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Calculations of the relativistic effects in many-electron atoms and space-time variation
of fundamental constants

V. A. Dzuba,* V. V. Flambaum, and J. K. Webb
School of Physics, University of New South Wales, Sydney 2052, Australia

~Received 17 August 1998!

Theories unifying gravity and other interactions suggest the possibility of spatial and temporal variation of
physical ‘‘constants’’ in the Universe. Detection of high-redshift absorption systems intersecting the sight lines
towards distant quasars provides a powerful tool for measuring these variations. We have previously demon-
strated that high sensitivity to the variation of the fine-structure constanta can be obtained by comparing
spectra of heavy and light atoms~or molecules!. Here we describe new calculations for a range of atoms and
ions, most of which are commonly detected in quasar spectra: FeII , Mg II, Mg I, C II , C IV, N V, OI, Al III , Si II ,
Si IV, CaI, CaII, Cr II , Mn II, Zn II , GeII ~see the results in Table III!. The combination of FeII and MgII, for
which accurate laboratory frequencies exist, has already been used to constraina variations. To use other
atoms and ions, accurate laboratory values of frequencies of the strongE1 transitions from the ground states
are required. We wish to draw the attention of atomic experimentalists to this important problem. We also
discuss a mechanism which can lead to a greatly enhanced sensitivity for placing constraints on variation on
fundamental constants. Calculations have been performed for HgII, Yb II , CaI, and SrII where there are optical
transitions with the very small natural widths, and for hyperfine transition in CsI and HgII.
@S1050-2947~99!04601-6#

PACS number~s!: 31.30.Jv, 12.20.Ds, 06.20.Jr, 95.30.Dr
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I. INTRODUCTION

Possible variations of the fundamental physical consta
in the expanding Universe are currently of particular inter
because of the implications from unified theories, such
string theory andM theory, that additional compact dimen
sions of space may exist. The ‘‘constants’’ seen in our thr
dimensional subspace of the theory will vary at the same
as any change occurring in the scale lengths of the e
compact dimensions~see, e.g.,@1–3#!. Gas clouds which in-
tersect the sight lines towards distant quasars produce
sorption lines. These absorption systems present ideal l
ratories in which to search for any temporal or spa
variation of fundamental constants by comparing the
served atomic spectra from the distant objects with labo
tory spectra~see, e.g.,@4#, and references therein!.

The energy scale of atomic spectra is given by the ato
unit me4/\2. In the nonrelativistic limit, all atomic spectr
are proportional to this constant and analyses of quasar s
tra cannot detect any change of the fundamental consta
Indeed, any change in the atomic unit will be absorbed in
determination of the redshift parameterz (11z5v/v8, v8
is the redshifted frequency of the atomic transition, andv is
the laboratory value!. However, any change of the funda
mental constants can be found by measuring the relative
of relativistic corrections, which are proportional toa2,
wherea5e2/\c is the fine-structure constant@5#.

It is natural to search for any changes ina using measure-
ments of the spin-orbit splitting within a specific fine
structure multiplet, and indeed this method has been app

*Electronic address: V.Dzuba@unsw.edu.au http://www.ph
unsw.edu.au/~dzuba/
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to quasar spectra by several groups. However, while
method is appealing through its simplicity, it is possible
improve on its efficiency. Also, it may even give incorre
results, since corrections of higher order thana2 are ignored.
An order of magnitude sensitivity gain can be achieved
comparing transition frequencies of heavy and light ato
~or molecules! @6,7#. In this paper we extend that previou
work, presenting the results of calculations of the dep
dence of the transition frequencies ona for many atoms and
ions where data exist for quasar spectra~see Table III!.

Other possibilities for measuring changes ina include
comparisons of different optical transitions, such ass-p and
p-d, in the same atom or molecule, or comparisons of m
crowave transitions in molecules which contain rotation
and hyperfine intervals. We have also calculated the dep
dence ona of some atomic microwave and optical frequen
standards which could be used for laboratory searches foa
variations. For example, one can compare the HgII E2 tran-
sition v535 514 cm21 with any narrow line of another
atomic or molecular transition having approximately t
same frequency. Small frequency differences~which do not
require very preciseabsolutecalibration! can be measured
very accurately. The mercury frequency has a very la
relativistic shift which also has a negative sign~usually the
shift is positive!. Therefore this frequency difference has
very stronga dependence.

