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Theories unifying gravity and other interactions suggest the possibility of spatial and temporal variation of
physical “constants” in the Universe. Detection of high-redshift absorption systems intersecting the sight lines
towards distant quasars provides a powerful tool for measuring these variations. We have previously demon-
strated that high sensitivity to the variation of the fine-structure constacén be obtained by comparing
spectra of heavy and light atonier molecules Here we describe new calculations for a range of atoms and
ions, most of which are commonly detected in quasar spectna: Mg 11, Mg1, Cu, Civ, Nv, O1, Al i, Siu,

Siv, Cai, Cau, Crii, Mnii, Znii, Gen (see the results in Table )IIThe combination of Fe and Mgi, for

which accurate laboratory frequencies exist, has already been used to constraiiations. To use other
atoms and ions, accurate laboratory values of frequencies of the $bmignsitions from the ground states

are required. We wish to draw the attention of atomic experimentalists to this important problem. We also
discuss a mechanism which can lead to a greatly enhanced sensitivity for placing constraints on variation on
fundamental constants. Calculations have been performed for Yigi, Cai, and Sm where there are optical
transitions with the very small natural widths, and for hyperfine transition ina@sl Hgu.
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PACS numbgs): 31.30.Jv, 12.20.Ds, 06.20.Jr, 95.30.Dr

[. INTRODUCTION to quasar spectra by several groups. However, while this
method is appealing through its simplicity, it is possible to
Possible variations of the fundamental physical constanténprove on its efficiency. Also, it may even give incorrect
in the expanding Universe are currently of particular interest€Sults, since corrections of higher order thgnare ignored.

because of the implications from unified theories, such a\ order of magnitude sensitivity gain can be achieved by
string theory ancM theory, that additional compact dimen- comparing transition frequencies of heavy and light atoms

(or moleculey [6,7]. In this paper we extend that previous

sions of space may exist. The “constants” seen in Ourthree\'/vork, presenting the results of calculations of the depen-

dimensional subspace pf th.e theory will vary at the same ratfence of the transition frequencies arfor many atoms and
as any ch_ange occurring in the scale lengths of_the_ extriyns where data exist for quasar specsee Table II).
compact dimensionee, e.g.[1-3]). Gas clouds which in- Other possibilities for measuring changes dninclude
tersect the sight lines towards distant quasars produce aBomparisons of different optical transitions, suchsgs and
sorption lines. These absorption systems present ideal labp-~d, in the same atom or molecule, or comparisons of mi-
ratories in which to search for any temporal or spatialcrowave transitions in molecules which contain rotational
variation of fundamental constants by comparing the oband hyperfine intervals. We have also calculated the depen-
served atomic spectra from the distant objects with laboradence onx of some atomic microwave and optical frequency
tory spectrasee, e.g.[4], and references thergin sta_ndards which could be used for laboratory searchea for
The energy scale of atomic spectra is given by the atomj¥arations. For examgll(e, one can compare thelHEp tran-
unit me*/#2. In the nonrelativistic limit, all atomic spectra Sion @=35514 cm with any narrow line of another

. . atomic or molecular transition having approximately the
are proportional to this constant and analyses of quasar SPEL: me frequency. Small frequency differencasich do not

. X - ; ntﬁequire very precisabsolutecalibration can be measured
Indeed, any change in the atomic unit will be absorbed in th§ery accurately. The mercury frequency has a very large
determination of the redshift paramete(1+z=w/w’, @' relativistic shift which also has a negative sigrsually the
is the redshifted frequency of the atomic transition, antd  shift is positive. Therefore this frequency difference has a
the laboratory value However, any change of the funda- very stronge dependence.
mental constants can be found by measuring the relative size Finally, there is an interesting possibility for studying
of relativistic corrections, which are proportional @,  transitions between “accidentally” degenerate levels in the
wherea=e?/4c¢ is the fine-structure constaf]. same atom or molecule. There are several practically degen-
It is natural to search for any changesdrusing measure- erate levels of different electron configurations in rare-earth
ments of the spin-orbit splitting within a specific fine- and actinide atoms. Of course, there are many more possi-
structure multiplet, and indeed this method has been appliekilities in molecules where there are vibrational and rota-
tional structures. The relativistic corrections to the different
energy levels are different and can exceed the very small
*Electronic address: V.Dzuba@unsw.edu.au http://www.physfrequency corresponding to the transition between “degen-
unsw.edu.auldzuba/ erate” states by many orders of magnitude, i.e., a tiny varia-
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tion of & can change the frequency significantly. Also, there We see that the relativistic correction is largest forshe
is an interesting dependence on the nucleon mass if the rand p,,, states, wherg¢=1/2. The fine-structure splitting is
tational, vibrational, and hyperfine structures are involved. Irgiven by

