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Dependence of nuclear magnetic moments on quark masses and limits on
temporal variation of fundamental constants from atomic clock experiments
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We calculate the dependence of the nuclear magnetic moments on the quark masses, including the spin-spin
interaction effects, and obtain limits on the variation of the fine structure constant o and (m,/Aqcp) using recent
atomic clock experiments examining hyperfine transitions in H, Rb, Cs, Yb*, and Hg" and the optical transition

in H, Hg*, and Yb™.
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I. INTRODUCTION

Theories unifying gravity with other interactions suggest a
possibility of temporal and spatial variation of the fundamental
constants of nature (see, e.g., review [1] where the theoretical
models and results of measurements are presented). There are
hints for the variation of the fundamental constants in Big Bang
nucleosynthesis, quasar absorption spectra, and Oklo natural
nuclear reactor data. However, a majority of publications report
only limits on possible variations. For example, comparison of
different atomic clocks gives limits on present time variation
of the fundamental constants.

A large fraction of the publications discuss the variation
of the fine structure constant @ = e?/hic. The hypothetical
unification of all interactions implies that a variation in «
should be accompanied by a variation of the strong interaction
strength and the fundamental masses. For example, the grand
unification model discussed in Ref. [2] predicts the quantum
chromodynamics (QCD) scale Aqcp (defined as the position
of the Landau pole in the logarithm for the running strong
coupling constant) is modified as § Aqcp/Aqep ~ 348 a/a.
The variation of quark and electron masses in this model is
given by §m/m ~ 708« /a , giving an estimate of the variation
for the dimensionless ratio

8(mg/Aqcp) 355£ n
(my/Aqcp) o

The coefficient here is model dependent but large values are
generic for grand unification models in which modifications
come from high-energy scales; they appear because the
running strong-coupling constant and Higgs constants (related
to mass) run faster than «. If these models are correct, the
variation in quark masses and the strong interaction scale may
be easier to detect than a variation in «.

One can measure only the variation of dimensionless
quantities. We want to extract from the measurements the
variation of the dimensionless ratio m,/Aqcp, where my is
the quark mass (with the dependence on the renormalization
point removed). A number of limits on the variation of
my/Aqcp have been obtained recently from consideration of
Big Bang nucleosynthesis, quasar absorption spectra, and the
Oklo natural nuclear reactor, which was active about 1.8 billion
years ago [3-5].
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Karshenboim [6] has pointed out that measurements of
ratios of hyperfine structure intervals in different atoms are
sensitive to variations in nuclear magnetic moments. However,
the magnetic moments are not the fundamental parameters
and cannot be directly compared with any theory of the
variations. Atomic and nuclear calculations are needed for
the interpretation of the measurements. Below, we calculate
the dependence of nuclear magnetic moments on m,/Aqcp
by building on recent work and incorporating the effect of the
spin-spin interaction between nucleons. We obtain limits on
the variation of m,/Aqcp from recent experiments that have
measured the time dependence of the ratios of the hyperfine
structure intervals of '*3Cs and 3"Rb [7,8], '**Cs and 'H [9],
171Yb+ and '33Cs [10], "Hg* and 'H [11], the ratio of the
optical frequency in 'Hg* to the hyperfine frequency of
133Cs [12], the ratio of the optical frequency in 'H to the
hyperfine frequency of '3*Cs [13], and the ratio of the optical
frequency in '7Yb* to the hyperfine frequency of '3*Cs [14].
It has been suggested in Ref. [15] that the effects of the
fundamental constants variation may be enhanced 2—3 orders
of magnitude in diatomic molecules such as LaS, LaO, LuS,
and LuO. Therefore, we also present the results for 1397 g,

During the calculations, we shall assume (for notational
convenience) that the strong interaction scale Agcp does not
vary and so we shall speak about the variation of masses (this
means that we measure masses in units of Agcp). We shall
restore the explicit appearance of Aqcp in the final answers.

The hyperfine structure constant can be presented as

) (02 Fre (Z0) ] (u’”) )

mp

mee*
A = const x 5
n

The factor in the first set of brackets is an atomic unit of energy.
The second “electromagnetic” set of brackets determines the
dependence on « and includes the relativistic correction factor
(Casimir factor) Fy.. The last set of brackets contains the
dimensionless nuclear magnetic moment u (that is, the nuclear
magnetic moment M = uleh/2m,c]) and the electron and
proton masses m, and m ,. We might also have included a small
correction because of the finite nuclear size but its contribution
is insignificant.

