Carroll

Quantum mechanics appeared after the brilliant success of relativity and indeed it was understood
that a nonrelativistic quantum theory should be extended to the relativistic case. However, the develop-
ment met a problem that perturbative calculations have involved certain divergencies. The problem was
solved by the introduction of the procedure of renormalization.

The solution to this problem has a philosophical side and before addressing the problem, let us discuss
some philosophical aspects of physics and, first of all, answer the question what are the objectives of
physics? Let us do that pragmatically. We will not discuss what various sciences pretend to aim at, we
will check what they really do. Both philosophy and physics pretend to understand Nature. Philosophy
picks out the most significant questions about the very existence of Nature, however, it does not care
if we have enough data to answer them. And actually, similar to the truly fundamental constants,
the fundamentality never shows itself for measurement. Physics also pretends to understand Nature,
however, in reality it does not care what Nature, matter, or any particular object such as a photon and
an electron are. Physics questions not what various objects are, but how they interact to each other. It
studies not what Nature is, but how it operates. We, physicists, certainly believe that something really
exists in an “absolute” sense since the same experiments produce the same results. However, we cannot
say that anything particular exists until we measure it. It is close to the positivistic philosophy. However,

© 2005 NRC Canada



786 Can. J. Phys. Vol. 83, 2005

that is not the philosophy of physicists, but a kind of modus operandi in physics. This kind of double
standard is often met in everyday personal and professional life: there is a philosophy, which provides
us with a general view on events, and there is an operational scheme, which determines our reaction
to the events. The philosophical views of physicists on Nature may be very different from each other,
while their professional operational scheme is nearly the same for everybody. This scheme is based on
a kind of a “short-range” philosophy. I call the philosophy beyond the operational scheme “operational
philosophy”.

Indeed, we may say that matter exists. Or that an electron exists. But that gives us no real piece
of information at all. If we could say that a certain particle with specific properties existed that would
contain certain information, and could be correct or not. But to learn that we have to perform an
experiment.

The philosophical breakthrough of special relativity was the idea that simultaneity of the events are
unmeasurable. Quantum mechanics said that the trajectory is unmeasurable. That we cannot distinguish
between two identical particles. That we cannot measure certain properties simultaneously. That we
cannot do “exact” measurements without certain consequences. After we had learned that, we changed
our view on what exists and what does not.

Nonrelativistic quantum mechanics succeeded with a perturbative approach. We start with an un-
perturbed equation with unperturbed parameters and introduce various small perturbations which shift
the properties of the result. In quantum mechanics we are able “to switch off” most of perturbations
for real quantum mechanical problems or at least vary their parameters. On the contrary, in quantum
electrodynamics (QED), we cannot turn off the self-interaction. It is proportional to a small parame-
ter α ∼ 1/137, but because of the divergencies the perturbative correction is not small. It cannot be
even calculated properly because it involves the physics of high momenta. QED says that since the
unperturbed “bare” parameters (such as the electron mass m0 and charge e0) are not measurable, we
should not care if they are finite or divergent, well-determined or model-dependent. In a sense they
do not exist since they are certain abstract results of our imagination. What we have to care about are
only measurable quantities, i.e., “dressed” (perturbed) parameters. We are able to express measurable
energy shifts in terms of the measurable electron massm and charge e without any divergencies and any
need for knowledge of physics at the high-momentum scale. This kind of expression of one measurable
quantity in terms of others means a QED calculation, a successful QED calculation.

All these examples follow the idea of some equality between the very existence of a quantity and
the possibility for a measurement of its value. This approach is the backbone of physics, its operational
philosophy.

It finds its realization in the approach of effective potentials, which are used for various problems in
particle physics. It may be an effective phenomenological potential for pions, or an effective quantum
field theory produced on the way of going down to our energy from the Planck scale or from the
supersymmetry scale. The story is that we believe that, for various reasons, the fundamental physics
is determined at certain much shorter distances and higher energies and momenta than the ones we
deal with in our experiments. Dealing with low energies, we can see only a certain effective theory.
That is not a true fundamental theory but that is all that we have in an experimental sense. We have
to be successful, otherwise physics would have no sense until we reached the fundamental scale of
distances and energies. We trust that it is enough to determine some parameters at our low energies and
any further calculations can be performed in their terms. In other words, we expect that low-energy
physics is complete (in a sense that parameters determined at low energy are enough for the low-energy
calculations) and consistent. If that is not correct, we should interpret that as the existence of something
unmeasurable that affects our world in an unpredictable way.
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7. On calculable physical constants

There was nothing so very remarkable in that; …it occurred to her that she ought to
have wondered in this, but at the time it all seemed quite natural. Lewis Carroll

If we look at the list of the recommended values of the fundamental constants [2], it is unlikely that
we will find there any constant that can be calculated exactly ab initio. We can then assume that there is
no calculable constant that has a practical sense. We have already mentioned in Sect. 1, that considering
the hydrogen atom we should deal with either a calculable quantity (R∞), or with a measurable one
(νH(1s − 2s)). If a spectral property can be measured directly, it cannot be calculated ab initio exactly.
We may then conclude that there is no constant that is both exactly calculable and directly measurable.

We note, however, that a reason for this conclusion comes in part from psychology. Let us give an
example of a similar situation. It is well known that the theory of a point-like particle with a nonzero
anomalous magnetic moment is inconsistent. Meanwhile, we believe, that the electron, being point-
like, still possesses an anomalous magnetic moment and its theory is consistent. The only inconsistency
here is in the terminology. We say “the electron has an anomalous magnetic moment”, because it may
be directly measured and because it was first measured and next understood theoretically. We say “the
electron is a point-like particle", because its structure cannot be actually measured in any straightforward
way and because it was first calculated and next certain previously measured effects (such as the Lamb
shift in the hydrogen atom and the helium ion) were understood as consequences of the internal structure
of the electron. From the theoretical point of view, the same effects are responsible for the anomalous
magnetic moment of the electron and its internal structure and in a sense we can speak either about
a point-like electron with g = 2 or about an electron that has both the anomalous moment and the
structure. But for historical and psychological reasons we have chosen another way to express the
situation.

A similar problem in terminology is for the calculability of the constants. We know that, for example,
an internal angular momentum of Earth and Moon could take arbitrary values and their ratio is a kind of
constant to characterize our Earth–Moon system. If the internal angular moment (spin) were measured
for quantum objects (such as electrons or atoms) before the appearance of quantum mechanics (still it
is hard to imagine how), we could be surprised that Se/Sp = 1. Quantum mechanics would explain this
constant. However, in reality, first, a quantum theory of the angular momentum was created and next
we measured the spin (or rather interpreted some results as a determination of the spin of an electron
and a proton). In the time of quantum mechanics the identity Se/Sp = 1 is trivial, and now we do not
consider the ratio of the spins as a fundamental constant.

Another example is the famous Einstein identity E0 = mc2. This equation appeared as a result of
special relativity and was first seen experimentally through a relativistic correction to the kinetic energy.
There was no way to measure it directly. Now, we can measure the binding energy EB (of nuclei, such
as the deuteron, or even of atoms — see, for example, ref. 27) and check whether the mass of a bound
system is the same as a sum of the masses of its composites. We indeed know and can now verify
experimentally that the mass is reduced by a value of EB/c

2. We study the mass and the binding energy
as static properties and do not need to perform any relativistic experiment to check E0 = mc2. Another
possibility to reachE0 = mc2 without any relativistic experiments is to measure the annihilation energy
of positronium. The energy is determined as the energy of two gamma-quanta and the positronium mass
is twice the electron mass (with a correction due to the atomic binding energy). If that was measured
before Einstein’s theory of relativity, we would write it as E0 = k1 · mc2 and interpret the theory as a
calculation of k1 = 1.

One more example is a comparison of the properties of a particle and its antiparticle (like, for
example, their charges, masses, etc.). That is a result of the CPT invariance, which is a consequence of the
Lorentz invariance. In early times, even the very existence of antiparticles was first proved theoretically
and next discovered experimentally. We may say that we are able to calculate the electron-to-positron
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mass ratio and it should be unity.
As we see from the examples above, very often a question of calculability of a constant is related to

history and psychology: we should first recognize a certain property as a constant of Nature and next
calculate it. Generally speaking, the most fundamental constants such as the speed of light c or the Planck
constant h enter a great number of very different equations. If any of these equations were discovered
before Einstein’s relativity and quantum mechanics, we should introduce a number of constants c1, c2 . . .

and h1, h2 . . . instead of two basic constants c and h. Reducing the numerous coefficients in different
equations to these two, we, in a sense, calculate these constants stating c1 = c2 = . . . = c and
h1 = h2 = . . . = h (as it is discussed above for k1 = 1). And actually, that is one of the most likely
situations in future for exactly calculable constants.