this case one can measure time dependence of the nucleon

mass which is a function of the strong interaction constant.  A1s=E(P32) —E(P12)=—A(P12)/2=—A(P3p). (4)
The main problem here is to find a narrow-width transition.

Note that we present all results in this paper assuming thatt Itn ?]uasatr) abso[)ptlon s(,jpe_rcrt]ra, ;rans_[[tl_on.s front"n trﬁ grOLénd
the atomic unit of energyne*/#2 is constant. state have been observed. Therefore it is important to under-

stand how the frequencies of these transitions are affected by
relativistic effects. The fine splitting in excited states is
Il. THEORY smaller than the relativistic correction in the ground state,
since the density of the excited electron near the nucleus is
smaller. As a result, the fine splitting of tHel transition

Let us start our calculations using simple analytical estifrom the ground statée.g.,s-p) is substantially smaller than

mates of the relativistic effects in transition frequencies. Firsthe absolute shift of the frequency of thep transition. The
consider the relativistic corrections to the frequency of annean energy of the electron is defined as

atomic transition in a hydrogenlike atom. The relativistic
correction to the energy level is given ksee, e.g.[8])

A. Semiempirical estimations

2 1 4
E(p)=5E(psp) + 3E(P12)=En(p)— 345, (5
B me'z? (za)Z/ 1 3 3 3 3

An= 282 3 \j+1/2 4n)’ @ whereE, is the nonrelativistic energy. Therefore the relativ-
istic shift of the mears-p transition frequency is given by
where Z is the nuclear charge) is the principal quantum 4
number, and is the total electron angular momentum. This A(p—s)=— §A|S—A(sl,2). (6)

value of the relativistic correction can be obtained as an ex-
pectation valugV) of the relativistic perturbatio¥, which

is only large in the vicinity of the nucleus. Therefore the
relativistic correctionA is proportional to the electron den-

The formulas(3)—(6) do not take into account many-body
effects. For example, relativistic corrections change the self-
- , consistent atomic potential. The many-body calculations dis-
2 3/n343

sity near the nucleusl (r<a/z)|*=Z%/n*a” (ais the Bohr ¢ sced helow show that the relativistic energy shift in atoms

radius,a/Z is the size of the hydrogenlike ipnFor an ex-  \ith one external electron can be approximately described
ternal electron in a many-electron atom or ion the electrorby the equation

density near the nucleus is given by the form(dae, e.g.,

[9]) obtained in the semiclassical approximatior(1) n ) _
a\|? 7%z
Wir<g| « 35" (2 whereC(z,j,!) is different for different atoms and partial
14

waves but does not depend on the principal quantum num-
ber. In many case€(Z,j,l)=0.6, although noticeable de-
whereZ, is the charge “seen” by the external electron out- viations from this value are possible.