The ratio of two hyperfine structure constants for different
atoms will cancel out some factors such as atomic unit of
energy and m,/m, and any time dependence falls on two
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TABLE 1. Variational factor K, and « values for various atoms obtained using simple valence shell model (method A) as used in
Eq. (12). The first row is given by Eq. (4). The second row presents the results of the more accurate many-body calculations (see Ref. [16]).
The numerical results marked by an asterisk are obtained by an extrapolation from other atoms.

Atom IH 2H 3He 87Rb g 12930 1330y 171yh 1919
K. (analytical) 0 0 0 0.29 0.53 0.71 0.74 1.42 2.18
K. (numerical) 0 0 0 0.34 0.6 0.8* 0.83 1.5* 2.28
Ky —0.087 —0.020 —0.118 —0.064 —0.118 —0.118 0.110 —0.118 —0.118
Ky —0.013 —0.044 0.0013 —0.010 0.0013 0.0013 0.016 0.0013 0.0013

values: the ratio of the factors Fi. (which depends on «) and
the ratio of the nuclear magnetic moments (which depends on
mg/Aqep)-

For the F;, component, variation in « leads to the following
variation of Fie [11]

3

and one can use the s-wave electron approximation for Fi to
get

(Za)y*(12y% = 1)
Kl =—3 071
ye@dys =1

where y = +/1 — (Za)*. However, numerical many-body
calculations [16] give more accurate results, with a slightly
higher value of K, than that given by this formula. A
comparison is shown in Table 1.

The other component contributing to the ratio of
two hyperfine structure constants is the nuclear magnetic
moment w. Theoretical values for u in the valence shell model
are based on the unpaired valence nucleon and are given by
Schmidt values

“

1 . . 1
S8 + 25 — Dgil forj =1+
2 2

n = j 1 5
—[—g +Q2j+3 forj=1- =
2(j+1)[ 8 +@2j +3)sal J >

The orbital gyromagnetic factors are g = 1 for a

valence proton and g; = O for a valence neutron. The spin
gyromagnetic factors are g;( = g,) = 5.586 for protons and
gs( = g,) = —3.826 for neutrons. These g factors depend
on mg,/Aqcp and previous work exploring this dependence
[17,18] is summarized below. We then use these results to
consider the more realistic situation of u having both a valence
nucleon contribution and a nonvalence nucleon contribution
because of the spin-spin interaction.

II. VARIATION OF MAGNETIC MOMENT WITH
VARIATION IN QUARK MASS

A. Variation in p using valence model magnetic moment

As a preliminary to our results and as a comparison for
evaluating the effects of our calculations, we include the results
of work previously done in this area [17,18]. This work was
essential to our results as the authors calculated the variation

in the neutron and proton magnetic moments (u,, and 1t ,,) with
the variation in m, / Aqcp using chiral perturbation theory.

As mentioned above, the g factors depend on m/Aqcp.
The light quark mass m, = (m, +mg)/2 ~ 5 MeV and in the
chiral limit m, = m,; = 0, the nucleon magnetic moment
remains finite. Thus one might assume that corrections to
the spin g factors g, and g, are small. However, the quark
mass contribution is enhanced by 7 -meson loop corrections
to the nuclear magnetic moments, which are proportional to
7T-MESON mMass My ~ /My Aqcp. Because m; = 140 MeV, the
contribution can be significant.

Full details of these calculations are given in Ref. [17,18].
They give the following results, which relate variations in p,
and p, with variations in light and strange quark masses (1,
and my):

5 5
Ho _ _0.0872" 6)
Hp mq

5 Sm,

o — _0.0132% %)
M“p mg

51t 5

Ko _ _0.1182% ®)
Mn mgy

St sm,

Hn 1000132 )
an ms

Using these relations and the valence model approximations
for w, we can obtain expressions of the form

) Sm Smy
B, g (10)
12 mg mg
Hence for nuclei with even Z and a valence neutron
8 8gn ) Smy
O _ %8 _ 011824 1 0.00132"
12 8n mgy mg

For valence protons, the orbital gyromagnetic factor g; also
has an effect. Thus for '*3Cs with its valence proton and j =
l 1

— 5

S omy Smi
— =0.110— 4 0.016 ,
M mgy U
whereas for 8’Rb with its valence proton but j = [ 4 %,
s 8 Smy
006427 —0.0102
iz mg ms

These results can be presented using the ratio of the
hyperfine constant A to the atomic unit of energy E = m,e* /h>
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by defining the parameter V through the relation
8§V 8(A/E)
Vv A/E
The values for «, and «; in the results for 4/ can then

be combined with the corresponding values of K, in Table I
to give results of the form:

Kq Ky
V(M) = oKl (m‘f ) < M ) e a2
Aqcp Aqcp/) my

The calculated values of K. and « to be used in the
expression for V(M) for various atoms are summarized in
Table 1. The factor m,/m, will cancel out when a ratio of
hyperfine transitions is used. It will, however, survive in a
comparison with optical and molecular transitions.

