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We introduce and study extensions of the varying alpha theory of Bekenstein-Sandvik-Barrow-

Magueijo to allow for an arbitrary coupling function and self-interaction potential term in the theory.

We study the full evolution equations without assuming that variations in alpha have a negligible effect on

the expansion scale factor and the matter density evolution, as was assumed in earlier studies. The

background Friedmann-Robertson-Walker cosmology of this model in the cases of zero and nonzero

spatial curvature is studied in detail, using dynamical systems techniques, for a wide class of potentials

and coupling functions. All the asymptotic behaviors are found, together with some new solutions. We

study the cases where the electromagnetic parameter, zeta, is positive and negative, corresponding to

magnetic and electrostatic energy domination in the nonrelativistic matter. In particular, we investigate the

cases where the scalar field driving alpha variations has exponential and power-law self-interaction

potentials and the behavior of theories where the coupling constant between matter and alpha variations is

no longer a constant.
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I. INTRODUCTION

The fine structure constant, defined in centimeter-gram-
second units by � ¼ e2=ℏc, is believed to be one of the
fundamental constants of nature, governing the strength of
electromagnetic interactions below the electroweak scale.
Despite its special status, there is a history of theories in
which � is allowed to vary slowly in space and time.
Historically, the original motivation was Gamow’s attempt
in 1967 [1] to rescue Dirac’s proposal [2,3] to introduce a
varying gravitation constant, G / t�1, to explain the large
number coincidences of cosmology. Varying G / t�1 pro-
duced dire consequences for the Earth’s climate
history—boiling oceans in the pre-Cambrian era [4] be-
cause the surface temperature of the Earth then varied as

Te / t�9=4—and so Gamow proposed replacing it by a time
variation in e2 / t which did not affect the dynamics of the
solar system and created a milder thermal history. Teller
had also argued that the numerical coincidence ��1 ’
ln ðhc=Gm2

prÞ suggested that � might fall logarithmically

with time if Dirac’s arguments were believed and
Stanyukovich had also considered varying � in earlier
work [5]; for a review of this early work see [6].
Gamow’s fast variation of e2 / t was soon ruled out by
geochronological and astronomical data [7]. Dicke [8,9]
also provided a simple anthropic explanation for our ob-
servation of some of the large number coincidences,
although Dirac seems to have been only partly convinced
by them [10] because he believed that life would always
continue once it arose in the Universe [10,11].

In more recent times, the main theoretical motivation for
studying varying � has come from proposed extensions of
the standard model, which often allow one or more of the
observed constants of nature to vary in time. For instance,
in string theory one generically finds that at low energy the
theory contains a scalar field, typically controlling the size
of the compact dimensions, which couples directly to
matter. In this context, all the observed (three-dimensional)
constants of nature will become dynamical quantities
sensitive to the size of the internal space [12]. In fact the
existence of time variation in physical constants is probably
one of the most robust predictions of such theories (though
of course it tells us nothing about the size of the variations
to expect). More generally, the beliefs that space has more
than three dimensions leads us to expect that the true con-
stants of nature are not the three-dimensional ‘‘shadows’’
that we observe.
At present, however, the most compelling reason to

study varying-� theories is that there has been continuing
observational evidence from studies of quasar spectra at
high redshift that are consistent with � having changed
very slowly over cosmological time scales. The direct
experimental investigation of varying � is multifaceted,
and we refer to the recent reviews of the field for full details
[13–15]. In brief, there are several different probes of
variations of �, each with their own strengths and limita-
tions. At the present time, one can place strong bounds on
the variation of � today from precision atomic clock ex-
periments. Although these provide the greatest sensitivity
to the local rate of � variation, cosmologically they are of
limited value because they only bound ��=� ¼ ð�ðzÞ �
�0Þ=�0, where �0 is the value today, over a time scale of
a few years at most. The 1.8 billion year old natural nuclear
reactor at the Oklo uranium mine in Gabon is also
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extremely sensitive to the value of � at that time [16]
because of the need to preserve a special resonant energy
level for neutron capture, but the sensitivity is complicated
by the ambient conditions when the reactor operated [17],
sensitivity of the key nuclear resonance level to other
coupling constants [18], and a best fit to the data that is
doubled valued for the past value of �—one of those value
ranges includes a small variation around a null variation
but the other solution does not [19]. At far earlier times,
one can derive weaker bounds on ��=� from the physics
of the cosmic microwave background [20] and big bang
nucleosynthesis [21]. These give the earliest indirect ob-
servational constraints, bounding � at redshifts z � 103

and z � 109–1010 respectively, but for various reasons the
constraints are not very tight (approximately ��=� <
10�2–10�3 at best), and they need a theory of � variation
in order to link them to data at low redshift and in the lab
and an understanding of links to variations of other funda-
mental parameters of physics at high redshift [22,23].