side the atom, i.eZ, = 1 for neutral atomsZ, = 2 for It is easy to explain the sign of the many-body effect. The
singly charged ions, etcy is the effective principal quantum relativistic single-particle correction increases the attraction
number, defined b, = — (me*/242)/(Z2/v?), whereE, is  of an electron to the nucleus and makes the radius of the
the energy of the electron. For hydrogenlike iomsn,Z,  electron cloud smaller. As a result, the direct Hartree-Fock
=Z. Thus, to find the single-particle relativistic correction, potential, which is the nuclear potential screened by core
we should multiply A in Eg. (1) by the ratio of |¥(r electrons, becomes smaller at short distances. This decreases
<alZ)|? in the multielectron ion and hydrogenlike ion. The the binding energy of a valence electron. Therefore many-

result is body effects have an opposite sign to the direct effect.
It is also easy to see why(Z,j,l) does not depend on the
me'z2 2 energy of the val_ence electron. T_he_effect of a potential
= a (Za) [ 1 _ é( _ é” change on short distances on the binding energy of an exter-
2h2 3 [J t12 Zv 4z nal electron is proportional to the density of this electron in

(Za)? the vicinity of the nucleus which in turn is proportional to
~E,————. 3) 1/v® [see Eq.(2)]. On the other hand, the direct relativistic
v(j+1/2) effect is also proportional to &# for the same reasofsee
Egs.(2) and(3)]. Therefore the ratio of two effects which is
The second term in the square brackets is presented to pr@{Z,j,1)/(2j+1) is practically independent of the energy of
vide a continuous transition from the hydrogenlike ion Eq.the external electron.
(1) to the multielectron ion Eq(3). In multielectron ions The accurate value of the relativistic shift can only be
(Z>2,) this term is, in fact, a rough estimate based on theobtained from many-body calculations. However, one can
direct calculation of V). We should neglect this small term assume tha€(Z,j,1)=0.6 and use Eq(7) for rough esti-
since there are more important many-body corrections.  mates of relativistic corrections. This usually gives better
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results than a single-particle estimate in E8). For ex- tions were obtained by repeating the calculations for differ-
ample, many-body calculations show that, as a rule, the relaent values ofx in the RHF Hamiltonian.

tivistic correction to the energy is negative 8, and p4/» The form of the single-electron wave function we use
states and positive for other states. This behavior is reproexplicitly includes a dependence on the fine-structure con-
duced by Eq(7) but not by Eq.(3). Apart from that, formula stante,

(3) suggests that the correction is largest $g5 and p),

states and rapidly decreases wiittvhile many-body calcu- 1f (a2 (r/1)jim
lations show that the correction fat states is sometimes 'ﬂ(r)nilm:F iag(r) Q. (r/r);
bigger than forp states. This is again reproduced by Ed. " il
where there is a strong cancellation between two terms in thehjs leads to the following form of the RHF equations:
case ofp states. Note that this complex behavior of the rela-

. (11

tivistic effects cannot be explained in terms of single- , Kn 5 «
electron density at the origin and should be attributed to fa(n)+ = fo(r) —[2+ a™(€,=V)]gn(r) =0,
many-body effects. (12)
Let us see now how Eq$4)—(6) will be modified if the P A
many-body correctiorC(Z,j,l) is included. Assuming the gr@(r)—T"gn(r)+(en—V)fn(r):O,
same value of2(Z,j,l) for py, and pg, states we have for
the fine splitting where k=(—1)""1"Y%(j+1/2) andV is the Hartree-Fock
(Za)? potential:
AISZE(p?,/Z)_E(pl/Z)z_EEnm- (8 ) .
Vf=Vd(r)f(r)—J'Vexcr{r,r )f(r")dr’. (13

For the mean energy of theelectron instead of E(5) we
have The nonrelativistic limit can be achieved by reducing the
value ofa to a=0.

For atoms or ions with one external electron above closed
shells, the calculations begin with th&'~1 approximation.
A Hartree-Fock procedure is carried out initially for a
With C=0.6 the second term in E¢9) is numerically small. ~closed-shell ion with the external electron removed. When

Hence, relativistic corrections move tpg, andps, states in ~ convergence for the core i; achieyed, the states of the exter-
Opposite directions, |ea\/ing the mean energy almost unna| electron are calculated in the field of the frozen core. The

changed. Therefore the relativistic shift of the megmtran- ~ main reason for this approach is the simplicity of the pertur-