Finally, there is an interesting possibility for studyin
transitions between ‘‘accidentally’’ degenerate levels in t
same atom or molecule. There are several practically deg
erate levels of different electron configurations in rare-ea
and actinide atoms. Of course, there are many more po
bilities in molecules where there are vibrational and ro
tional structures. The relativistic corrections to the differe
energy levels are different and can exceed the very sm
frequency corresponding to the transition between ‘‘deg
erate’’ states by many orders of magnitude, i.e., a tiny va

s.
230 ©1999 The American Physical Society
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PRA 59 231CALCULATIONS OF THE RELATIVISTIC EFFECTS IN . . .
tion of a can change the frequency significantly. Also, the
is an interesting dependence on the nucleon mass if the
tational, vibrational, and hyperfine structures are involved
this case one can measure time dependence of the nu
mass which is a function of the strong interaction consta
The main problem here is to find a narrow-width transitio

Note that we present all results in this paper assuming
the atomic unit of energyme4/\2 is constant.

II. THEORY

A. Semiempirical estimations

Let us start our calculations using simple analytical e
mates of the relativistic effects in transition frequencies. F
consider the relativistic corrections to the frequency of
atomic transition in a hydrogenlike atom. The relativis
correction to the energy level is given by~see, e.g.,@8#!

Dn52
me4Z2

2\2

~Za!2

n3 S 1

j 11/2
2

3

4nD , ~1!

where Z is the nuclear charge,n is the principal quantum
number, andj is the total electron angular momentum. Th
value of the relativistic correction can be obtained as an
pectation valuê V& of the relativistic perturbationV, which
is only large in the vicinity of the nucleus. Therefore th
relativistic correctionD is proportional to the electron den
sity near the nucleusuC(r ,a/Z)u2}Z3/n3a3 (a is the Bohr
radius,a/Z is the size of the hydrogenlike ion!. For an ex-
ternal electron in a many-electron atom or ion the elect
density near the nucleus is given by the formula~see, e.g.,
@9#! obtained in the semiclassical approximation (n@1)

UCS r ,
a

ZD U2

}
Za

2Z

n3a3
, ~2!

whereZa is the charge ‘‘seen’’ by the external electron ou
side the atom, i.e.,Za 5 1 for neutral atoms,Za 5 2 for
singly charged ions, etc.;n is the effective principal quantum
number, defined byEn52(me4/2\2)/(Za

2/n2), whereEn is
the energy of the electron. For hydrogenlike ionsn5n,Za
5Z. Thus, to find the single-particle relativistic correctio
we should multiply D in Eq. ~1! by the ratio of uC(r
,a/Z)u2 in the multielectron ion and hydrogenlike ion. Th
result is

Dn52
me4Za

2

2\2

~Za!2

n3 F 1

j 11/2
2

Za

ZnS 12
Za

4ZD G
.En

~Za!2

n~ j 11/2!
. ~3!

The second term in the square brackets is presented to
vide a continuous transition from the hydrogenlike ion E
~1! to the multielectron ion Eq.~3!. In multielectron ions
(Z@Za) this term is, in fact, a rough estimate based on
direct calculation of̂ V&. We should neglect this small term
since there are more important many-body corrections.
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We see that the relativistic correction is largest for thes1/2
and p1/2 states, wherej 51/2. The fine-structure splitting is
given by

D ls5E~p3/2!2E~p1/2!.2D~p1/2!/2.2D~p3/2!. ~4!

In quasar absorption spectra, transitions from the gro
state have been observed. Therefore it is important to un
stand how the frequencies of these transitions are affecte
relativistic effects. The fine splitting in excited states
smaller than the relativistic correction in the ground sta
since the density of the excited electron near the nucleu
smaller. As a result, the fine splitting of theE1 transition
from the ground state~e.g.,s-p) is substantially smaller than
the absolute shift of the frequency of thes-p transition. The
mean energy of thep electron is defined as

E~p!5
2

3
E~p3/2!1

1

3
E~p1/2!.En~p!2

4

3
D ls , ~5!

whereEn is the nonrelativistic energy. Therefore the relati
istic shift of the means-p transition frequency is given by

D~p2s!.2
4

3
D ls2D~s1/2!. ~6!

The formulas~3!–~6! do not take into account many-bod
effects. For example, relativistic corrections change the s
consistent atomic potential. The many-body calculations d
cussed below show that the relativistic energy shift in ato
with one external electron can be approximately descri
by the equation

Dn5
En

n
~Za!2F 1

j 11/2
2C~Z, j ,l !G , ~7!

where C(Z, j ,l ) is different for different atoms and partia
waves but does not depend on the principal quantum n
ber. In many casesC(Z, j ,l ).0.6, although noticeable de
viations from this value are possible.