(11)

B. Variation in u incorporating the effect of nonvalence
nucleons by using the experimental magnetic moment

The results of the previous section were used to calculate
the variation of p with m,/Aqcp based on the single particle
approximation for u (one valence nucleon) within the shell
model. That is, it was assumed that the dimensionless nuclear
magnetic moment is givenby u = g, (s;)’ + (1.)° for a valence
proton and u = g, (s;) for a valence neutron. Here, g, and g,
are the spin gyromagnetic factors for free protons and neutrons
respectively, (1,)0 = Jz—(s;) and (s,)? is the spin expectation
value of the single valence nucleon in shell model:

1 1
— forj =1+ =
s)0=12 . (13)
L forj=1—=
2+ 1) 2

However, it is well known that this theoretical value is only
an estimate of p and the magnetic moment of the valence
nucleon tends to be offset by a contribution from the core
nucleons. An empirical rule is that the spin contribution
of a valence nucleon should be reduced by 40% to obtain
a reasonable value for the nuclear magnetic moment. This
reduction may be explained by the contribution of core
nucleons, which should be negative because proton and
neutron magnetic moments are large and have opposite signs.

For example, a valence proton polarizes, by the spin-
spin interaction, core neutrons and these core neutrons give
a negative contribution to the nuclear magnetic moment
(polarization of the core protons by the valence proton is
not important). We can estimate this offset by considering
contributions to p from the valence and core nucleons. This
means we have both neutron and proton spin contributions
to w:

n= gn<szn) + gp(sz,,> + <lz,7>~ (14)

We neglected here a small contribution of the exchange
currents into the magnetic moment.

We want to evaluate the corrections to the valence model
results using the very accurate experimental values of nuclear
magnetic moments. Because there are three unknown param-
eters ({s;,), (sz,), (I;,) ) and only one experimental value (the
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total magnetic moment) available, to perform an estimate we
need to make approximations.

However, as we show below, the result is not sensitive to par-
ticular approximations if we can reproduce the experimental
magnetic moment exactly. Indeed, using the equations above,
we can present the variation of the magnetic moment in the
following form

0 o0
o — o = [045((s2,) — {52.)") = 0.56((s.,) = {s5,])] =~
q
s)
Here 6u4° is the valence model value. For brevity we here
assume that dm,/m, = déms/m, (the coefficient before

dmg/my is small anyway).

Let us start with the case of a valence proton. The simplest
assumption is that the spin-spin interaction transfers part of
the proton spin to the core neutron spin, i.e., ({s;,) — (s;,)°) =
—({s;,) — (sz,)?) and ([;,) = ([;,)°. Then we can solve the
equation for the magnetic moment and obtain the deviation
from the valence model value

o o (qu
S — o’ = —0.11(u — u)——=. (16)

My
To test the stability of the result, we can try different “ex-
treme” assumptions. For example, if the angular momentum
exchange occurs exclusively between the proton spin and
proton orbital angular momentum, then (/) — {{;,)’ =

—((sz,) — (52,)9), {s2,) = (55,)°. In this case

o o Sm‘]
S —p’ = —0.12(u — pn°)—-. a7
mq
Finally, we can try an unreasonable assumption that the
exchange happens between the proton spin and neutron orbital
angular momentum: (I, ) — ([;,)* = —({s;,) — (s,)), {s,) =
(s2,)°, (lz,) = (I,)°. Then

S —8u’ = —O.lO(,u—u”)%. (18)
my

We see that the results are very stable; the difference in the
correction to the valence model is about only 10%. The results
for a valence neutron are similar. The coefficients are —0.11 for
((52,) = (52,07 = —((s2,) — {5:,)°), =012 for (I,) — {I,,)* =
~((s2,) = (5,)%), and —0.09 for (I;,) — {I.,)° = —({s5,) —
(5:,)°).