E(p)=En(p)+

4
ZC—§)A,S. 9)

sition is mostly given by the energy shift of tisestate bation theory for calculation of the correlation corrections. It
is well known that correlations are very important in many-
A(p—s)=—A(Sy)). (100  electron atoms and should be included in the calculations to

obtain accurate results. We do this by means of many-body

The relative sizes of relativistic corrections are proportionalPerturbation theory(MBPT) and a correlation-potential
to 72, so they are small in light atoms. Therefore we canMethod[10]. A
constrain changes in by comparing transition frequencies  The correlation potential, is defined as an operator
in heavy and light atoms. We stress that the most accuratghich gives a correlation correction to the enefmization
and effective procedure includes all relativistic correctionspotentia) of the valence electron
and the analysis of all available linégather than the fine R
splitting within one multiplet only. We have not discussed Se,=(al2|a). (14
here contribution of the Breit relativistic correction to the
electron-electron interaction. It is not enhanced by the factof Ne expectation value here is taken over the single-particle
Z? and is much smaller than the contribution from spin-orbitwave function of the externdvalence electron. Thus is
interaction. Our numerical calculations have demonstratednother nonlocal operator which can be included in @&8)
that the contribution of the Breit interaction to the frequencyby redefining the nonlocal potential
of s-p transitionA(p—s) is indeed negligible.
Vexch(rvr,)_>Vexch(rrr,)+2(rar,)- (195
B. Relativistic many-body calculaiions Single-electron states of a valence electron calculated in a
Accurate calculations of relativistic effects in atoms havenonlocal potentia(15) are often called Brueckner orbitals.
been done using many-body theory which includes electron- MBPT is used to calculat&. Perturbation expansion
electron correlations. We used a correlation-potential methodtarts from the second order in residual Coulomb interaction.
[10] for atoms with one external electron above closed shellominating higher-order correlations can also be included
and a combined configuration interaction and many-bodyy using the technique developed in Rf2]. However, we
perturbation theory method 1] for atoms with several va- found that for the few-electron ions such asvCand Silv,
lence electrons. A relativistic Hartree-Fo¢€RHF) Hamil-  second-order results are already of very high accufaeg
tonian was used in both cases to generate a complete set Béble l). Therefore we decided that the accurate calculations
single-electron orbitals. The values of the relativistic correc-of higher-order corrections are not needed.
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TABLE I. Energy levels of Qv and Siv with respect to the The operato consists of two parts,, is the one-electron

continuous spectrum limit (cfit). operator which describes the correlation interaction between
a valence electron and the cot®, is very similar to the

lon State RHF Brueckner Experiméht  correlation potentia® in Eq. (15) which we used for atoms

with one external electron above closed shdllg.is a two-

Cw 28y, 519253 520082 520178 particle operator which describes the effects of screening of
2P1r2 454054 455508 455694 the Coulomb interaction between valence electrons by the
2p3z; 453926 455337 455587 core electrons. It has been demonstrated in Rdfl that the
3dap 195196 195287 195298 core-valence correlations are very important and usually
3ds; 195187 195277 195287 dominate over correlations between valence electrons. Thus

Siv 3syn 360613 363840 364098 it is more important to includ&, than to achieve the com-
3p1s 290073 292514 292808 pleteness of the basis in the CI calculations.
3P3) 289606 292036 202348 (4) The standard CI technique is used to diagonalize the
3dg), 201807 203480 203721 matrix of the effective CI Hamiltonian and obtain many-
3ds), 201807 203472 203721 electron energies and wave functions. We need to apply this

method to the atoms with many electrons in open shell. This
®Reference27]; numbers are rounded to the last digit before thecan make configuration space and computation time very
decimal point. large. However, we do not need very high accuracy in the
present calculations. Therefore, we have made a few simpli-