Perhaps, the most important example of a similar situation is related to the “elementary electric
charge”. We accept for practical applications that the absolute value of the electron and proton charges
are the same. For example, the CODATA adjustment [2] does not distinguish between the proton charge
and the positron charge. However, no theory, confirmed by the experiment, implies that. Conservation
of the electric charge only urges that

qe + qp = qn + qν (25)

In other words, a small disbalance of the electron and proton charges is permitted if the neutron and
(or) the neutrino possesses a small electric charge. In earlier times, we believed that the neutrino was
massless and thus should be neutral since a massless charged particle would cause certain problems in
conventional QED. Now we have learned that the neutrino has a nonzero mass, but it is suspected that
this is the so-called Majorana mass, which also implies neutrality of the neutrino. However, we can
say nothing about the neutron (from a theoretical point of view). Meantime, from experiment we know
that [28]

|qe + qp|
qp

≤ 1.0 × 10−21 (26)

The various limitations on |qe + qp| involve certain assumptions and we have to be very careful with
the results. However, the orders of magnitudes are quite clear. Briefly speaking, when we consider
an interaction of two hydrogen atoms at a long (in a macroscopic sense) distance, the gravitational
interaction is 37 orders of magnitude weaker than the electromagnetic Coulomb interaction of two
protons. That means that, if |qe + qp|/qp ≥ 10−18, the electromagnetic H–H interaction would dominate
over gravity. We know that the interaction of bulk “neutral” substances is apparently Newtonian’s
gravitation. If we suggest for simplicity that qν = 0 (what is most probably true), then a small value of
qe + qp = qn would effectively produce an 1/r force coupled to the baryon charge of the bulk matter.
We know (from various tests of the equivalence principle) that this force (if any) is substantially weaker
than Newtonian gravity. That sets a limit on the residual electric charge of the “neutral” hydrogen atom
(and of the neutron) at the level of a few orders of magnitude below 10−18qp. We note that the limit in
(26) is only approximately three orders of magnitude stronger than the limit of 10−18qp related to the
dominance of gravity in the interaction of the neutral particles. That is because of two reasons: first, the
measurements are related to the coupling constant, which is proportional to (qe + qp)

2, and secondly,
the mass itself is approximately proportional to the baryon charge. Only small corrections, due to a
difference (mp + me) − mn and a nuclear binding energy, violate the equation Matom = Amn. That
considerably weakens the use of the equivalence principle.

If we believe in a certain unification theory (such as, for example, SO(10)), we can derive

qe + qp = 0 (27)

So considering different unification theories, we are approaching a calculation of qe +qp, but it is likely
that, once we succeed, we will (for psychological reasons) say again “that is not a calculation since it
is a trivial consequence of the unification theory.”
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Let us return to the Rydberg constant. Have we calculated anything real? Or did we just give a
special name to a certain experimentally meaningless combination of e, c, h, and me? To answer this
question, we need to consider one more approach for the ab initio calculation of properties in terms
of the fundamental constants: an approximate calculation. Such a calculation is quite important for
applications since we apply a perturbative approach to numerous problems. Historically, the Rydberg
constant was introduced to describe certain hydrogen energy levels (the Balmer series) and this constant
was later calculated. However, with a substantial increase in the accuracy of theory and experiment we
arrived at a point when a choice had to be made: to deal with a measured quantity or to introduce a
special value that would be used in perturbative calculations. So, at the present time, the constant itself
is not a real property of any atom, and we can say that we gave a special name to a specific combination
of the more fundamental values. However, we can say that there is a constant that describes (without
any corrections made) the hydrogen and deuterium energy levels with an uncertainty below one part
in 103 and this constant has been calculated. We may introduce certain corrections and bridge the
Rydberg constant and the hydrogen energy levels with much higher accuracy. But the significance of
the application of Rydberg constant is first of all that this constant approximately describes a number
of transitions and that is an important success of ab initio calculations.

The significance of this constant is also that it describes the order of magnitude for any gross-
structure transition in any neutral atom and molecule (see Sect. 12.2). A constant characterizing an
effect in general is also an important and nontrivial result. That is one more facet of the calculability of
natural constants. A famous example of such a calculation of order of magnitude was the consideration
by Schrödinger of the size of atoms and living cells [29]. He tried to answer the question, why are the
atoms so small? Indeed, that is rather the question why we are so big? Schödinger considered some
reasons for that. This consideration is also important to understand the numerical values of the atomic
constants, since the practical units and, in particular, the SI units are defined in such a way that anything
related to a human being should be in a sense of order of unity.

Other examples: a prediction of the order of magnitude of the electrical voltage that arose from
molecular and atomic phenomena: it is a few volts — that takes its origin from early studies of similar
phenomena and from the fact mentioned above that all molecular and atomic energy levels in the neutral
atoms have the same order of magnitude (related to the Rydberg energy which is approximately 13 eV).
Actually, because of that, the volt is only a natural unit if we mean its order of magnitude.

Ab initio calculations in the leading order, or even a rough approximation, may be also useful when
one looks for a possible time variation of the fundamental constants. In such a case it is necessary to be
able to perform a calculation of the dependence of energy levels on the fundamental constants rather
than the energy levels themselves. We discuss this issue in Sect. 12.

8. Natural units

And it certainly did seem a little provoking (‘almost as if it happened on purpose,’ she
thought). Lewis Carroll

How many units and standards do we need? Theoretically, we need only the base units of SI, and
even not all of them. In particular, we can reproduce the metre through the second and the ampere
through the kilogram, the metre, and the second. However, practically, we need a lot. A measurement
is a comparison, and the most fortunate case is a comparison of a quantity under question with a
“probe quantity” of the same kind. However, when we do different measurements of “the same” kind of
quantities such as, for example, the distances, we notice a big range in their values. Astronomical and
atomic distances are related to not quite “the same” kind. And indeed, for obvious practical reasons, we
measure them quite differently and like to apply different “probe quantities”, i.e., different units.

Indeed, these units cannot be independent and we need to properly calibrate them. However, the
calibration is not always important, because quite seldom we are really interested in a comparison of,
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for example, the mass of a hydrogen atom and the mass of the Sun. Because of that, we can leave their
units, which must be related in a formal sense, to be practically unrelated.

Still, for a number of measurements a proper calibration is needed. In the case of classical phenom-
ena, we have to perform this calibration regularly, to take care that the unit is unchanged during the
experiment etc. We should also take care that the units in different laboratories are properly compared.
However, quantum physics opens another option. It offers quantum natural units that are stable and
universal.

Actually every dimensional fundamental constant is a kind of a natural unit [7], and a substantial
number of the dimensionless constants (and certain dimensional constants such as the Boltzmann
constant k) can be considered as conversion factors12 (see [3]). So, there is a large variety of various
natural units and even natural systems of units13. Two kinds of natural systems have been used.

• First, a system can have natural units for any dimension, such as the atomic units and the Planck
units. Indeed, some systems are incomplete because they do not care about all phenomena. But
every unit, which is really needed for a description of a certain class of phenomena, may be or
may not be related to the fundamental constants. In the first kind of natural units all necessary
units are related.

• Secondly, a system can apply natural constants together with other units. In such a case, the
natural parameters or the fundamental constants set a certain constraint on the units, such as in
the case of systems in which � = c = 1 (relativistic units) or ε0 = 1 (for example, Gaussian
units).

Are natural units (or a natural system of units) a good choice? In their “complete form” they are
as good as any other units. However, in physics, we widely use various “jargons” [7]. We can indeed
measure similar (but not the same) quantities in the same units, such as a measurement both of the time
intervals and the distances in seconds (or both in metres). However, we know these are very different
quantities that are measured differently. That means that in saying c = 1, we use a jargon, and in reality,
we mean something like c is equal to one light year per year or so. Jargon, as a special kind of language,
it differs from normal language being designed for special use only. In this special use (for a special kind
of phenomena), it offers a more short and clear description. Meantime, often the very use of the “words”
differs from the normal use and the jargon sentences are “wrong” or meaningless literary. The same
in physics. We like to measure frequency, energy, momentum, and mass in different units in a general
case. They are closely related in the case of relativistic quantum physics. However, in the general case
they correspond to very different properties and assume different experimental techniques to deal with
them. They also suggest different modifications for applications to continuous media (which is rather
unimportant for fundamental physics, but significant for experiment). The practice of jargon often deals
with numerous hidden substitutions for quantities (confusingly keeping their names) such as

t → x0 = ct

m → E0 = mc2 (28)

Such hidden substitutions, which are equivalent to use of the same units for different quantities (as
the energy units for the mass), would be misleading and not very helpful in a general case because of
destroying the advantages of the dimensional analysis method. We like to distinguish the distinguishable

12 We do not mean that these constants are just the conversion factors and nothing else.
13 We note that what is customarily referred to as a “systems of units” is in fact a system of units and quantities. For
instance, the rationalized and irrationalized CGSG systems deal with the same electrical units, but with differently
defined quantities. Natural systems of units sometimes assume normalization of certain quantities different from
the SI.
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quantities. However, in quantum relativistic physics, where constants c andhmay appear in any equation,
we can hardly use dimensional analysis and it is worthwhile to present all these quantities in, for example,
energy units without losing even a bit of information.