To present the final results, we will use an approximation
that gives results somewhere in between the “extreme” as-
sumptions. We assume that there are two separate conservation
laws for the total proton j, and total neutron j, angular
momenta. We also assume that total orbital angular momentum
(I;,) + {I;,) and total spin (s.,) + (s,) are conserved (this as-
sumption corresponds to neglect of the spin-orbit interaction).
We repeat again that we only need these approximations to
obtain specific numbers that are in between “extreme” model
values. Then we can write

(s:)° = (sz,) + (s5,) (19)

(Jzp) = {l2,) + {52, ) (20)

where (j,,) = [ for a valence proton and (j;,) = O for a
valence neutron. Using Egs. (20) and (19) to eliminate (/)
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TABLE II. Variation in p incorporating the effect of nonvalence nucleons in various atoms. (s.)? is the spin expectation value, (s,) and
{s;,) are (either, depending on nucleus) the valence and nonvalance nucleon contributions to this spin, K,, and K, are defined in Eq. (25), and

Kk, and k, are defined in Eq. (26).

Atom ]H 2H 3He 87Rb IIICd I29)(e I33CS 171Yb 199Hg
(5.)° 0 1 0.5 0.5 0.5 0.5 —0.389 —0.167 —0.167
(52,) 0 0.5 0.5 0.124 0.343 0.365 —0.103 —0.150 —0.151
) 0.5 0.5 0 0.376 0.157 0.135 —0.286 —0.017 —0.016
K, — — — —-0.172 221 1.80 0.152 1.16 1.14
K, — — — 0.764 —1.47 —0.969 —-0.619 —0.194 —-0.173
K, —0.087 —0.020 —0.118 —0.046 -0.133 —0.128 0.036 —0.120 —0.120
P —0.013 —0.044 0.0013  —0.010 0.022 0.015 0.008 0.004 0.004
Ky + ks —0.100 —0.064 —0.117 —0.056 —0.111 —0.113 0.044 —0.116 —0.116
and (s;,) in Eq. (14) we get and thus
. Su g 8g
1= gulss,) + (gp — Ds,) + (Jz,) 1) — =0.152—=" - 0.619—2,
(je,) = (gp — Dis.)” g o o
— — — Ky ..
[s,,) = L - 1g” : (22)  giving
o i Ol 0.03582™4 10008242
o —_— —_—
<Szp> = (SZ) - (Szn>' (23) " ' my ’ mg '

We thus have taken into account both the proton and neutron
contributions to the nuclear magnetic moment and can more
accurately estimate how a variation in quark mass relates to a
variation in u. From Eq. (14) we see immediately that

S = 68gy, (sz“) +8g, (szp) (24)
and thus

8 3gn 8

g, Bk, (25)

8n 8p
where
K, = {_g,,(szn)} and K, = {—gp<s1”>} )
I’ 0

From the definition of the g factor for free protons and free
neutrons, we know 8g,, /g, = S/, and g, /8, = Sitp/thp.
We can now use Egs. (6)—(9) to explicitly relate the variation
in u to the variation in quark masses. Thus

S dmy Sm
— =Kg—— TKs s
w my mg

(26)
where clearly

K, = —0.118K, — 0.087K,,
Ky = 0.0013K,, — 0.013K ,.

We are now in a position to evaluate the coefficients in

specific cases. For '3Cs, I™ = 7/2% and u = 2.5820 and it
has a valence proton. Thus (j; ) = % = l—% and (s,)° =

Therefore Eqgs. (22) and (23) immediately give us

_7
18"

(s.,) = —0.103
(s.,) = —0.286

The dependence on the strange quark mass is relatively weak
and it is convenient to assume that the relative variation of
the strange quark mass is the same as the relative variation in
the light quark masses (this assumption is motivated by the
Higgs mechanism of mass generation). We restore the explicit
notation for the strong-coupling constant and conclude

O _ 0,041 2Ma/ Aacn)

" (my/Aqcp)

Values for 87Rb, 199Hg, Typ, 1, and ' Xe can be
similarly calculated and are presented in Table II. For ?H and
3He, the magnetic moments are pretty close to naive values,
therefore we have not tried to improve the results.