. " fications to the method compared to Refl]. The effect of
For some other atoms we introduce fitting parametgrs  screening ¥.,) is usually much smaller than one-electron

into the expression for the nonlocal potential in EI3) to  correlations with the coreX,) and we neglect it. We also
simulate the effect of higher-order correlationgyonocal  neglect subtracting diagrams By, (see Ref[11]) because
=Vexent fu%, Wherev=s, p or d. The values forfs, f,  there must be strong cancellations between screening and
andfqy are chosen to fit the experimental data for laboratorysubtracting diagrams. Finally, we use a relatively small basis
valuea=1/137.036. In all cases the valuesfgfare close to  set with three to four single-electron basis states of each
unity. The samef, have been used for calculations with symmetry. This usually leads to a few hundred configura-
varying a. This procedure works well because the accuracytions. This small basis is not complete to high precision.
of the results in the second order is already good and only Blowever, the results are reasonably good because correla-
small correction is introduced by the fitting parameters.  tions with the core are include@ee Table ). To simulate

For atoms with more than one external electron we uséhe effect of incompleteness of the basis and of the omitted
the combination of the configuration interaction method withdiagrams we introduce fitting parameters By similar to
many-body perturbation theofit 1]. what we did for atoms with one external electron. The results

(1) As for single-electron-above-closed-shells atoms, wdor Crii presented in Table Il illustrate the effects of core-
start calculations from the RHF method\Y~* approxima-  valence correlations, correlations between valence electrons,
tion. However, this starting approximation does not corre-and the effect of fitting. Note that only one fitting parameter
spond to a closed-shell system and needs to be further speeias used to fit all energy levels.
fied. We do this in a very simple way. The contribution of an  There are two contributions to the relativistic energy shift.
open shell to the Hartree-Fock potential is calculated using he first is the direct relativistic correction to the energy of a
the complete shell potential multiplied by the “occupation” valence electron in the Hartree-Fock-Dirac equati¢t®.
factorn/(2j+1), wheren is the actual number of electrons This correction can be found by varyingin Eq. (12) with
on that shell and is the total single-electron momentum. fixed potential. There is also an indirect relativistic correc-
Single-electron basis states are calculated in this Hartredion which appears because of the change of the core poten-
Fock potential with one external electron removad'(* tial (including correlation potentipldue to the relativistic
potentia). effects in the core. Neither the correlation potentiator the

(2) All basis states are divided into core states and valencstandard Hartree-Fock potential dependaoaxplicitly. This
states. Core states are frozen and included into calculatiodependence appears via the basis set of single-electron wave
only via the effective potential of the core. Valence states aréunctions used to calculate both potentials since these wave
used as a basis for the configuration interactiéh method.  functions had been obtained by solving Dirac-like equations
Note that the definition of the core at this stage does nofl2). Full-scale calculations, repeated for different values of
necessarily coincide with the core in RHF calculations. Fora, were necessary to reveal this implicit relativistic behavior.
example, for Fa 3ds, and 35, states are core states in the The value of the indirect effect is not small and in some
RHF procedure. But these states are also included into theases exceeds several times the value of the direct one. This
configuration interaction, so they are valence states in the Ghdirect relativistic effect is essentially a many-body effect. It
calculations. is responsible for the failure of the single-particle form(8a

(3) The effective Hamiltonian of the CI method is con- which is unable to reproduce the value of the relativistic
structed. To include correlations between core and valenceorrection accurately.
electrons we modify the effective Hamiltonian of the stan-
dard Cl method by adding an extra operaqr lll. RESULTS AND DISCUSSION

To find the dependence of frequencies @rwe use the
N - following formula for the energy levels within one fine-
eff eff T <+ structure multiplet:
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TABLE Il. lonization potential and excitation energies of ICfcm ™ 1).

State RHF® RHF + 3 P Cl+3¢ Cl+ fx3d Experimenf
lonization potential

3d°6S;), 125889 141067 137208 133815 133060
Excitation energies

3d%4p°Fy, 40230 52943 50233 46777 46905.52

3d%4p °Fg), 40388 53125 50411 46949 47040.54

3d%4p °F, 40606 53377 50655 47187 47227.50

3d%4p Py, 42422 55171 51902 48466 48399.19

3d*4p 6P, 42562 55342 52067 48621 48491.39

3d%4p éP,, 42758 55581 52304 48844 48632.36

aSingle-configuration approximation.