It is easy to explain the sign of the many-body effect. T
relativistic single-particle correction increases the attract
of an electron to the nucleus and makes the radius of
electron cloud smaller. As a result, the direct Hartree-Fo
potential, which is the nuclear potential screened by c
electrons, becomes smaller at short distances. This decre
the binding energy of a valence electron. Therefore ma
body effects have an opposite sign to the direct effect.

It is also easy to see whyC(Z, j ,l ) does not depend on th
energy of the valence electron. The effect of a poten
change on short distances on the binding energy of an ex
nal electron is proportional to the density of this electron
the vicinity of the nucleus which in turn is proportional t
1/n3 @see Eq.~2!#. On the other hand, the direct relativist
effect is also proportional to 1/n3 for the same reason~see
Eqs.~2! and~3!#. Therefore the ratio of two effects which i
C(Z, j ,l )/(2 j 11) is practically independent of the energy
the external electron.

The accurate value of the relativistic shift can only
obtained from many-body calculations. However, one c
assume thatC(Z, j ,l )50.6 and use Eq.~7! for rough esti-
mates of relativistic corrections. This usually gives bet
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232 PRA 59V. A. DZUBA, V. V. FLAMBAUM, AND J. K. WEBB
results than a single-particle estimate in Eq.~3!. For ex-
ample, many-body calculations show that, as a rule, the r
tivistic correction to the energy is negative fors1/2 and p1/2
states and positive for other states. This behavior is re
duced by Eq.~7! but not by Eq.~3!. Apart from that, formula
~3! suggests that the correction is largest fors1/2 and p1/2
states and rapidly decreases withj while many-body calcu-
lations show that the correction ford states is sometime
bigger than forp states. This is again reproduced by Eq.~7!
where there is a strong cancellation between two terms in
case ofp states. Note that this complex behavior of the re
tivistic effects cannot be explained in terms of sing
electron density at the origin and should be attributed
many-body effects.

Let us see now how Eqs.~4!–~6! will be modified if the
many-body correctionC(Z, j ,l ) is included. Assuming the
same value ofC(Z, j ,l ) for p1/2 and p3/2 states we have fo
the fine splitting

D ls5E~p3/2!2E~p1/2!.2
1

2
En

~Za!2

n~ j 11/2!
. ~8!

For the mean energy of thep electron instead of Eq.~5! we
have

E~p!5En~p!1S 2C2
4

3DD ls . ~9!

With C50.6 the second term in Eq.~9! is numerically small.
Hence, relativistic corrections move thep1/2 andp3/2 states in
opposite directions, leaving the mean energy almost
changed. Therefore the relativistic shift of the means-p tran-
sition is mostly given by the energy shift of thes state

D~p2s!.2D~s1/2!. ~10!

The relative sizes of relativistic corrections are proportio
to Z2, so they are small in light atoms. Therefore we c
constrain changes ina by comparing transition frequencie
in heavy and light atoms. We stress that the most accu
and effective procedure includes all relativistic correctio
and the analysis of all available lines~rather than the fine
splitting within one multiplet only!. We have not discusse
here contribution of the Breit relativistic correction to th
electron-electron interaction. It is not enhanced by the fac
Z2 and is much smaller than the contribution from spin-or
interaction. Our numerical calculations have demonstra
that the contribution of the Breit interaction to the frequen
of s-p transitionD(p2s) is indeed negligible.

B. Relativistic many-body calculations

Accurate calculations of relativistic effects in atoms ha
been done using many-body theory which includes electr
electron correlations. We used a correlation-potential met
@10# for atoms with one external electron above closed sh
and a combined configuration interaction and many-bo
perturbation theory method@11# for atoms with several va
lence electrons. A relativistic Hartree-Fock~RHF! Hamil-
tonian was used in both cases to generate a complete s
single-electron orbitals. The values of the relativistic corr
a-
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tions were obtained by repeating the calculations for diff
ent values ofa in the RHF Hamiltonian.