These results can be summarized in Table II. A comparison
with the earlier results (using the valence model method)
for the total variational relation («x; + k) is shown later in
Table III. We see that 5,4/ in the nuclei with a valence proton
is very sensitive to the core polarization effects. However, there
is no such sensitivity in the nuclei with a valence neutron. To
explain this conclusion one should note that a neutron does not
give an orbital contribution to the nuclear magnetic moment.
The orbital contribution of core protons is relatively small. As
a result, the core polarization effect changes §u and u in a
similar way, i.e., it practically does not change their ratio. In
the nuclei with a valence neutron

Bt gy lPl = 1230ss,) dmg

2 (s:,) = 1.20(s.,) mq

for '3Cs. 27

(28)

C. Effect of variation of the the spin-spin interaction

In the previous subsection we did not take into account that
(s;,) and (s.,) may depend on the quark mass. However, this
dependence appears because the spin-spin interaction depends
on the quark masses. Below we want to perform a rough
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TABLE III. Comparison of results for « [see Eq. (47)] for the three methods used in various
nuclei. Method A considered only the valence nucleon; Method B includes the nonvalence
nucleons; Method C further includes the effect of quark mass on the spin-spin interaction.

Atom 87Rb g 12930 1330 1391 2 171yh 191g
Method A —0.074 -0.117 -0.117 0.127 0.127 -0.117  —=0.117
Method B —0.056 —0.111 -0.113 0.044 0.032 —-0.116 —0.116
Method C —0.016 0.125 0.042 0.009 —0.008 —0.085 —0.088

estimate of this effect using the one-boson-exchange model
of the strong interaction.

Consider, for example, a nucleus with a valence proton. As
above we assume that the total spin of nucleons is conserved
and so

(s:)" = <szp> + (sz,,)v (29)

where (s.)° is again the valence model value. It is convenient
to use the following notations:

fs:,) = bis2) (30)
fs,) = (1 = b)s2)”, 31)

where b is a coefficient determined by the spin-spin in-
teraction. We need to determine the dependence of b on
my/Aqcp to complete our calculations. It can be estimated
using perturbation theory as

2
- <<o|v”|k>> | @)
E, — E;

where

Vs = V(ri —r2)S; - S,

and E, — E; is the spin-orbit splitting (see, e.g., Ref. [19]). As
my — 0, E, — E; remains finite and so it can only have a weak
dependence on m,; / Aqcp. The major dependence comes from
the w-meson mass that vanishes in the chiral limit m, — O.
According to Ref. [20] the m-meson exchange gives about
1/3 of the spin-spin interaction. The other most significant
contribution is given by the p-meson exchange. We neglect
other meson contributions and assume that the remaining 2/3 of
the spin-spin interaction is given by the p meson. The result is
not very sensitive to this assumption because the p meson and
other vector mesons have approximately the same and rather
weak sensitivity to a variation in m,. According to Ref. [21]
dm,, ém

—£ =0.021—£,

m, mg
whereas for the 7 meson
My ™~ /Ny AQCD
so we have
dmy 1ém,

my 2 my '

The dominating contribution is therefore given by r-meson
exchange. The exchange contribution of ¥ is small because
of the small overlap between v,(r) and v,(r) and is not
important. The main contribution is when a neutron is excited

through 7° exchange into a spin-orbit doublet, j = [ + % to
j=1- % The strongest dependence thus originates from the
70 pion mass.

The momentum space representation of the nucleon-
nucleon interaction because of a 7 meson is

Vo(q) = 821 - 1)1 - Q@ - @) ———,
7(q) = 87 (T1 - T2)(01 - q)(02 (I)m]zt g
where q is the momentum transfer = p; —p», T is the isotopic
spin and & is the Pauli spin matrix.
We separate this into tensor and scalar parts

@1 @@2-q) = {(G1- QG2 9 — 361 - 5247}
+{361-524°}. (33)
The scalar part of the interaction we are interested in becomes

2 q’
ysealar ) — ?”(n “T)(0 -az)m
T

2 2
gn = - o fd mn
= 2 (T1-12)(01-02) <1 - ) - G4
2 2
3 mz +q
Fourier transformation of this and letting r,, = |r, — 1|
will give us the coordinate space representation

2
g = - - -
ysehr ) = ?”(1’1 “T2)(01-02)
1
X |:—4rr8(l’12) + m? em”r12i| (35)
12
Asm, — 0, g5 is finite and so we can neglect its dependence
on mg/Aqcp. Now the strong force short range repulsion
(implying proton and neutron hard cores) needs to be taken
into account. It means that r,, # 0 and hence 6(r,,) = O.
Nucleon core repulsion is incorporated into the interaction
using the factor f(r,,) which is presented, e.g., in Ref. [22]

V(r,) =[fr)PV(r,)

where

fr) =1—e 17 (1-0.6807), p= 2.
fm
Clearly, this factor restricts nucleon interaction at very short
ranges, with f(r,, = 0) = 0, yet its effect is minimal at larger
distances because f(r,) ~ 1 for r, > 1 fm. It is this factor
which results in a nonzero dependence of b on my/Aqcp.
Therefore we have the effective spin-spin interaction