PAs RHF but correlations with core electrons included in the second order.

‘Configuration interaction for 343 relativistic configurations; correlations with core are also included.
dScreening parameter,=0.74 has been set for correlations @alence electrons with the core to fit
ionization potential and excitation energies.

‘Referencd27).
a\? a\? a)? (1) Within a series of one-electron orbitals of a given
;) -1 ;) —1[+Ky(LS) o symmetry, the relativistic energy shift is largest for the low-
! ! ! est orbital and decreases for orbitals of higher energies. This
a>4 trend is supported by the semiempirical consideration pre-
-

+Q;

E=Ep+Q;

+K,(LS)? (16)  sented in Sec. I. The higher electron density in the vicinity of

the nucleus gives larger relativistic effects. This also explains
HereE,, Q,, andQ, describe the position of the configu- Why the relativistic shift of the ground state energy is bigger
ration centerK, andK, describe the level splitting within When ionization potential is larger. o
one configurationl, is the total orbital angular momentur®, (2) When « is changing towards its nonrelativistic limit
is the total electron spin, ang| is the laboratory value of. ~ @=0, one-electron energies &fand py/, states move up
We introduce anl(S)? term to describe deviations from the While energies 0P, andd states move down. The relativ-
Lande interval rule. There are two sources of th8)¢ term:  istic shifts ofs andd states tend to be large while the energy
the second order in the spin-orbit interaction(Z«)*] and ~ Shifts of p states are relatively small. Note that the single-
the first order in the Breit interaction<(a?=5.3x10"°). particle consideration suggests that the relativistic shifts are

The second-order spin-orbit interaction is larger for heavylarge forsandp,, states and all energies move up whers

atoms where we actually need to introduce th&)? term.  decreasingsee formulag3)—(5)]. Accurate calculations give
Therefore we first fitted the experimental fine-structure interdifferent behaviors due to indirect relativistic effects: relativ-
vals to findK, and K, (numerical calculations give close istic corrections to the core orbitals change the electronic
values ofK; andK,). Then we used numerical calculations potential which in turn shifts the energy of the external elec-

for = \7/8a; and = 34, to find the dependence of the tron. This effect is neglected in a naive single-particle for-
conﬁgurationI center ony (cloefficientsQ1 and Q,). It is mula. The direct effect dominates over the core change effect

convenient to represent the final results in the form for s states. Fop states these two effects are close in mag-
nitude but opposite in sign. The core change effect domi-
0=+ g X+ a5y, (17)  nates ford states. Thus introduction &(Z,j,l) in Eqg. (8)
effectively takes into account the core change effect.
where q;=0Q;+K(LS), 0,=Q,+K,(LS)?, x=(ala)? These tendencies are illustrated by the results presented in

—1y=(ala)*—1, andwy=Ey+K;(LS)+K,(LS)? is an  Table Ill. For example, the relativistic shifts of frequencies
experimental energy of a particular state of the fine-structuref E1 transitions are negative in €rand Gal and positive
multiplet. The parameters,, g, andg, for E1 transitions for other atoms. This is because these transitions correspond
for many atoms and ions of astrophysical interest are preto ad-p one-electron transition in the case ofiCand to a
sented in Table . p-s transition for Gel while for the other atoms the transi-

One can use these data to fit absorption systems in quastions are of thes-p type. The relativistic correction for Ge
spectra in order to measure or place upper limits on anys relatively small because the corresponding transition may
variation of @. The maximum theoretical sensitivity comes be described as the transition from the groyndrbital to
from comparing the spectra of Feand Cni since relativistic  exciteds orbital and because the relativistic corrections are
effects in both ions are large and have opposite sign. Themall for bothp states and excited states. Another example is
effect here is about 20 times larger than the fine splitting fotthe sharp increase of the relativistic effect fromiCa Crii.
each of the ions. This is due to the coherent effect of two factors: biggend