The form of the single-electron wave function we u
explicitly includes a dependence on the fine-structure c
stanta,

c~r !n jlm5
1

r S f ~r !nV~r /r ! j lm

iag~r !nṼ~r /r ! j lm
D . ~11!

This leads to the following form of the RHF equations:

f n8~r !1
kn

r
f n~r !2@21a2~en2V̂!#gn~r !50,

~12!

gn8~r !2
kn

r
gn~r !1~en2V̂! f n~r !50,

where k5(21)l 1 j 11/2( j 11/2) andV is the Hartree-Fock
potential:

V̂f 5Vd~r ! f ~r !2E Vexch~r ,r 8! f ~r 8!dr8. ~13!

The nonrelativistic limit can be achieved by reducing t
value ofa to a50.

For atoms or ions with one external electron above clo
shells, the calculations begin with theVN21 approximation.
A Hartree-Fock procedure is carried out initially for
closed-shell ion with the external electron removed. Wh
convergence for the core is achieved, the states of the e
nal electron are calculated in the field of the frozen core. T
main reason for this approach is the simplicity of the pert
bation theory for calculation of the correlation corrections
is well known that correlations are very important in man
electron atoms and should be included in the calculation
obtain accurate results. We do this by means of many-b
perturbation theory~MBPT! and a correlation-potentia
method@10#.

The correlation potentialŜ is defined as an operato
which gives a correlation correction to the energy~ionization
potential! of the valence electron

dea5^auŜua&. ~14!

The expectation value here is taken over the single-part
wave function of the external~valence! electron. ThusŜ is
another nonlocal operator which can be included in Eq.~13!
by redefining the nonlocal potential

Vexch~r ,r 8!→Vexch~r ,r 8!1S~r ,r 8!. ~15!

Single-electron states of a valence electron calculated
nonlocal potential~15! are often called Brueckner orbitals.

MBPT is used to calculateS. Perturbation expansion
starts from the second order in residual Coulomb interact
Dominating higher-order correlations can also be includ
by using the technique developed in Ref.@12#. However, we
found that for the few-electron ions such as CIV and SiIV,
second-order results are already of very high accuracy~see
Table I!. Therefore we decided that the accurate calculati
of higher-order corrections are not needed.
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For some other atoms we introduce fitting parametersf v
into the expression for the nonlocal potential in Eq.~13! to
simulate the effect of higher-order correlations:Vnonlocal
5Vexch1 f vS, wherev5s, p or d. The values forf s , f p
and f d are chosen to fit the experimental data for laborat
valuea51/137.036. In all cases the values off v are close to
unity. The samef v have been used for calculations wi
varying a. This procedure works well because the accura
of the results in the second order is already good and on
small correction is introduced by the fitting parameters.

For atoms with more than one external electron we
the combination of the configuration interaction method w
many-body perturbation theory@11#.

~1! As for single-electron-above-closed-shells atoms,
start calculations from the RHF method inVN21 approxima-
tion. However, this starting approximation does not cor
spond to a closed-shell system and needs to be further s
fied. We do this in a very simple way. The contribution of
open shell to the Hartree-Fock potential is calculated us
the complete shell potential multiplied by the ‘‘occupation
factor n/(2 j 11), wheren is the actual number of electron
on that shell andj is the total single-electron momentum
Single-electron basis states are calculated in this Hart
Fock potential with one external electron removed (VN21

potential!.
~2! All basis states are divided into core states and vale

states. Core states are frozen and included into calculat
only via the effective potential of the core. Valence states
used as a basis for the configuration interaction~CI! method.
Note that the definition of the core at this stage does
necessarily coincide with the core in RHF calculations. F
example, for FeII 3d3/2 and 3d5/2 states are core states in th
RHF procedure. But these states are also included into
configuration interaction, so they are valence states in the
calculations.

~3! The effective Hamiltonian of the CI method is co
structed. To include correlations between core and vale
electrons we modify the effective Hamiltonian of the sta
dard CI method by adding an extra operatorS,

Ĥeff
CI→Heff

CI1Ŝ.

TABLE I. Energy levels of CIV and SiIV with respect to the
continuous spectrum limit (cm21).