Vis = V,(r,)(S1 - S2) x const, (36)

055501-5



V. V. FLAMBAUM AND A. F. TEDESCO

where

2
Vo(rlz) = miefmnm M (37)

r12

We can obtain the short range limit of this effective interaction
(which takes into account the finite size of the nucleons, that
is the short-range repulsion). For clarity in our equations, we
define B, S, and S;. First let

Vo(r,) = Bé(r,,)

so that we have
B=B / 8(r)d’r, = / V,(r,)d’r,,.
Also let

1 3
S=— | Volr)d'’r,,

=d4dr / e " [f(rlz)]zrlzdrm (38)
0

and < 20, 12
Sl = 47Tmﬂ / e M1y [f(rlz)] [rlz] drlz
0

so that
N Si
m.  my
Thus
8§ dmg S
S T s
From these definitions, we have
B = mi -S
and so
SEZZBmﬂ ﬁzzémn_Smﬂi.
B My S My my S

Recalling that the w meson contributes only 1/3 to the spin-spin
interaction, we have:

Vi) \? 1 Smy
b~ M ~ —B? and with Mx _
E, — E; 3 My 2 my

18my,

Ww¢E S€C

sb 2 S\ dmy, 1 Si\ émy
—==-(2-—= =—(2—-—)]— (39
b 3 S ) my 3 S ) my
The integrals for S and S; can be evaluated using m, =
Myo = 135 MeV = 0.68 fm~! to give
S

— =2.17.
S

This gives a small number for S;/S — 2 = 0.17, therefore the
result may seem to be unstable. It is useful to clarify this point
using a simpler analytical model for the repulsive core with
f? =1 —exp( — kr) that gives

Si 1—R3
b, S (40)
S 1—R2
My
R = . 41
e 41)

PHYSICAL REVIEW C 73, 055501 (2006)

Any value of k > m, gives R <0.5 and so gives a small
difference for S;/S — 2. Therefore, the small value of this
difference does not indicate any strong instability. If we take
k = 1.1 fm~! (the same value of the core radius that we used
in the more sophisticated model for f described above), we
obtain S;/S = 2.2, i.e., practically the same result as above.
Thus, the result does not have any strong model dependence.

Using S§;/S = 2.17 we obtain the following m-meson
contribution to the variation of b:

8b Smy
— ] =-0.057—=. 42)
b T I’I’lq
Similarly, for the p meson we obtained S;/S = 3.77 and
&b ) )
() = 242" — 0052 43)
b/, m mgy
The final estimate is
b dmy
— =—-0.11—. 44)
b total my

Note that if we assume that the spin-spin interaction is
completely dominated by the m-meson exchange the result
(—0.17) would not be very different.

Returning to the magnetic moment, we have for the case of
a valence proton:

w = gnb(s.)’ + (g, — D1 — b)(s.)’ +(j:,)
S 8gn 58, 8b

K,+—K,+ —K,, 45)
TS g b
n— g, + D)s
Kb,, _ (g 8p )( zr,).
m

Similarly, for the case of a valence neutron:

w = gn(l - b)<sz)o + (gp - l)b(sz)o

S 8gn 8 8b

Mg, Bk 4 Pk, (46)
Ko 8&n 8p b

K, — &8 = Vlss)

n

m

The dependence of 6/ on the spin-spin interaction (via the
K, term) can now be seen to be quite significant. It depends on
three values. The first is the common factor (g, — g, — 1) =
8.41, which is large. Next, it depends on the value of the
effective spin of the nonvalence nucleons, which indicates
the extent of the spin-spin interaction. It is most significant
when the experimental value for u deviates greatly from the
valence model value. Third, it depends on the nuclear magnetic
moment and so is further enhanced when dealing with nuclei
with small magnetic moments (e.g., 1 cd has u = —0.5949,
whereas 133Cs has u = 2.582).

We now have a modified version of Eq. (26) that includes
the term —0.11K), to account for the variation of the spin-spin
interaction itself:

S e 8(my/Aqep)
iz (my/Aqcp) 47)
k = —0.12K, — 0.10K,, — 0.11K,.
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For 13Cs, we use the values obtained earlier to get

(& —&p+ 1)<sz,,>
"

K, =

P

= 0.335,
giving

87“ - 0.009M

M (my/Aqcp)

All calculations for 3°La, 8’Rb, "Hg, 7'Yb, '''Cd, and
129X e are similar to the method used for '33Cs. The results are
presented in Table III, which summarizes the three methods
used. Method A was the first method discussed and used
the theoretical nuclear magnetic moment of just the valence
nucleon. Method B included the contribution from nonvalence
nucleons to the nuclear magnetic moment. Method C further
included the effect of a variation in quark mass on the spin-spin
interaction itself. It shows the significance of the spin-spin
interaction on how p varies with quark masses, with sign
reversal for some nuclei.