Atomic units,

ma.u. = me = 9.109 . . .× 10−31 kg

ea.u. = e = 1.602 . . .× 10−19 C

la.u. = a0 = �

αmec
= 5.291 . . .× 10−11 m

Ea.u. = Eh = α2mec
2 = 4.359 . . .× 10−18 J

ta.u. = �

Eh
= 2.418 . . .× 10−17 s (29)

which present a very natural, physical, and logical coherent system of units, are very well adjusted to
atomic and molecular phenomena and most of the quantities there are of the order of unity. However,
those units indeed are not convenient for other phenomena. These units present a case of the “theo-
retically” natural units. We choose them to simplify theory (see, for example, Sect. 12.2). The other
kind of natural units are “practical” natural units. Choosing them, we do not care too much about their
fundamentality. Our concern is our ability to apply them. Examples of the “practically” fundamental
units are the caesium HFS interval, the carbon atomic mass, the Bohr and nuclear magnetons, the masses
and the magnetic moments of an electron and a proton, and the von Klitzing and Josephson constants.
We partly consider a question of the “practically” fundamental units in the next section (Sect. 9).

The choice of units, we use in physics, is quite simple. We use various “theoretically” natural units
when we do calculations. Some of them are very helpful also for education. The more complicated the
calculations are, the more useful are the related natural units. However, once we refer to a quantity to
be measured, we switch to “general” (SI) or natural “practical” units.

9. Definitions and Mise en Pratique for SI units: A back door for
natural units

‘When I use a word,’ Humpty Dumpty said in rather a scornful tone, ‘it means just
what I choose it to mean — neither more nor less.’ Lewis Carroll

Currently, practical recommendations issued by CIPM for the most important units [5] such as the
metre [11], the ohm [12, 13], and the volt [14] are based on certain natural units.

Why do we need such recommendations? The problem is that the original SI definitions [5] cannot
be used in an easy way. As we mentioned, the idea of the units comes from the fact that a measurement
is a comparison and to compare the results of different measurements we need to go through a chain
of comparisons. The introduction of the units means that an essential (and the “universal”) part of the
comparisons is separated from the rest and recognized in a very specific way. It is a responsibility of
metrological institutions around the World to take care of the standards and the units. The output of this
work should be a certain set of quantities, convenient for further use. Unfortunately, the SI definition of
certain units is not suited for that. The practical recommendations are designed to cover the gap between
the rigorous SI definitions and practical accessability by a relatively broad range of users. However, the
recommendations are not a part of the SI in a sense: they aim to arrange additional conventional units
and to simplify a measurement in the SI units as long as the users agree with a reduced accuracy.

Let us give an example of such a recommendation. As we mention in Sect. 5.4, certain macroscopic
quantum effects (the quantum Hall effect and the Josephson effect) may be very helpful in establishing
natural units of the resistance and the electric potential. For that one has to know the values of the
fundamental constants RK (the von Klitzing constant) and KK (the Josephson constant) in the units of
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the SI. That is not a simple issue and three basic strategies may be applied to take advantage of these
effects.

Scenario # 1 suggests, that we fix values of these two constants. Since that is not possible for units
of the SI, that means an introduction of certain conventional units, in which

RK = 25 812.807 �90 (exactly) ref. 12

KJ = 483 597.9 GHz/V90 (exactly) ref. 14 (30)

They are not SI units and that means that if we check the Ampere law with magnetic constant

µ0 = 4π × 10−7 N/A2 (31)

we should fail. We would also arrive at a discrepancy in the energy measurements since

V 2
90

�90
�= kg m2/s (32)

But for most of the applications these mismatches with the SI are not important and the units volt-1990
and ohm-1990 are sufficient for most of the measurements, but not for all.

If we really need to deal with the SI units, we should do something else.
Scenario #2 suggests, that we use the same units based on these two quantum effects, however,

we determine two necessary parameters RK and KJ from additional experiments. For trade and legal
applications one may use the recommendations [13,14], which suggest an uncertainty of the numerical
values of (30) as related to the SI units

RK = 25 812.807 0(26) �
[
1 × 10−7

]
ref. 13

KJ = 483 597.9(2) GHz/V
[
4 × 10−7

]
ref. 14 (33)

The two scenarios above are based on the CIPM recommendations. The recommendations, however, as
well as all the legal metrology, are not designed for scientific use. What is important for physics is not the
subject of any legal agreement. For nonprecision absolute measurements, or for relative measurements,
one can use the CIPM [12–14] or CODATA [2] recommendations just for convenience. Meanwhile, for
precision scientific applications, we should avoid any particular values of RK and KJ in the SI units
at all. Instead, the results should be presented as related to more complicated values, which contain
factors (RK)

n(KJ)
m, taking into account that we have measured a certain quantity in the units related

to the quantum natural units, determined by RK andKJ. One can see such an approach in the CODATA
adjustment of the fundamental constants [2], which dealt with the most accurate measurements of the
fundamental constants.

10. Fundamental constants and geometry

…The Multiplication Table doesn’t signify: let’s try Geography. Lewis Carroll

Speaking about the constants of Nature, we cannot avoid the question if the number π is one of
them. Our answer is, in a sense, it is. To present our point of view, we address geometry. We remember
from high school, that geometry is based on twelve axioms, the statements that are above any proofs.
However, in physics, we should prove (experimentally) everything. We know that general relativity states
that space-time is flat if there are no gravity sources around. However, a correct statement is “locally
flat”. Globally, the Universe may have a geometry that does not allow the flat geometry “universewide”
(like, for example, a surface of sphere). We have to check if the actual geometry is flat and the present
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point of view is that it is close to being flat within a certain uncertainty. That does not help much, because
according to the inflatory model [30, 31] the related parameters should be very close to the values for
the flat case. Topologically, the Universe may be either open or closed (or even of a more complicated
topological structure than just a closed four-dimensional space). The closure or openness is closely
related to the density of the energy, which is known at the level of a few-percent (see Sect. 14). It is
consistent with the flat value. Now, we may, in principle, check whether the sum of angles of a triangle
studied in our space (after doing corrections to remove gravity effects) is equal to π . This statement may
be verified and, thus, π is a fundamental constant of our space. However, it is a fundamental constant not
in the same way as, for example, α. The fine structure constant is (at least now) a constant without any
relation to theory (of its origin). We measure α and use its value to develop a QED phenomenology. A
value of α is in a sense not critical. If it were discovered that α = 1/136 or 1/138, that would certainly
change the theoretical predictions numerically, but would not change our general view of fundamental
physics. For the number π or the number of the space dimensions (d = 3) we already have a theory
sensitive to their values. We can indeed say that π or 3 are just mathematical numbers, imbedded into a
flat three-dimensional geometry. However, a physical statement is that this geometry is ours. Actually,
to measure the angles geometrically or trigonometrically means to accept a part of geometrical ideas. In
such a sense, any test of the sum of angles to be π is rather a test of the validity of the three-dimensional
Euclidean flat geometry in application to our world.

The relation between the geometry and the predictability of the fundamental constants has a broader
context. In a sense, any symmetry is related to a kind of geometry.

Trying to build relativistic gravity theory, we strengthen the significance of the equivalence principle,
which says that a ratio of the inertial and gravitation masses is a universal parameter (which we set to
unity). A wish to build a linear equation for a relativistic particle led to a prediction of positrons with
“calculable” properties

qe = −qe

me = me

Se = Se

µe = −µe (34)

The positron actually was the first particle ever predicted. The Dirac equation (as well as the other linear
equations) suggests that in the leading approximation the g factor of a point-like (i.e., structureless)
particle is equal to two. However, this value is perturbed. For the free leptons (electrons and muons) the
nonzero anomalous contribution is small and can be perturbatively calculated up to certain accuracy and
also accurately measured. The present combined results for the anomalous magnetic moments are [2](
g − 2

2

)
e

= ae = 1.159 652 185 9(38)× 10−3
[
3.2 × 10−9

]
(
g − 2

2

)
µ

= aµ = 1.165 919 81(62)× 10−3
[
5.3 × 10−7

]
(35)

When the unification theory SU(5) was suggested, one of its successes was an explanation of
the Weinberg angle 	W. The value was predicted for a certain high-energy scale (related to Eun ∼
1014 GeV).A measurable value is related to a much lower energy scale and thus should be renormalized.
An accurate theory of its perturbation by the radiative corrections together with accurate experimental
data should provide us with a constraint on the unification theory. The SU(5) theory happens to be
incorrect since it disagrees with a number of observed effects (such as a “too-long” proton lifetime τp,
presence of the neutrino oscillations etc.). It is believed, nevertheless, that a similar unification scheme
will eventually explain the neutrality of the hydrogen atom and the value 	W.
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It is quite likely that most, if not all, calculable constants may be predicted only via symmetrical
and thus geometrical ideas.