Ion State RHF Brueckner Experimenta

C IV 2s1/2 519253 520082 520178
2p1/2 454054 455508 455694
2p3/2 453926 455337 455587
3d3/2 195196 195287 195298
3d5/2 195187 195277 195287

Si IV 3s1/2 360613 363840 364098
3p1/2 290073 292514 292808
3p3/2 289606 292036 292348
3d3/2 201807 203480 203721
3d5/2 201807 203472 203721

aReference@27#; numbers are rounded to the last digit before t
decimal point.
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The operatorS consists of two parts.S1 is the one-electron
operator which describes the correlation interaction betw
a valence electron and the core.S1 is very similar to the
correlation potentialS in Eq. ~15! which we used for atoms
with one external electron above closed shells.S2 is a two-
particle operator which describes the effects of screening
the Coulomb interaction between valence electrons by
core electrons. It has been demonstrated in Ref.@11# that the
core-valence correlations are very important and usu
dominate over correlations between valence electrons. T
it is more important to includeS than to achieve the com
pleteness of the basis in the CI calculations.

~4! The standard CI technique is used to diagonalize
matrix of the effective CI Hamiltonian and obtain man
electron energies and wave functions. We need to apply
method to the atoms with many electrons in open shell. T
can make configuration space and computation time v
large. However, we do not need very high accuracy in
present calculations. Therefore, we have made a few sim
fications to the method compared to Ref.@11#. The effect of
screening (S2) is usually much smaller than one-electro
correlations with the core (S1) and we neglect it. We also
neglect subtracting diagrams inS1 ~see Ref.@11#! because
there must be strong cancellations between screening
subtracting diagrams. Finally, we use a relatively small ba
set with three to four single-electron basis states of e
symmetry. This usually leads to a few hundred configu
tions. This small basis is not complete to high precisio
However, the results are reasonably good because cor
tions with the core are included~see Table II!. To simulate
the effect of incompleteness of the basis and of the omi
diagrams we introduce fitting parameters forS, similar to
what we did for atoms with one external electron. The resu
for Cr II presented in Table II illustrate the effects of cor
valence correlations, correlations between valence electr
and the effect of fitting. Note that only one fitting parame
was used to fit all energy levels.

There are two contributions to the relativistic energy sh
The first is the direct relativistic correction to the energy o
valence electron in the Hartree-Fock-Dirac equations~12!.
This correction can be found by varyinga in Eq. ~12! with
fixed potential. There is also an indirect relativistic corre
tion which appears because of the change of the core po
tial ~including correlation potential! due to the relativistic
effects in the core. Neither the correlation potentialS nor the
standard Hartree-Fock potential depend ona explicitly. This
dependence appears via the basis set of single-electron
functions used to calculate both potentials since these w
functions had been obtained by solving Dirac-like equatio
~12!. Full-scale calculations, repeated for different values
a, were necessary to reveal this implicit relativistic behavi
The value of the indirect effect is not small and in som
cases exceeds several times the value of the direct one.
indirect relativistic effect is essentially a many-body effect
is responsible for the failure of the single-particle formula~3!
which is unable to reproduce the value of the relativis
correction accurately.

III. RESULTS AND DISCUSSION

To find the dependence of frequencies ona we use the
following formula for the energy levels within one fine
structure multiplet:



t
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TABLE II. Ionization potential and excitation energies of CrII (cm21).

State RHFa RHF 1 S b CI 1 S c CI 1 f 3S d Experimente

Ionization potential
3d5 6S5/2 125889 141067 137208 133815 133060

Excitation energies
3d44p 6F3/2 40230 52943 50233 46777 46905.52
3d44p 6F5/2 40388 53125 50411 46949 47040.54
3d44p 6F7/2 40606 53377 50655 47187 47227.50
3d44p 6P3/2 42422 55171 51902 48466 48399.19
3d44p 6P5/2 42562 55342 52067 48621 48491.39
3d44p 6P7/2 42758 55581 52304 48844 48632.36

aSingle-configuration approximation.
bAs RHF but correlations with core electrons included in the second order.
cConfiguration interaction for 343 relativistic configurations; correlations with core are also included.
dScreening parameterf d50.74 has been set for correlations ofd-valence electrons with the core to fi
ionization potential and excitation energies.
eReference@27#.
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E5E01Q1F S a

a l
D 2

21G1Q2F S a

a l
D 4

21G1K1~LS!S a

a l
D 2

1K2~LS!2S a

a l
D 4

. ~16!