D. Limits on the variation of the fine structure constant & and
(mg [ Aqcp) using recent atomic clock experiments
We can now estimate the time dependence of the ratio of the
hyperfine transition frequencies to variations inm, / Aqcp. The
results for each atom M can be presented using the parameter
V as defined earlier with Eq. (11), with the values of K. and
k for the atoms considered here summarized in Table IV.

8V(M) _ 8(A/E) _QM,E,M( my )“M me
V(M) —  AJE m,’

Aqcp

For two atoms, M| and M,, the dependence of the ratio of
the frequencies A(M;)/A(M>) can be presented as the ratio X

X(My /My = LMD
V(M>)
Koy —Kum
= aKTCIMliKm]MZ <Amq ) l ’ . (48)
QCD
For A®’Rb)/A(**Cs), we have
m —0.025
X(Rb/Cs) = "% (q> (49)
Aqcp

and the result of measurements by [8] can be presented as a
limit on the variation of X:

1 dX(Rb/Cs)
X(Rb/Cs)  dt

= (—0.5%+5.3) x 10719 /yr.
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For A(**°Cs)/A("H), we have

0.109
X(Cs/H) = 0 (A’"‘f) (50)
QCD

and the result of the measurements in Ref. [9] may be presented
as

1 dX(Cs/H) T
5.5 x 10 . 51
XCsH) | o0 D
For A("'Yb")/A(133Cs), we have
m —0.093
X(Yb* /Cs) = 057 (") (52)
Aqcp

and the result of measurements by [10] can be presented as a
limit on the variation of X:
1 dX(Ybt/Cs)

= (2.8 £2.9) x 107" /yr.
X(Yb'/Cs)  dr ( ) 1077/ yr

For A(**Hg)/A('H), we have

m 0.012
X(Hg/H) = o> (") (53)
Aqcp

and the result of measurements by [11] can be presented as a
limit on the variation of X:
1 dX(Hg/H)
<38
X(Hg/H) dt

x 10714 /yr.

The optical clock transition energy E(Hg) (A = 282 nm) in
the Hg™ ion can be presented in the form:

4
E(Hg) = const x (mhf) Fu(Za) (54)

and calculations by Ref. [16] gives
SEH 8
(Hg) _ 5,0«

E(Hg) - T

(55)

corresponding to V (Hg Opt) = o2, Variation of the ratio of
the hyperfine splitting A(Cs) is given by

0.009
V(Cs) = o253 <mq) (m) . (56)
Aqcp m,

The relative variation of the electron to proton mass ratio can
be described by [18]

e \007 oot
x<m/m>=( ) ( ) .
r Aqcp Aqcp Aqcp

TABLE IV. Summary of final results showing the relative sensitivity of the hyperfine relativistic factor to a variation in « (parameter K)
and the relative sensitivity of the nuclear magnetic moment to a variation in the quark mass/strong interaction scale m,/Aqcp (parameter k).

These values can be used in Eq. (48).

Atom 'H H IHe ¥Rb 1icd 29Xe 130y BLa TYb  %Hg
Kol 0 0 0 0.34 0.8 0.83 0.9 1.5 2.28
K —0.100 —0.064 —0.117 —0.016 0.125 0.042 0.009 —0.008 —0.085 —0.088
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giving

—0.039
V(Cs):a2'83< il ) ( Me ) (57)
Aqcp Aqcp

Variation of the ratio of the hyperfine splitting A(Cs) to this
optical transition energy is given by

LCS) = of (mq>o.oo9 <m€> (58)
V(Hg Opt) AQCD m,,

003 ,
I (’"q) ( e ) (59)
Aqcp Aqcp

and the result of measurements by Ref. [12] can be presented
as a limit on the variation of X

1 dX(Opt)
X(Opt) dt

For the 1s — 2s transition in hydrogen the relativistic

corrections are negligible, i.e., V (H Opt) = «. Variation of the

ratio of the hyperfine splitting A(Cs) to this optical transition
energy is given by

X(Opt) =

<7 x 1073 /yr.