The symmetries and conservation laws are very strongly related to the fundamental constants and
their constancy. Because of that, we would like to note that, in addition to direct violations of symmetries,
quantum physics offers additional ways to violate the symmetries in “smooth” matter: via the quantum
anomaly or spontaneous breaking.

• Quantum anomaly: Quantum field theory suggests that we should substitute the wave function
for a field operator�(x), which is quite singular and consequently a quantity J [�] = �(x)��(x)

(where for fermions � is an arbitrary combination of the Dirac gamma-matrices) is ill-defined.
The quantity J is significant because any electron or quark current is of such a form. It was
discovered that there may be a special kind of quantum violation of symmetry — the anomaly. It
is realized in such a way that

(i) there are two currents J 1
µ and J 2

µ, which are conserved within classical physics (∂J aµ/∂xµ =
0), and thus two symmetries are presented at the classical level;

(ii) the currents are singular and thus ill-defined at the quantum-field level;

(iii) there is no regularization that supports the conservation of both currents and both symme-
tries.

As a result, one of the symmetries (for example, related to J 2
µ) is to be violated and the nonconser-

vation term ∂Jµ/∂xµ �= 0 is proportional to the Planck constant h (see ref. 32 for more details).
A well-known example is the Adler anomaly for the axial current, which plays an important role
in the properties of the π0-meson.

• Spontaneous breakdown: The spontaneous breakdown of symmetry is another example of how
a classical symmetry can be broken in quantum field theory. Let us suggest that the interactions
(potentials) are invariant with respect to a certain symmetry. There is no symmetrical state with
minimal energy, but instead there is a family of nonsymmetrical minimum-energy states. It is sim-
ilar to, for example, the magnetization of bulk iron. The theory is isotropic, however, a minimum
energy is related to the case with a certain nonzero value of the macroscopic magnetic moment.
Any direction of the moment is related to a minimum in the energy (“vacuum”), however, only one
direction can take place at any particular case. Indeed, there are domains with different directions,
but if our observable universe is inside such a domain, we would not see the other domains. We
note that it is different from the simplest problems in quantum mechanics. Quantum mechanics
can also deal with such a potential, however, because of the overlap of the vacuum states there
is a “fine structure” and the actual minimum of the energy is related to a certain superposition
of these states (for example, their symmetric sum). The particular asymmetric vacuum state is
to be presented as a sum of the superposition of compound vacuum states and its evolution via
certain oscillations will lead, most probably, to the lowest state of this fine structure. However,
with an increase of the phase volume (with increase of the number of degrees of freedom) the
probability of the tunnel transitions between the vacuum states goes down very fast. The evo-
lution time becomes so long that we can see no evolution et all; for example, we cannot detect
any oscillation between left-hand and right-hand organic molecules. In the case of the quantum
field the characteristic evolution time is infinite because of the huge volume of the Universe (see
refs. 30–33 for more detail).

There is also a specific kind of phenomena, which may lead to an “observational” violation of
such symmetries as, for example, the Lorentz invariance. The phenomena are related to the fact that
it is unlikely that any symmetry will be observed directly, but we study certain consequences of the
symmetry, and, if we do not know the complete theory, we can be misled.
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Let us explain that with an example of nonrelativistic quantum and classical mechanics. They have
mainly the same symmetries and conservation laws (conservation of momentum, angular momentum,
and energy). However, from a classical point of view, conservation means that we can measure, for
example, all three components of the angular momentum in two separate moments of time and the
result must the same. Classically, we also expect that we can do two “fast” separate measurements
of the energy, as precisely as we like, and that allows us to check whether the energy is conserved
exactly and in any particular phenomena or the conservation takes place approximately and (or) on
average. And “fast” means that the measurement time may be as short as we like. That is by far not
the same in the quantum case. In both cases, doing “classical” experiments for the conservation of
the “whole” angular momentum and the “exact” conservation of energy, one will fail to confirm the
conservation laws once we arrive at the level of accuracy where quantum effects enter into the game.
The symmetries and conservations still take place, but their observed consequences differ from the naive
classical expectations.

We know, that at the Planck scale, the geometry of space-time quite likely differs from what we
see around us.14 We do not know what it really is. Indeed, certain symmetries can be broken there.
However, some most “sacred” symmetries might be realized in such a way that their consequences
alternate from our expectations and, thence, the experimental results might “observe” certain violations
of these symmetries and conservations.

11. Constancy of fundamental constants

…They began running when they liked, and left off when they liked. Lewis Carroll

The fundamental constants, most of them, appear in physics with quantum mechanics. Newton’s
constantG came earlier, but only considering the Planck-scale effects, we can imagine how fundamental
it is. They were called “constants” and it was believed that they should be such by default. To vary them,
one should rather expect an exceptional reason. That was the situation, when Dirac and later Gamov
suggested that the “constants” may not be constant.

However, the truth is that there is no strong reason why the “constants” of Nature are constant. We
know that the ratio of the electron and proton spins is unity and cannot vary. If it were possible to switch
off the QED corrections, we should expect that the g factor of an electron is a trivial constant equal to
two. Thus, there may be only one theoretical reason for their constancy — that would be an explanation
of their origin. For the most important constants we have none. The constancy of the constants is merely
an experimental fact and an a priori trust in the domination of symmetry in the nature of Nature. The
former, indeed, can never be final and we need to check that again and again with a more broad range
of phenomena and with a greater accuracy. The latter is in a formal sense rather wrong: we recognize
the inflation as a basic element of modern cosmology. Inflation [30,31] had urged the electron mass and
charge to vary in the very remote past. If we accept that the constants were varying once, we should
rather consider them as changing quantities at a default situation, and need a reason for them not to vary
again; or not to vary quickly. A once nonconstant is forever not a “trusted” constant.

14 I have heard that numerously and in particular a statement about a “noncommutative space” and this is one more
example of physical jargon. We, for example, clearly understand that quantum mechanics does not change the
phase space. In the one-dimensional case, the plain {x − p} is just the same as in the classical case. However,
classical states are rather point-like. We sometimes assign them a finite volume because of the experimental
uncertainty in our data or because of their statistical treatment, which is in classical physics also a result of an
uncertainty in our description. Meanwhile, the volume presents only a spot where the point may be, but any state
still is point-like and the uncertainty is, in principle, avoidable in classical physics. The Heizenberg inequality
implies that a quantum state has a minimal finite volume determined by the Planck constant �. The same for
the three-dimensional angular momentum. The only point-like quantum state in the three-dimensional angular-
momentum space corresponds to the case of zero angular momentum. But nevertheless — the space is the same,
the allowed states are different.
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We recognize the existence of dark matter, which may interact “very” weakly with our matter. We do
not know what the dark matter is and how weak this “very” weak interaction may be. Due to a number
of such unclear phenomena, we need to distinguish between:

• effects such as a violation of the local position invariance (and in particular a violation of the
local time invariance)

• and a variation of the constants.

One may expect that a violation of the local invariance means that the results of measurements would
depend on time, and location upon the measurement and that is the same as a time and space dependence
of the fundamental constants. However, these two situations are not quite the same.

The results of an experiment may be affected by an environment. In earlier times, an “environment”
for a laboratory-scale experiment was also laboratory-scaled; exceptions were the gravitational and
magnetic fields of the Earth. However, they were not significant: since the former was nearly a constant
(which did not depend on the location at the level of then achievable accuracy) and for the latter there
may have been a shield. Now, doing high-precision balance experiments, one can clearly see the effects
of the motion of the Sun and the Moon on this scale of experiments. Indeed, the existence of the surf
has been known for centuries. But the surf is a result of an accumulation of these effects over a “big”
detector, which is of the Earth scale. Until the very recent time it was not possible to see such effects
with “small” detectors.

Now, we are sensitive to the environment on a very large scale. We know that we live in a chang-
ing universe (the environment item number one), going through a bath of 2.7 K cosmic microwave
background and a similar background radiation of known (neutrino) and, maybe, unknown massless
particles (the environment item number two), and dark matter and dark energy presented around (the
environment item number three), etc. We would never qualify any effect of interactions with them as a
real violation of Lorentz symmetry, but we may want to qualify a variation of certain natural parameters
induced by them as a variation of the constants. In principle, we can say that there was no variation of
truly fundamental constants during the inflation, but only “environmental effects”, caused by cooling
of the Universe. However, we prefer to say that the electron mass has changed.

As we mentioned, the Earth’s gravity field is nearly a constant and the free fall acceleration g was
considered as a universal and fundamental constant for a while. Now we know it is neither constant nor
universal and fundamental.

Kepler found that any planetary orbit satisfies a condition

R3

T 2 = [Kepler’s] constant (36)

with the same universal constant for any planet. We now know that Kepler’s “universal” constant, which
governs the motion of all planets, is a specific constant related to our solar system only and nothing
more.