HereE0 , Q1 , andQ2 describe the position of the configu
ration center,K1 and K2 describe the level splitting within
one configuration,L is the total orbital angular momentum,S
is the total electron spin, anda l is the laboratory value ofa.
We introduce an (LS)2 term to describe deviations from th
Lande interval rule. There are two sources of the (LS)2 term:
the second order in the spin-orbit interaction@;(Za)4# and
the first order in the Breit interaction (;a255.331025).

The second-order spin-orbit interaction is larger for hea
atoms where we actually need to introduce the (LS)2 term.
Therefore we first fitted the experimental fine-structure int
vals to find K1 and K2 ~numerical calculations give clos
values ofK1 andK2). Then we used numerical calculation
for a5A7/8a l anda5A3/4a l to find the dependence of th
configuration center ona ~coefficientsQ1 and Q2). It is
convenient to represent the final results in the form

v5v01q1x1q2y, ~17!

where q15Q11K1(LS), q25Q21K2(LS)2, x5(a/a l)
2

21,y5(a/a l)
421, andv05E01K1(LS)1K2(LS)2 is an

experimental energy of a particular state of the fine-struc
multiplet. The parametersv0 , q1 , andq2 for E1 transitions
for many atoms and ions of astrophysical interest are p
sented in Table III.

One can use these data to fit absorption systems in qu
spectra in order to measure or place upper limits on
variation of a. The maximum theoretical sensitivity come
from comparing the spectra of FeII and CrII since relativistic
effects in both ions are large and have opposite sign.
effect here is about 20 times larger than the fine splitting
each of the ions.

An analysis of the theoretical data reveals some inter
ing tendencies in the behavior of the relativistic correctio
apart from being proportional toZ2.
y
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re
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~1! Within a series of one-electron orbitals of a give
symmetry, the relativistic energy shift is largest for the lo
est orbital and decreases for orbitals of higher energies. T
trend is supported by the semiempirical consideration p
sented in Sec. I. The higher electron density in the vicinity
the nucleus gives larger relativistic effects. This also expla
why the relativistic shift of the ground state energy is bigg
when ionization potential is larger.

~2! When a is changing towards its nonrelativistic lim
a50, one-electron energies ofs and p1/2 states move up
while energies ofp3/2 andd states move down. The relativ
istic shifts ofs andd states tend to be large while the ener
shifts of p states are relatively small. Note that the sing
particle consideration suggests that the relativistic shifts
large fors andp1/2 states and all energies move up whena is
decreasing@see formulas~3!–~5!#. Accurate calculations give
different behaviors due to indirect relativistic effects: relat
istic corrections to the core orbitals change the electro
potential which in turn shifts the energy of the external ele
tron. This effect is neglected in a naive single-particle fo
mula. The direct effect dominates over the core change ef
for s states. Forp states these two effects are close in ma
nitude but opposite in sign. The core change effect do
nates ford states. Thus introduction ofC(Z, j ,l ) in Eq. ~8!
effectively takes into account the core change effect.

These tendencies are illustrated by the results presente
Table III. For example, the relativistic shifts of frequenci
of E1 transitions are negative in CrII and GeII and positive
for other atoms. This is because these transitions corresp
to a d-p one-electron transition in the case of CrII and to a
p-s transition for GeII while for the other atoms the trans
tions are of thes-p type. The relativistic correction for GeII
is relatively small because the corresponding transition m
be described as the transition from the groundp orbital to
exciteds orbital and because the relativistic corrections a
small for bothp states and excited states. Another example
the sharp increase of the relativistic effect from CaII to CrII .
This is due to the coherent effect of two factors: biggerZ and
bigger ionization potential for CrII as compared to CaII.

As is apparent from the analysis above one should exp
the biggest relativistic shift for thes-d ~or d-s) transitions in
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TABLE III. Dependence ona of the frequencies of theE1 atomic transitions of astronomic intere
(cm21). Herev5v01q1x1q2y wherex5(a/a l)

221, y5(a/a l)
421.