0.009
X (Opt) = & — 28 e e (60)
V(H Opt) AQCD mp
~0.039
= 28 (’"‘1 ) < e ) 1)
Aqcp Aqcp

and the result of measurements by Ref. [13] can be presented
as a limit on the variation of X

1 dX(Cs/HOpt)
X(Cs/HOpt) dt

For the optical clock transition energy E(Yb) (A = 436 nm)
in the Yb™ ion calculations by Ref. [23] gives

E(Y
SE(YD) _ ) gg%®
E(Yb)

=(3.246.3) x 1075 /yr.

(62)

corresponding to V(Yb Opt) = «*38, Variation of the ratio of
the hyperfine splitting A(Cs) to this optical transition energy
is given by

0.009
X(Opt) = VG o195 (e ) Me (63)
V(YbOpt) AQCD mp
.\ 00 o
Can ()" () o
Aqcp Aqcp

and the result of measurements by Ref. [14] can be presented
as a limit on the variation of X

1 dX(Opt)
X(Opt) dt

Other combinations have been suggested as possible areas
of research. For A('*Xe) / A(C*He), we have

=(1.24+4.4) x 107 /yr.

0.159
X (Xe/He) = o <mq> : (65)
Aqep
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whereas for A(lH)/A(ZH), we have

~0.036
X("H/?H) = ( Mg > . (66)
Aqgcp

One can use Table IV to predict which hyperfine transitions
will be most sensitive to a variation in «. The greatest effect will
be seen for ratios between atoms with the greatest difference
in values of K. and «, especially if relation (1) were correct.
Clearly, it would be best to test ratios of elements with opposite
signs for « so that the effects are more pronounced.

The effect of the spin-spin interaction is to reduce the
sensitivity of Cs to a variation in quark mass and enhance the
sensitivity of other nuclei such as Cd. Because the spin-spin
interaction is so strong for Cd, with its magnetic moment
of —0.59 being quite different to the valence model value
of —1.9, it may be quite sensitive to a variation in quark
mass. In Ref. [6], the importance of Cd was motivated by its
small magnetic moment. This could enhance its sensitivity to
a variation of the fundamental constants. We have not actually
obtained any enhancement, and the absolute value of |« | in Cd
is comparable to the valence model value. However, because of
the spin-spin interaction it has an opposite sign relative to some
other nuclei with large |« |. For example, consider A(Cd)/A(H)
and A(Cd)/A(He), with each ratio involving opposite signs for
K

0.23
X(Cd/H) = ¢ (”“) 67)
Aqcp
0.24
X(Cd/He) = 609 (’"‘f) . 68)
Aqcp

Note that if relation (1) were correct, the variation of X may
be dominated by m, / Aqcp: for A(Cd)/A(H), X(Cd/H) a’.

III. CONCLUSIONS

The results of this work are presented in the previous
section. Table IV provides one with the numbers needed for
the interpretation of the measurements. Below, we formulate
a few conclusions that correct some misconceptions in the
existing literature and may help to plan future experiments
and calculations.

There is no such thing as a “model-independent interpreta-
tion of measurements” if one uses the valence model (Schmidt)
values of the nuclear magnetic moments. The valence model
cannot even guarantee the order of magnitude and sign of the
effect.

The situation may be improved by presenting the nuclear
magnetic moment as a linear combination of the neutron,
proton, and orbital magnetic moments. However, even this
method does not guarantee high accuracy because the expan-
sion coefficients in this linear combination depend on the ratio
my/Aqcp. A consistent interpretation of the measurements
requires the calculation of the dependence of nuclear magnetic
moment on this parameter.

A small value for the nuclear magnetic moment does not
guarantee an enhancement of the sensitivity to m,/Aqcp.
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However, a large deviation from the valence model value
should increase the error in the calculated sensitivity.

The dependence on m,/Aqcp of the nuclear magnetic
moments of g;Rb, lgng, lggLa, and lgZXe is strongly
suppressed by the many-body corrections (see Table III). One
cannot guarantee high accuracy of calculation in this situation.
However, it is probably not important because the suppression
means that the contribution of these magnetic moments to
the final effect of the variation is small. The effect will be
dominated by the variation of o, m,./m,, or another magnetic

moment. For '}{Cd (where the magnetic moment is small)

PHYSICAL REVIEW C 73, 055501 (2006)

the effect is not suppressed but it is of opposite sign to the
valence model value. For '71Yb and '3 Hg the deviations
from the valence model are small. Naive calculations give
also reasonable results for %H and 3He.
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