These two examples show how important it is to understand the nature of the constants. We now
have a great number of fundamental parameters, the origin of which is unclear: the Yukawa Higgs cou-
pling constants, the Cabibbo–Kobayashi–Maskawa matrix (CKM) parameters, parameters of a lepton
analogue of CKM, cosmological constants, etc. These constants have been observed and studied. There
are also a number of important constants that have not yet been detected, but strongly expected as, for
example, the mass of the Higgs particle.

Albert Einstein believed that all the constants are, in principle, calculable. That should be expected in
a world, where the equations determine everything. But that apparently is not our world. We know, that
some symmetries of our world have been spontaneously broken. That happens, when the symmetric
state is unstable, while a family of nonsymmetric states has the same minimal energy. The vacuum
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falls to one of these minimum energy states. We know a number of examples in classical physics. For
example, we already mentioned a bulk piece of iron with a nonzero value of the residual magnetic
moments. A massive piece used to consist of domains — numerous smaller pieces, in which there is
a nonvanishing macroscopic magnetic moment. The Hamiltonian and all equations that describe any
domain are isotropic. However, the state with zero macroscopic magnetic moment is unstable. Stable
states are those with a magnetic moment directed to somewhere. Where? We cannot predict. It may
be any direction and in fact the directions in different domains are different. One may think that a
direction is not as important for observable quantities as the magnitude (indeed until we do not look for
a violation of the isotropy — which may not be important if we have in mind not our space but a certain
functional space like, for example, the space of isotopic spin). However, there is a simple example of
how to transform the direction into a magnitude. It is enough to imagine a situation when there are
two independent values similar to the iron’s magnetic moment, completely independent for the vacuum
states, but coupled together to the same matter field (i.e., to a certain particle). In such a case, the angle
between them is related to a scalar that can affect the value of the energy of the particle.

This example shows that certain properties cannot be predicted through the equations. We ac-
knowledge a spontaneous breakdown of symmetry in the Standard Model of the electroweak interac-
tions [31–33]. We expect that our world has a larger symmetry group than we actually observe. And a
nonobserved part of the symmetry has been destroyed by one or few spontaneous breakdowns. It may
happen that certain “fundamental” parameters of our world are a direct result of such breakdowns and
they could take, in principle, different values in another place or another version of the evolution of the
Universe.

If that is the case, certain parameters are not predictable and by discussing them we approach a
framework of the so-called anthropic principle. There have been a number of various modifications of
it, including not only physical, but also philosophical ideas. We are not very enthusiastic about these
ideas. However, a “minimal” physical part of the principle is the selection principle: we observe only
what we can observe and the very presence of our species, as the observers, sets a certain constraint on
the observable properties. That is like Kepler’s second law: if we would learn neither the Newtonian
gravity theory, nor data about planets outside of our solar system, we should consider the Kepler’s
constant in (36) as a universal constant — the universal constant for all observable planets.

Once we allow variations of the constants of Nature, we remark that the units are also vulnerable.
From first glance, we should prefer to speak about dimensionless constants such as

α = e2

4πε0�c
(37)

They are clearer to discuss phenomenologically and easier to detect. Sometimes, it is even stated that
we can only look for a variation of dimensionless quantities.

Indeed, variations of the dimensional constants may also be detected, but the experiments are much
more complicated, because they should directly address time and space gradients of such constants
[4, 34]. A well-known example is the famous Michelson–Morley experiment, which checked whether
the dimensional constant (the speed of light) in the same in every directions.

Let us leave the general discussion on the search for the variability of the constants at this point
and first look at how we can describe their variations. If one tries to seriously consider the varying
constants, we have to introduce changes from the very beginning. It is not enough just to accept the
equations derived under a conventional assumption of the constancy of the natural constants and then
allow them to vary slowly. We can easily arrive at a contradiction. Let us consider a simple example: a
situation when, in a specific inertial frame, the Planck constant is slowly changing globally with time,
so h = h(t). Meantime, the laws of physics are still isotropic and in particular ∂h/∂x = 0. However,
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the angular momentum15 is quantized

Lz = � · lz (38)

We arrive at an obvious contradiction: the angular momentum Lz should be conserved (because of the
isotropy), while lz is also not changing (being an integer or semi-integer number) and, meantime, their
ratio, the Planck constant �, is changing. This inconsistency comes directly from the assumption that
we can accept the known equations and allow their constants to vary slowly.

There is no straightforward way to deal with the variable constants. First of all, when the constants
are constant, we can redefine operators via their effective renormalization as, for example,

Fµν → 1

e
F ′
µν (39)

etc. If we like to introduce slowly varying constants into the basic equations, we do not know even into
which equation. Because of the “renormalizations”, such as in (39), we do not have a single set of the
basic equations but quite a broad family of equations that are equivalent as long as the “constants” are
constant.

We used to describe most of the quantities that are calculable with help from such equations. However,
in our opinion, the starting point to adjust our basic phenomenology to the case of the variable constants
is the path integral (the functional integral over field configurations). The conventional approach reads
that the path integral

Z =
∫

e−iS′

presents a matrix element of the evolution operator [32,35]. To study a particular evolution, we should
integrate over all available configurations (“trajectories”) with proper initial and final conditions. The
action S′ is normalized to be dimensionless. This operator has a transparent physical sense: we have
to sum over all possible trajectories and we also know that in most of cases the dominant trajectory
(trajectories) is related to the least action. The least-action trajectory for quantum mechanics is the
classical trajectory. When we study quantum-field “trajectories” in the functional space the least-action
trajectory is related to the field equation such as the Maxwell equations for the photon’s field and the
Dirac equation for the electron’s field. Far from the minimizing trajectory, the phase (which is the action
S′) is changing fast and the contributions cancel each other. Close to the minimizing trajectory the phase
is nearly unchanged and the contributions are enhanced.

Now, we can generalize the action (for example, for quantum electrodynamics, which is in a narrowed
sense, substantially, a theory of electrons and photons — see Sect. 5.2) to the form

S′
QED =

∫
d4x

{
ξ3(x)ψ

[
gµνγ

µ

(
i
∂

∂xν
+ ξ4(x)A

ν

)
− ξ5(x)

]
ψ − 1

4
ξ6(x)gµνgρλF

µρF νλ
}

(40)

where the metric tensor at a particular preferred frame16 is defined as

gµν =

⎛
⎜⎜⎝
ξ1(x) 0 0 0

0 −ξ2(x) 0 0
0 0 −ξ2(x) 0
0 0 0 −ξ2(x)

⎞
⎟⎟⎠

15 We consider here the classical angular momentum L, which is dimensional, and the quantum angular momentum
l which is dimensionless.

16 re are two natural options for such a frame. The first is related to the one in which the cosmic microwave
background (CMB) radiation is isotropic. The other corresponds to the frame that is determined by dark matter.
This latter is well defined locally, but not globally. Once we fix the frame, we can consider an analogy with
electrodynamics in media, which in the simplest case can be described by two dimensionless functions εrel(x) and
µrel(x).
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and the electromagnetic field tensor as

Fµν = ∂Aν

∂xµ
− ∂Aµ

∂xν

The functions ξn(x) obviously violate several important symmetries (including the gauge invariance,
the local position invariance, and the local Lorentz invariance) and allow time and space variations of
the dimensional fundamental “constants”. Here, the functions ξn(x) are dimensional, but we can indeed
introduce factors h(0), c(0), e(0), and m(0) in a proper way and make the ξ functions dimensionless.
These four factors are related to the Planck constant, the speed of light, the elementary charge, and the
electron mass as measured at a particular point x(0). More complicated models are also possible with,
for example, a less trivial metric tensor or the electromagnetic field tensor, or with the appearance of
small terms that directly violate various symmetries.

When should we use (40) and when just put time and space dependence inside conventional equa-
tions? It depends on the problem. Basically, there are three kinds of related measurements:

• One may perform a series of “fast” measurements separated in time by a “large” interval T (for
simplicity we speak here about the time variations only). That is, in particular, a case of atomic,
molecular, and nuclear spectroscopy. Additional terms with derivatives of the ξ(x) functions
should be integrated over the “short” time of the measurements τ and the value of τ∂ξ/∂t may be
neglected in comparison with a difference ξ(t + T )− ξ(t) over the “large” separation (T 
 τ ).

• “Long” measurements can be performed, for example, as a result of continuous monitoring of
the motion of planets etc. In this case the effect of the integration of ∂ξ/∂x is comparable to the
effect of the adiabatic change of ξ(x) in the conventional equations.

• And indeed, one can try to deal directly with derivatives performing ∂ξ/∂x-sensitive experiments.
It is quite probable that it is easier to do that for space gradients rather than for time gradients. For
example, we can try to perform precision measurements in space similar to the GPS measurements
in the atmosphere. In the case of space-gradient terms in the law of the propagation of light, we
should “observe” a nonflat geometry after interpreting the light propagation time intervals as the
effective distances.