Z Atom/ion Ground state Upper states v0 q1 q2

6 CII 2s22p 2P1/2
o 2s2p2 2D3/2 74932.617a 177 3

2s2p2 2S1/2 96493.742a 171 3
2s2p2 2P1/2 110625.1b 173 23
2s2p2 2P3/2 110666.3b 217 3

6 CIV 1s22s 2S1/2 1s22p 2P1/2 64484.094a 108 8
1s22p 2P3/2 64591.348a 231 28

7 N V 2s 2S1/2 2p 2P1/2 80463.211a 196 24
2p 2P3/2 80721.906a 488 2

8 OI 2p4 3P2 2p33s 3S1 76794.977a 130 230
2p34s 3S1 96225.055a 140 220

12 MgI 3s2 1S0 3s3p 1P1 35051.277c 106 210
12 MgII 3s 2S1/2 3p 2P1/2 35669.298c 120 0

3p 2P3/2 35760.848c 211 0
13 Al III 3s 2S1/2 3p 2P1/2 53682.330a 216 0

3p 2P3/2 53916.598a 464 0
14 SiII 3s23p 2P1/2

o 3s3p2 2D3/2 55309.352a 547 26
14 SiIV 2p63s 2S1/2 2p63p 2P1/2 71287.523a 362 28

2p63p 2P3/2 71748.625a 766 48
20 CaI 4s2 1S0 4s4p 1P1 23652.305a 300 0
20 CaII 3p64s 2S1/2 3p64p 2P1/2 25191.512a 192 16

3p64p 2P3/2 25414.427a 420 16
24 CrII 3d5 6S5/2 3d44p 6F3/2 46905.17d 21624 225

3d44p 6F5/2 47040.35d 21493 221
3d44p 6F7/2 47227.24d 21309 218
3d44p 6P3/2 48398.941a 21267 29
3d44p 6P5/2 48491.105a 21168 216
3d44p 6P7/2 48632.125a 21030 213

25 MnII 3d54s 7S3 3d54p 7P2 38366.184a 918 34
3d54p 7P3 38543.086a 1110 19
3d54p 7P4 38806.664a 1366 27

26 FeII 3d64s 6D9/2 3d64p 6D9/2
o 38458.9871e 1449 2

3d64p 6D7/2
o 38660.0494e 1687 236

3d64p 6F11/2 41968.0642e 1580 29
3d64p 6F9/2 42114.8329e 1730 26
3d64p 6F7/2 42237.0500e 1852 26
3d64p 6P7/2 42658.2404e 1325 47

30 ZnII 3d104s 2S1/2 3d104p 2P1/2 48480.992a 1445 66
3d104p 2P3/2 49355.027a 2291 94

32 GeII 4s24p 2P1/2 4s25s 2S1/2 62403.027a 2575 216

aMorton, Ref.@26#.
bMoore, Ref.@27#.
cPickering, Thorne, and Webb, Ref.@28#.
dSugar and Corliss, Ref.@29#.
eNaveet al., Ref. @30#.
a
e
r
fr
he
s
ic
n

ud-
in-

is

e

heavy atoms. These transitions are not observed in qu
absorption systems but may be suitable for laboratory exp
ments. The natural linewidth for these transitions is ve
small. Furthermore, very precise measurements of the
quencies of many such transitions already exist since t
are used as atomic optical frequency standards. We pre
in Table IV relativistic shifts of frequencies of some atom
transitions which are used or proposed as optical freque
standards. These include the strongly forbiddenE1 transition
sar
ri-
y
e-
y

ent

cy

in CaI @13# and E2 transitions in SrII @14#, Yb II @15#, and
Hg II @16#. There are many other atoms which are being st
ied as possible frequency standards but which are not
cluded in the table. These include MgI @17#, In II @18#, XeI

@19#, Ag I @20#, etc. Note that the biggest relativistic effect
in Hg II . This is because of thed-s transition and a high
value of Z. This makes HgII the most interesting candidat
for a laboratory search fora variations.

The following limit of a variation was found in Ref.@7#:
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TABLE IV. Relativistic shift of energies of some metastable states of atoms which are used as o
frequency standards (cm21).