An analysis of the theoretical data reveals some interesbigger ionization potential for Gr as compared to Qa
ing tendencies in the behavior of the relativistic corrections As is apparent from the analysis above one should expect
apart from being proportional t&?2. the biggest relativistic shift for the-d (or d-s) transitions in
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TABLE lll. Dependence ornx of the frequencies of th&1 atomic transitions of astronomic interest
(cm™Y). Herew= wo+ qyx+ gy wherex=(al/a))?>— 1, y=(ala))*— 1.

z Atom/ion Ground state Upper states o a; d,
6 Ci 2s22p 2p9, 2s2p? Dy, 74932.617 177 3
2s2p? %S, 96493.742 171 3
2s2p? 2P 110625.1° 173 -3
2s2p? *Pap 110666.3 217 3
6 Civ 1s?2s %Sy, 1s?2p 2P 64484.094 108 8
1s?2p 2Py, 64591.348 231 -8
7 Nv 2s 2s,, 2p 2P 80463.21F 196 -4
2p 2Py, 80721.906 488 2
8 o] 2p* sp, 2p33s 33, 76794.97F 130 —-30
2p34s 33, 96225.05% 140 -20
12 Mg 3s? 1s, 3s3p P, 35051.27F 106 -10
12 Mgl 3s 28y 3p 2P 35669.298 120 0
3p 2P 35760.848 211 0
13 Al 3s 2S5 3p 2P 53682.33C 216 0
3p 2Py 53916.598 464 0
14 Siil 3s23p 2pe, 3s3p? Dy, 55309.352 547 -6
14 Siv 2p%3s 25 2p%3p 2P 71287.52% 362 -8
2p®3p 2Py, 71748.625% 766 48
20 Cal 4g? s, 4s4p P, 23652.30% 300 0
20 Call 3pb4s %Sy 3p®4p 2P 25191.51% 192 16
3p%4p 2P, 25414.42F 420 16
24 Cril 3d® LS 3d%4p F 3 46905.17 —1624 —-25
3d%4p Fg, 47040.35 —-1493 -21
3d*4p F ) 4722724 -1309 -18
3d%4p 5P, 48398.94F —1267 -9
3d%4p 5p;, 48491.10% -1168 —16
3d*4p 5P, 48632.12% -1030 -13
25 Mnii 3d%4s S, 3d%4p P, 38366.184 918 34
3d%4p P, 38543.086 1110 19
3d%p P, 38806.664 1366 27
26 Fell 3d°s  °Dg,  3d%4p Dy,  38458.987F 1449 2
3d%p °D9,  38660.0494 1687 —-36
3d%4p 5F,»  41968.064%F 1580 29
3d%4p Fgp 42114.832% 1730 26
3d%p 5F.1 42237.0506 1852 26
3d%4p 5P, 42658.2404 1325 47
30 Znii 3d%s 2,  3d¥%4p 2P 48480.997 1445 66
3d%p 2Py, 49355.027 2291 94
32 Gell 4s%4p 2P 45°5s 281 62403.027 —~575 —-16

aMorton, Ref.[26].

®Moore, Ref.[27].

Pickering, Thorne, and Webb, R¢R8].
dSugar and Corliss, Ref29].

®Naveet al, Ref.[30].

heavy atoms. These transitions are not observed in quasar Cal [13] andE2 transitions in Sn [14], Ybn [15], and
absorption systems but may be suitable for laboratory experi-g 11 [16]. There are many other atoms which are being stud-
ments. The natural linewidth for these transitions is veryied as possible frequency standards but which are not in-
small. Furthermore, very precise measurements of the frecluded in the table. These include MEL7], Inn [18], Xel
guencies of many such transitions already exist since theyl9], Agi [20], etc. Note that the biggest relativistic effect is
are used as atomic optical frequency standards. We preseint Hgii. This is because of thd-s transition and a high

in Table IV relativistic shifts of frequencies of some atomic value of Z. This makes Hg the most interesting candidate
transitions which are used or proposed as optical frequencipr a laboratory search far variations.

standards. These include the strongly forbid&édntransition The following limit of « variation was found in Ref.7]:
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TABLE IV. Relativistic shift of energies of some metastable states of atoms which are used as optical

frequency standards (cm).