12. Search for possible time variation of fundamental constants

– …‘one can’t believe impossible things.’
– ‘I dare say you haven’t had much practice.’ Lewis Carroll

The easiest and most transparent kind of experiments to search for a variation of the constants is
indeed to measure the same quantity twice. If these measurements are “fast” and have a long separation,
we can use the description with nonvarying constants and not care about possible additional terms
and gradients. The validity of this approach is obvious for atomic physics: we do a series of short
measurements, for which the gradients of the constants are negligible for atomic time and space scale
and cannot affect the result of measurements. A different situation is for a search of a variation of the
Newtonian constantG. Most of measurements are related to continuous monitoring over a long period.
Instead of a large series of short atomic measurements, the gravity searches deal with a number of long
measurements. In such a case, the contributions of the gradients should be important.17

Because of that we concentrate our attention on atomic measurements. Still there are three kinds
discussed in the literature.

17 It should be understood, that varying G and its gradients probably is not enough. For instance, the equation for
a photon in a medium, presented in terms of vacuum fields, would involve not c(x) and its gradients, but instead
εrel(x) and µrel(x) and their gradients. Those functions have no separate sense in vacuum.
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• Astrophysical comparisons deal with a relatively low fractional accuracy, but take advantage of
a very big time separation (up to 1010 yr). This kind of observations is by far not transparent
and suffers from necessary statistical evaluations in a situation when certain correlations may be
present.

• Clocks based on different transitions have been developed and by comparing them one may hope
to learn about the relative variations of their transition frequencies. However, the clock is just a
device, built for a purpose, and its properties are not necessarily related to the atomic or molecular
transition frequency in an exact sense. There may be a number of drifts and certain parameters of
the clock, which determines drifts, and which are determined, in turn, by an artificial environment
in a noncontrolled way. An example of such a clock is the hydrogen maser. Its frequency drift is
due purely to an environmental problem (the so-called wall shift).

• Still, the frequencies of certain clocks follow atomic transition frequencies. Such clocks are
similar, in this sense, to the primary caesium standard. The very basic principle of the primary
caesium clock is that it should reproduce the caesium HFS transition frequency, which is related
to the SI second. To deal with this kind of clock is the same as to measure an atomic or molecular
frequency with high accuracy.

Below, we consider in detail these kinds of “near primary” frequency standards (and we note that maybe,
in future, one of them will give us a new SI second.18)

The significance of these clock-based experiments is in the great accuracy of the precision frequency
measurements. Presently and for a while (maybe even forever), the frequency measurements are the
most accurate.

Here, we consider certain details of laboratory searches. Different aspects of the possible variations
of the fundamental constants and their searches are discussed in ref. 36.

12.1. Atomic clocks
In this chapter we consider frequency standards rather than clocks. In principle, a clock is a time

standard. Indeed, the frequency and time intervals are closely related, however, the time measurement
may be “absolute”, i.e., related to the conventional “beginning of time”. That involves two metrological
problems for keeping the time scale: the realization of the time-interval unit and of the “zero point”. The
specifics of time keeping requires that “true” clocks operate continuously, otherwise the information
on the initial moment would be lost. A real time standard is actually not a single device but a set of
various related standards. Still, with a peripheral part of the clock operating around it, the very heart
of any clock is a certain frequency standard. Presently, that is either a caesium standard or a standard
calibrated against the caesium.

The best modern clocks pretend to deliver certain reference frequencies with an uncertainty at the
level of one part in 1014 and even less. If we check the value of the linear Doppler shift related to this
level, the speed of the atom is to be 3µm/s. For a hydrogen atom a temperature of 1 K is related to a speed
of approximately 100 m/s, i.e., eight orders of magnitude higher. Heavier atoms at this temperature are
slower by a factor of

√
A, where A is the atomic mass number. That means that for an accurate clock,

we have to solve the problem of the linear Doppler effect.

18 Because of a certain conservativeness of CIPM, which should necessarily take place, and because of a variety
of competitive optical candidates, we expect in the near future not a change in the definition of the SI second,
but, first of all, certain CIPM recommendations. At the first stage, it could recommend values for certain optical
and microwave transitions that would be advised for a practical realization of the second (compare, for example,
the CIPM recommendation on the metre [11]). At the second stage, after the accuracy of a comparison of certain
optical transitions to each other will supersede the accuracy of the caesium standards, a conventional second (for
example, the second-2015) could be introduced.
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In different clocks the problem of the linear Doppler effects is solved differently (see ref. 37 for
more detail). In clocks with neutral atoms, the atoms are cooled down to a level much much lower than
1 K. Ions are trapped and that eliminates the Doppler effect — a localized trapped particle cannot have
a nonzero momentum. One more approach is to study two-photon transitions, which are not sensitive
to the linear Doppler effect.

If the constants are changing, not only theory should be reconsidered, but also experiment. First of
all, we need to acknowledge that if certain natural constants are changing, our units and, in particular,
the SI second are changing as well. For this reason, the most simple and hopeful way is to look for
variation of dimensionless quantities. However, since any measurement is a comparison, we can also
deal with dimensional quantities, properly specifying the units. The interpretation of the variation of the
numerical values of the constants differs drastically from the interpretation of a search for their direct
variation. In particular, we will speak about a variation of the numerical value of the Rydberg constant,
which is closely related to the properties of the caesium atom. In fact, it is equal to

{R∞} = 2c · R∞
νHFS

(
133Cs

) × νHFS(
133Cs)

2c

= 1(
νHFS

(
133Cs

))
a.u.

× 9 192 631 770

2 × 299 792 458
(exactly) (41)

where
(
νHFS

(
133Cs

))
a.u. is the caesium HFS interval in atomic units and an exactly known number

9 192 631 770

2 × 299 792 458
= 15.331 659 494 249 183 8 . . .

is an artifact of the SI system.

12.2. Scaling of different transitions in terms of the fundamental constants

With the help of accurate clocks, we can compare the frequencies of different transitions. What can
we learn from them?

First of all, let us look at expressions for different atomic transitions in the simplest case, i.e., for
the hydrogen atom

f (2p − 1s) � 3

4
· cR∞

f (2p3/2 − 2p1/2) � 1

16
· α2 · cR∞

fHFS(1s) � 4

3
· α2 · µp

µB
· cR∞ (42)

Indeed, there are various corrections and, in particular, the relativistic and the finite-nuclear-mass cor-
rections but they are small.

The first interval is related to the gross structure, the second is for the fine structure, and the last is
for the hyperfine splitting. So, we note that if we would measure them, we can learn about variations
of cR∞, α, and µp/µB. To be more precise, when one measures a frequency, the result may be either
absolute or relative. The latter case, when two ratios are measured for three transitions, will tell us
nothing about the Rydberg constant. Measuring the intervals absolutely, i.e., in certain units, we can
consider a variation of the value of the Rydberg frequency cR∞ in these units. In the previous subsection,
we explained about the physical meaning of a value of the Rydberg constant in the SI units.
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Table 5. Scaling behavior of the
atomic energy intervals as functions of
the fundamental constants. µ stands for
the nuclear magnetic moment.

Transition Energy scaling

Gross structure cR∞
Fine structure α2cR∞
Hyperfine structure α2(µ/µB)cR∞

What happens if we consider a more complicated atom? First, let us rewrite the equations above in
atomic units

f (2p − 1s)
∣∣∣
a.u.

� 3

8

f (2p3/2 − 2p1/2)

∣∣∣
a.u.

� 1

32
· α2

fHFS(1s)
∣∣∣
a.u.

� 2

3
· α2 · µp

µB
(43)

The gross structure is of the order of unity. The fine structure is a relativistic effect, proportional to the
factor (v/c)2 and thus to α2. The hyperfine structure is also a relativistic effect, but it is suppressed by
a small value of the nuclear magnetic moment in atomic units.

If we have a more complicated atom, nothing will change except for the numerical coefficients.
There is no additional small or big parameter when calculating the gross structure and it still should be
of the order of unity. The electron speed is always proportional to αc. There may also be a value of the
nuclear charge Z involved, but it does not change with time. So, we conclude that the scaling behavior
of the atomic transitions with changes of the constants is the same as in hydrogen (see Table 5). The
importance of these scalings for a search of the variation of the constants was first pointed out in ref. 38
and discussed there for astrophysical searches.

Molecular spectra are more complicated than atomic. The biggest energy intervals are related to the
electron transitions and they are completely similar to the atomic gross structure. Two other kinds of
the intervals (vibrational and rotational) are due to the nuclear motion.