Z Atom/ion Ground state Upper states v0 q1 q2

20 CaI 4s2 1S0 4s4p 3P1 15210. 230 0
38 SrII 5s 2S1/2 4d 2D3/2 14555.90 2636 96

4d 2D5/2 14836.24 2852 160
70 YbII 6s 2S1/2 5d 2D3/2 24332.69 9898 1342

5d 2D5/2 22960.80 8298 1570
80 HgII 5d106s 2S1/2 5d96s2 2D5/2 35514.0 236785 29943

5d96s2 2D3/2 50552.0 219377 212313
of

ion

e
tru

ts

of

fr

the

er
re
ag-
ng

e-
m.
m:

fs.
n-
any

on

e
s.
-
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ns
the
r-

d ef-
e
tion
em
th a

ue
de
-
i-
^ȧ&
a

512.665.2310216. ~18!

Assuming ȧ/a510215 one can get for the 5d106s 2S1/2
25d96s2 2D5/2 transition in HgII

v̇53 Hz yr21,

which should be compared with the natural linewidth limit
1.8 Hz @16#.

There are also ongoing laboratory searches for variat
of a using microwave atomic frequency standards~atomic
clocks! ~see, e.g.,@22#!. There are a number of microwav
frequency standards which use ground state hyperfine s
ture ~hfs! intervals of atoms or ions~see, e.g., review@23#!.
These include hfs of Rb, Cd1, Cs, Ba1, Yb1, and Hg1 @23#.
Here again the biggest relativistic effects are in the Hg1 ion.
It is convenient to present thea dependence of hfs constan
in a form similar to Eq.~17!,

Ahfs5S a

a l
D 2

~A01qx!, ~19!

whereA0 is the hfs constant fora5a l . Its value for Hg1

was recently measured to very high precision:

A0~Hg1!540 507 347 996.841 59~14!~41!Hz

@21#. Many-body calculations similar to the calculations
energies described above show thatq540 500 MHz for HgII

and q5956 MHz for CsI. Note that A0(133Cs)
52 298 157 943 Hz. This is the exact value because the
quency 9 192 631 770 Hz of the 6s F5326s F54 hfs
transition in 133Cs, which is equal to 4A0(6s), is used as a
definition of the metric second.

Relative drifts in rates of atomic clocks based on HgII and
Cs will be

d

dt
ln

A~Hg!

A~Cs!
5S 2q

A0
~Hg1!2

2q

A0
~Cs! D ȧ

a
5~2.3020.83!

ȧ

a

51.47
ȧ

a
.

s

c-

e-

This is in good agreement with estimates based on
Fermi-Segre formula@22#. The best sensitivity of various
clock rate comparisons can be achieved when Hg1 clocks
are compared with a H maser@22# ~parameterq50 for H!.
Assuming again ȧ/a510215 yr21 we will get 2.3
310215 yr21 for the frequency rate shift between H mas
and Hg1 clocks. Note that the ratio of hyperfine structu
constants is also sensitive to the variation of nuclear m
netic g factors which may appear due to variation of stro
interaction.

One more interesting possibility is to use transitions b
tween ‘‘accidentally’’ degenerate levels in the same ato
Such metastable levels exist, for example, in the Dy ato
two J510 opposite parity levels 4f 105d6s and 4f 95d26s
lying 19 797.96 cm21 above ground state.~This pair of lev-
els was used to study parity nonconservation in Re
@24,25#.! There are other examples of ‘‘accidentally’’ dege
erate levels in the rare-earth and actinide atoms and m
close levels in other heavy atoms and ions~in the absence of
degeneracy one should look fors-d or s-p transitions where
the relativistic effects are larger!. In the case of ‘‘accidental’’
degeneracy, the contribution of the relativistic correcti
to the frequency of theE1 transition in a heavy atom
(;1000 cm21) is compensated by the difference in th
Coulomb interaction energies of the two configuration
However, ifa varies with time, this compensation will even
tually disappear. Thus we have a correction;1000
cm21@(a/a l)

221# to the very small (,0.01 cm21) fre-
quency of the transition. One can measure, for example,
time dependence of the ratio of frequencies for transitio
between the hyperfine components of these two states. In
case of ‘‘accidentally’’ degenerate levels belonging to diffe
ent electron terms in a molecule one can have enhance
fects of the change of botha and the nucleon mass. In th
latter case the enhancement factor is the ratio of the vibra
energy to the small frequency of the transition. The probl
in these degenerate level cases is to find a transition wi
small natural width.
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