A Atom/ion Ground state Upper states o d; dz
20 Cal 4s? s, 4s4p 3P, 15210. 230 0
38 S 5s 28, 4d 2Dy,  14555.90 2636 96
4d 2Dy,  14836.24 2852 160
70 Ybu 6s %S 5d Dayp  24332.69 9898 1342
5d Ds,  22960.80 8298 1570
80 Hgll 5d%s %S, 5d%s? Dy, 355140 —36785  —9943
5d%6s2 °Dgpp 50552.0  —19377 —12313
(@) This is in good agreement with estimates based on the
- =+26+52x 10716, (18)  Fermi-Segre formuld22]. The best sensitivity of various

Assuming o/ a=10"'% one can get for the &%s?%S,,
—5d%s2? 2D, transition in Hgl

w=3 Hzyr !,

which should be compared with the natural linewidth limit of
1.8 Hz[16].

There are also ongoing laboratory searches for variation

of @ using microwave atomic frequency standafedsomic
clocks (see, e.g.[22]). There are a number of microwave

frequency standards which use ground state hyperfine stru

ture (hfs) intervals of atoms or ion¢see, e.g., reviey23]).
These include hfs of Rb, Cd Cs, Ba', Yb*, and Hg [23].
Here again the biggest relativistic effects are in the Hion.

It is convenient to present the dependence of hfs constants
in a form similar to Eq.(17),

2
Anis= (%) (Ao+X), (19

where A, is the hfs constant fov= ¢, . Its value for Hg
was recently measured to very high precision:

Ao(Hg")=40507 347 996.841 534) (41)Hz

[21]. Many-body calculations similar to the calculations of
energies described above show that40 500 MHz for Hgi
and q=956 MHz for Cs. Note that A,(*%Cs)

clock rate comparisons can be achieved when ttpcks

are compared wit a H maseif22] (parameteig=0 for H).
Assuming again a/a=10"%° yr't we will get 2.3

x 10" 1 yr~1 for the frequency rate shift between H maser
and Hg clocks. Note that the ratio of hyperfine structure
constants is also sensitive to the variation of nuclear mag-
netic g factors which may appear due to variation of strong
interaction.

One more interesting possibility is to use transitions be-
tween “accidentally” degenerate levels in the same atom.
8uch metastable levels exist, for example, in the Dy atom:
two J=10 opposite parity levels 4%d6s and 4f°5d’6s
Ié/ing 19797.96 cm? above ground stat€This pair of lev-

Is was used to study parity nonconservation in Refs.
[24,25.) There are other examples of “accidentally” degen-
erate levels in the rare-earth and actinide atoms and many
close levels in other heavy atoms and igmsthe absence of
degeneracy one should look ferd or s-p transitions where
the relativistic effects are largedn the case of “accidental”
degeneracy, the contribution of the relativistic correction
to the frequency of theEl transition in a heavy atom
(~1000 cm!) is compensated by the difference in the
Coulomb interaction energies of the two configurations.
However, if « varies with time, this compensation will even-
tually disappear. Thus we have a correction1000
cm Y (ala))?—1] to the very small €0.01 cm?) fre-
quency of the transition. One can measure, for example, the
time dependence of the ratio of frequencies for transitions
between the hyperfine components of these two states. In the
case of “accidentally” degenerate levels belonging to differ-
ent electron terms in a molecule one can have enhanced ef-
fects of the change of both and the nucleon mass. In the

=2 298157943 Hz. This is the exact value because the frdatter case the enhancement factor is the ratio of the vibration

quency 9192631770 Hz of thes6F=3—-6s F=4 hfs
transition in *33Cs, which is equal to Ay(6s), is used as a
definition of the metric second.

Relative drifts in rates of atomic clocks based oniHand
Cs will be

d AHg |[2q

— Hg* 2 C &_230—08 @
dat"ACy ~ A—o( g’ A—O( 9|, =2 83—

a
=1.47-.
o

energy to the small frequency of the transition. The problem
in these degenerate level cases is to find a transition with a
small natural width.
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