Let us consider a diatomic molecule. In the so-called Born–Oppenheimer approximation (see, for
example, ref. 39), we can consider the energy of the electronic states as a solution of the problem of
the electrons in the field of two Coulomb centers with the infinite masses separated by a distance R.
The result depends on this distance (E(R)) and the next step is to find a value of the distance R0 that
minimizes the energy. Let us now take into account nuclear motion. In the leading approximation, the
Hamiltonian is of the form

H = P 2

2M
+ E(R)

� P 2

2M
− k

2
(R0 − R)2 + E(R0) (44)

where we note that R0 is about unity in atomic units, the binding energy E(R) is also about unity and
thus k ∼ E(R)/R2

0 is about unity as well. All of them do not depend on the fundamental constants
(in the atomic units). M is the nuclear reduced mass. The equation is for a harmonic oscillator (in the
leading approximation) and we know all the parameters (at least their dependence on the constants in
the atomic units). We find that the vibrational quantum of energy scales as

√
1/M in atomic units or

(me/M)
1/2cR∞ in SI units. HereM is a characteristic nuclear mass, but for the most of the applications,
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Table 6. Scaling behavior of the
molecular energy intervals as functions
of the fundamental constants. M stands
for an effective nuclear mass (equal
to reduce nuclear mass for diatomic
molecules), but for most of applications
may be substituted for the proton mass
mp.

Transition Energy scaling

Electronic structure cR∞
Vibrational structure (me/M)

1/2cR∞
Rotational structure (me/M)cR∞

we can neglect the nuclear binding energy and the difference between the proton and neutron masses
and set M = Amp. For diatomic molecules the effective atomic number is related to the reduced mass

AR = A1A2

A1 + A2

being a number, it cannot vary with time and can be dropped from any scaling equations applied for
interpretation of search-for-variation experiments.

Estimation of the rotational energy is also simple. The energy is of order L2/I where L is the
(dimensional) orbital momentum and I is the moment of inertia. In atomic units, L is of the order of
unity and I ∼ MR2

0 ∼ M . Finally, we find that the rotational energy scales as (1/M) in atomic units
or (me/M)cR∞ in SI units.

The importance of different scaling of the molecular transitions is pointed out in ref. 40 due to astro-
physical applications. We summarize the scaling behavior of various molecular transitions in Table 6.

This evaluation shows the great convenience of atomic units for atomic and molecular calculations
and demonstrates that a calculation of the order of magnitude of an effect and its rough detail is an
important issue and a part of “calculable” properties.

At the present time, all these scalings are not very hopeful for laboratory searches since only two
kinds of atomic transitions, optical (gross structure) and HFS, are studied with a high accuracy. It should
have a very reduced application, if the nonrelativistic scaling in Tables 5 and 6 were the only method
we have.

A successful deduction of constraints on a possible time variation of {cR∞} and α is possible
because of the relativistic corrections, which are responsible for a different sensitivity to the α variation
for various transitions of the same kind (for example, for various gross-structure optical transitions).
That was first pointed out in ref. 41 and later successfully developed and applied to various atomic
systems in ref. 42.

Most standards deal with neutral atoms and single-charged ions. The valent electron(s) spends most
of its time outside the core created by the nucleus and the closed shells. The core charge for atoms used
in the actual clocks is from one to three. The relativistic correction is of order of (Z′α)2, where Z′ is an
effective charge that a valent electron sees. If Z′ is the core charge, it is still very small. However, the
relativistic corrections are singular and a contribution of the short distances, where an electron interacts
with the whole nuclear charge Z, is enhanced. The dominant part of the relativistic corrections comes
from the short distances where the electron sees the whole charge of a bare nucleus and thus in some
atoms under question the correction can be really big.
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Table 7. Current laboratory constraints on the
possible time variations of natural constants [37].
The results above the horizonal line are model-
independent, while the validity of the results below
the line depend on the applicability of the Schmidt
model. The uncertainty of this application is not
shown.

Constants (X) Variation rate (∂ lnX/∂t) (yr−1)

α (−0.3 ± 2.0)× 10−15

{cR∞} (−2.1 ± 3.1)× 10−15

µCs/µB (3.0 ± 6.8)× 10−15

µRb/µCs (−0.2 ± 1.2)× 10−15

µYb/µCs (3 ± 3)× 10−14

me/mp (2.9 ± 6.2)× 10−15

µp/µe (2.9 ± 5.8)× 10−15

gp (−0.1 ± 0.5)× 10−15

gn (3 ± 3)× 10−14

12.3. Current laboratory limits
Optical measurements delivered to us data for a few elements (mercury ion [43], hydrogen [44],

ytterbium ion [45], and calcium [46]) and there are also promising results for the strontium ion [47],
neutral strontium [48], and more data on strontium and other transitions are expected. The data already
available [43–46] are related to transitions with very different relativistic corrections and that is enough
to derive strong limitations on the time variation of several constants. The model-independent constraints
achieved this way are collected in Table 7 (top part) [37]. The HFS results were also applied to obtain
constraints on the variation of the magnetic moments [49, 50]. To derive results on the more funda-
mental quantities than the nuclear magnetic moments of few particular nuclei, we applied the Schmidt
model (see, for example, ref. 51). Its importance for the interpretation of results on the variation of the
fundamental constants was pointed out in ref. 52. The model-dependent results are shown in the bottom
part of Table 7 [37].

Is it possible to reach a model-independent constraint on the time variation of ofme/me from atomic
spectroscopy? Yes, it may be done in the following way. First, we extract a limitation on a variation of
cR∞ without any use of the hydrogen data and next we compare it to a variation of the hydrogen 1s–2s
frequency (which is proportional to cR∞(1 −me/mp)). The constraint on the variation is

∂ ln(mp/me)

∂t
= (−0.4 ± 1.3)× 10−11 yr−1 (45)

which is more than three orders of magnitude weaker than the model-dependent constraint in Table 7.
Stronger model-independent limitations should appear from molecular spectroscopy.

It is significant that we can eventually constrain the variability of the fundamental constants. Results
on variations of such nonfundamental objects as the atomic transition frequencies should be rather
doubtful since such a level of accuracy has never been achieved before and various details of the
experiments may need an additional examination. Expression of such results in terms of fundamental
constants allows a cross-comparison and makes the results more reliable.

12.4. Nonlaboratory searches for the variations of the constants
…but it all came different! Lewis Carroll

The laboratory limitations are not the strongest, but the most reliable. Astrophysical [53] results
unfortunately contradict each other, as well as geochemical [54] constraints. Studies using both methods
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involve various systematic sources and the access to data is limited. One should deal with observations,
not with experiments.

13. Fundamentality of the constants and the Planck scale

…and noticed that what can be seen from the old room was quite common and unin-
teresting, but that all the rest was as different as possible. Lewis Carroll

If physics is governed by the most fundamental constants and if the ultimate theory includes the
quantum properties of space-time, then the fundamental scale is determined by the Planck units

MPl =
(

�c

G

)1/2

= 2.176 45(16)× 10−8 kg

= 1.220 90(9)× 1019 GeV/c2

lPl = �

MPl c
= 1.616 24(12)× 10−35 m

tPl = lPl

c
= 5.391 21(40)× 10−44 s

TPl = MPlc
2

k
= 1.416 79(11)× 1032 K (46)

At the scale determined by these units the laws of Nature should take the simplest form and if any
observable fundamental constant is calculable, it should be calculable there.

Due to success of the renormalization approach it is commonly believed that physics from the
Planck scale does not affect our “low-energy” world. That is true only in part. To be accurate, the idea
of renormalization reads that all that we need from higher energy physics can be successfully measured
at our low energies. Still, what we measure at our energies comes from the higher scale (such as, for
example, the Planck scale, or a scale of the spontaneous violation of a larger symmetry related to the
unification). Presently, we do not have any theory related to the higher energy scale. If the Planck or
any other high-energy scale has no dynamics, we have not much hope of understanding the high-energy
physics from our low-energy experiments. We can learn nothing from measured numbers until we are
able to proceed with a theory from the scale of, let us say, the Z boson mass, to a really high energy.
Any corrections beyond that are small as (m/MPl)

2 where m is a characteristic mass scale we deal
with. However, if Planck-scale physics has dynamics, for example, a variation of certain parameters,
that is not true anymore. First of all, if the bare constants (such as the bare electron charge e0 and
the the electron mass m0) determined at the Planck scale can vary, we should be able to detect that.
There is a chance, that the fine structure constant at the Planck scale is calculable and, for example,
α0 = 1/π4, but there is no chance that any numerical exercises, such as done in the past, will succeed
in expressing the actual α in an simple way. Neither it is likely that m0 is calculable in simple matter.
Nevertheless, if the bare constants do not vary, we still can expect that the dressed constant (i.e., the
actual renormalized constants, which we measure) show a certain detectable variation, which could
appear via the renormalization.

How easily can we see such dynamics, induced by the renormalization? A question for α variation
is whether the divergencies are cut at the Planck scale, or a certain supersymmetry enters into the game
at an intermediate scale MSS � MPl and cut the divergencies off. The other question is whether the
bare electron mass varies, and if it does whether the ratios me/MPl and MSS/MPl vary.

In the case of ultraviolet divergencies going up to MPl, the result is

1

α

∂α

∂t
∼ α

π

1

MPl

∂MPl

∂t
(47)
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Table 8. Fundamental constants of
cosmology. The results are taken
from ref. 28.

Constant Value

�tot − 1 0.02(2)
�bm 0.044(4)
�dm 0.22(4)
�� 0.73(4)
TCMB 2.725(1) K
H 0.73(4)× 10−10 yr−1

nγ /nB 1.64(5)× 109

while in the case of the supersymmetrical cut off, the variations may be of a quite reduced value

1

α

∂α

∂t
∼ α

π

(
MSS

MPl

)2 1

MPl

∂MPl

∂t
(48)

Concerning the bare electron mass, the problem is much more complicated, because details of the
so-called Higgs sector are unclear and connection of the Higgs parameters with more fundamental
quantities are to be clarified. It may happen that dynamics at the Planck scale urges certain variations
at the Higgs sector and afterwards a variation of the Higgs vacuum average v and consequently of the
bare value of the electron mass m0. We note, that such a variation may, in principle, keep the ratio
m0/MPl constant and reduce the value of the α variation via the renormalization that is mentioned
above. Detection of a variation of the electron mass is even less clear. The variation of me is not the
question from the experimental point of view, the question is a variation of me/mp. Since the origin of
the electron and the proton masses are very different it is hard to understand what can happen with their
ratio.

Still with a number of problems to be solved the fundamental constants give us a chance to study
the physics of a higher energy scale not available anywhere else.

14. Constants of cosmology

It’s a poor sort of memory that only works backwards. Lewis Carroll

Constants of our Universe as a whole give us another questionable chance to study physics beyond
our essential world. Such constants as listed in Table 8 may offer us a unique opportunity to learn about
the early time of the Universe and thus perhaps about a very-high-energy physics.

In particular, these constants characterize the density of bright matter (i.e., visible matter), the dark
matter (matter recognized because of its gravitational effects), and the dark energy (recognized due to
its cosmological consequences and related to the Einstein’s �-term) in the units of the critical density

�i = ρi

ρc
(49)

ρc = 3

8π

H 2

G
(50)

whereH is the Hubble constant. The critical density is a separation mark between the closed (�tot > 1)
and open (�tot < 1) Universe. The in between case (�tot = 1) is the flat Universe. The present result
for the total density is close to the flat value.
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One more parameter, the ratio of the number of microwave background photons and baryons (nγ /nB)
is important for learning about the moment when the light split from the baryon matter.

Meanwhile, we have to remember about the evolution in the understanding of such important “con-
stants” as the free fall acceleration g and the water density. The constants of our world are not necessarily
the truly fundamental constants since their values might be taken by chance with the spontaneous break-
down of certain symmetries.

15. Physics at the edge

…As she couldn’t answer either question, it didn’t much matter which way she put
it. Lewis Carroll

A question of the constancy and the fundamentality of the fundamental constants is certainly a
question of new physics. Studying the problem experimentally via, for example, searching for the
variability of the natural constants we address this new physics. Maybe that is not the best way to do it,
however, we are extremely limited now in what we can do. Never from Newton’s time, we have been
so badly suited for going forward. Physics is in a deep crisis, despite that, it looks like a success. We
are able to explain nearly everything we can deal with. Yes, we have some problems, but that is either
because some objects are too complicated, or because the involved interaction is strong and we are not
able to move from the Hamiltonian to the observable quantities. But that is normal. In a sense, that is
not a problem of fundamental physics, but of the technology to be able to apply it, which indeed is also
of great importance.

We have access to only a few problems related in different ways to the fundamentally new physics,
these are

• details of the Higgs sector;

• the extension of symmetry from the Standard Model to a certain unification theory, which prob-
ably, involves supersymmetry;

• dark matter;

• dark energy;

• quantum gravity and physics at the Planck scale.

To address them, we suffer from an extreme shortage of information and we do not see a feasible
way to reach more data soon. To illustrate the problem we summarize in Table 9 data, important for
new physics.

16. Dreaming about new physics

And here I wish I could tell you half the things Alice used to say, beginning with her
favourite phrase ‘Let’s pretend.’ Lewis Carroll

What should scientists do with the obvious lack of data? Different people do different things. Some
develop a “real sector” of physics, where certain problems are important, sometimes very important,
but not “fundamentally” important. Some develop tools and technologies that are needed to go further.
Some search for new physics, but the lack of information does not allow us to understand where is the
best place to look for it. So this search is the kind of search for a treasure that does not necessarily exist.

Some dream; it is hard to qualify differently the theoretical studies without any connection to
experiment, i.e., with reality. Dreamers have existed at all times. Sometimes doers and thinkers put the
dreamers into shadow, but they existed.
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Table 9. Fundamental constants of new physics. � – the experimental level is already within theoretical
margins and any improvement of the limits is important; † — unification theory must predict its value at
a certain high-energy scale; radiative corrections are needed to go down to low energy for a comparison
with experiment; ∗ — the exact value is not important for a moment.

Constant Comment

mH should be within certain margins if the Higgs particle is elementary
CKM matrix unitarity would confirm the minimal Standard Model
lepton analog of CKM would constrain physics beyond the Standard Model;

the structure of both matrices could give a hint to the flavor symmetry
|qe + qp| should be zero in the case of unification theories
τp would constrain unification theories�

de would constrain unification theories�

dn would constrain unification theories�

sin	W would constrain unification theories†

mν would constrain physics beyond the Standard Model;
the Majorana mass would confirm that qν = 0

�tot − 1 if the value is positive, the Universe is closed;
if negative, it is open; if zero, it is flat;
a small value is expected due to the inflation model (IM); it will constrain the IM

�dm important that dark matter exists∗

�� important that dark energy exists∗

∂H/∂t would constrain cosmological theory

The shortage of experimental data makes us wonder whether “purely” theoretical progress is pos-
sible. Our opinion is rather negative. The creation of Einstein’s special relativity is sometimes believed
to be a perfect example of such a progress. However, there is certain confusion in use of the word “the-
oretical”. A “theory” may be a model, a hypothesis, or a framework of certain calculations completely
supported by experiment, i.e., a high-level kind of fitting.

The famous inconsistency of Newton’s mechanics and Maxwell’s theory of electromagnetism was
not a “purely theoretical” problem. That was a conceptual disagreement between two “theoretical
fits” of a huge amount of experimental data. The relativity principle in the former form was part of
Newton’s mechanics. Einstein’s solution reproduced both theories: Maxwell’s (exactly) and Newton’s
(as an approximation at v/c � 1). It was also immediately confirmed by numerous experiments. Later,
Einstein tried to solve an inconsistency between two other pieces of the theoretical description of the
then existent data — his fresh-backed relativity and the old-fashioned Newtonian gravity. In contrast to
special relativity, it was difficult to confirm general relativity accurately and in detail. The progress in
the field had been quite slow for a long period until vitalized by the appearance of new data.

The first important steps of quantum mechanics were directly inspired by various experimental data
(for that time this theory was too crazy to appear as a result of a “purely theoretical” development) and
its crucial statements were immediately checked experimentally. When the immediate experiment was
not possible, the theoretical ideas were sometimes gloriously correct, but sometimes completely wrong.
An example of the wrong ideas was an expectation that the proton should have the Dirac value of the
g-factor, i.e., gp = 2 (see, for example, ref. 22). There was no other way but experiment to check if the
idea was right or wrong and they had to wait until the idea was confirmed.

Sometimes this kind of study is just a waste of time, sometimes an important step to future theories.
We can never know. Such important conceptions as antiparticles, the Majorana mass, the Kaluza–Klein
theory, and the Yang–Mills gauge field appeared as purely theoretical constructions. The positron was
discovered shortly after its prediction by Dirac. The Majorana mass perhaps will now find its application
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to the neutrino. TheYang–Mills gauge field theory is now a way to describe weak and strong interactions
and likely other interactions that should appear due to unification. Speculation on Kaluza–Klein theories
have inspired a lot of works on the unification of all interactions with gravity, but, maybe, this problem
will be solved in another way.

17. Conclusions

“Are you animal – or vegetable – or mineral?’ he said, yawning at every word.
Lewis Carroll

In this short paper, we have tried to present an overview of a problem of the fundamental constants
and various related questions, including practical metrology and realizations of the units, simple atoms,
macroscopic quantum phenomena, variations of the constants, and physics at the Planck scale.

In the beginning of the paper, we introduced the fundamental constants as certain universal param-
eters of the most basic equations. We noted afterwards that we hardly understood their origin. These
parameters play a nearly mystic role. Such equations as Maxwell’s or Dirac’s appeared then as the top-
fundamental summary of our understanding of Nature. Clearly, such equations interpret the behavior
of certain objects in terms of the input parameters c, h, e, me, G, etc., which as any input parameters
should come from outside the equations. The equations happen to be a benchmark between understood
(the shape of the equations) and nonunderstood (the fundamental constants inside the equations). In a
sense the truly fundamental constants are the least understood part of the best understood physics.

We still do not know where the fine structure constant α comes from and what its value should be;
we still wonder what is the reason that gravity is so much weaker than the electromagnetic interaction.
The trace of the origin of the fundamental constants is lost somewhere in Wonderland, which we can,
perhaps, see through the looking glass and try to guess about the unseen part of the room...
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