The most sensitive probes constrain ��=� at z � 1–6
from observations of spectral lines significantly affected
by relativistic effects in absorbing clouds around distant
quasars. Evidence for a slow increase in time, ��=� ¼
�0:57� 10�5, from Keck data was found throughout a
long program of observational work by Webb et al. [24].
Subsequent claims of a null result, ��=� ¼ ð�0:06�
0:06Þ � 10�5, from a different quasar data set were made
by Chand et al. [25] but were subsequently shown to suffer
from biases in the data analysis method employed which,
when corrected, gave ��=� ¼ ð� 0:44� 0:16Þ � 10�5,
consistent with the earlier results of Webb et al., see
Ref. [26] for details. More recently, more evidence has
been found from quasar spectra [27,28] that � has differed
from today by �5� 10�6, but with a complication.
Specifically, it was found for z > 1:8 that ��=� ¼
ð�0:74� 0:17Þ � 10�5 using data for the Northern sky
from the Keck telescope, but ��=� ¼ ð0:61� 0:20Þ �
10�5 from data for the Southern sky from the VLT tele-
scope, but with some overlapping data to enable detailed
cross calibration of the two detectors. Taken at face value
this points to � having a large-scale angular dipole of
magnitude �0:6� 10�5. Recent observations of a single
absorber towards the quasar HE 2217-2818 by Molaro
et al. [29] are consistent with this result. Most recently, a
new method to probe the spatial constancy of � in our
Galaxy using metal lines found in the spectra of white
dwarfs by the Hubble Space Telescope has been introduced
by Berengut et al. [30].

Phenomenological models for varying �, like those in-
troduced by Gamow, were usually based on assuming �
varies as some power law or logarithm of time and simply
writing this variation into the usual equations of physics
which were derived under the assumption that � is con-
stant. Most observational bounds in the literature (for a
review see [31]) use this sometimes questionable approach.

The first self-consistent theory of varying � is the general-
ization of Maxwell’s equations due to Bekenstein [32].
This was subsequently extended to a cosmological setting
and studied in detail in [33–36] by Sandvik, Barrow, and
Magueijo: we shall refer to it as BSBM theory. It provides a
self-consistent cosmological theory of varying � in the
same way that the Jordan-Brans-Dicke theory does for
varying G. It has been studied in a range of cosmological
and astrophysical situations in Ref. [37] and similar ideas
were used to create self-consistent theories of varying
electron mass in Ref. [38] and produce extensions of the
Weinberg-Salam theory with varying weak and electro-
magnetic couplings in Ref. [39].
In the original BSBMmodel variations in � occur due to

a coupling between the electromagnetic field and a mass-
less scalar field � with action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
R� 1

2
!@a�@a�þ e�2�Lem þLm

�
;

(1)

where ! is a coupling constant, Lem ¼ � 1
4FabF

ab is the

usual electromagnetic Lagrangian, and Lm denotes the
Lagrangian for the other matter fields in the theory.
There is a variable electric charge and so � is given by

� ¼ �0e
2�; (2)

where �0 is a constant which may be taken as the present
value of �. Notice that, asLem ¼ 1

2 ðE2 � B2Þ ¼ 0 for pure

radiation, variations in alpha are driven solely by the
electromagnetic energy of nonrelativistic matter, parame-
trized by �m ¼ Lem=�m, where �m is the energy density of
nonrelativistic matter. The cosmology of this model has
been extensively studied when �m < 0. In this case, one has
the astronomically attractive picture in which � does not
grow in the radiation era, grows logarithmically with time
in the dust era, and asymptotes to a constant value when the
expansion starts to accelerate in the�-dominated era. There
have also been some studies of extensions to BSBM by the
addition of a nontrivial potential [40], or by allowing
the coupling to be a function of � [41]. However, so far
there has been no study which has allowed for both possi-
bilities. Moreover, the case �m > 0 has not been investi-
gated much even for the original model. This is primarily
because the approximation method used in the previous
studies cannot be extended to this case.
In this paper we aim to study the cosmological dynamics

of a generalized BSBM model which allows for both an
arbitrary coupling and potential function. We shall perform
a dynamical systems analysis of the full, coupled equations
in a Friedmann-Robertson-Walker (FRW) background.
The only previous study of this form is [42], who studied
the case of an exponential potential (in this paper
Sec. VIA). This allows us to derive and extend many of
the results of the earlier studies in a unified and more
rigorous manner. It will also allow us to understand some
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cases not dealt with in the earlier analysis, notably the
�m > 0 case.

The outline of this paper is as follows. In Sec. II the
model we shall study is introduced and discussed, while its
cosmology in an FRW background is given in Sec. III. In
Sec. IV we reformulate this in terms of a dynamical system
using expansion-normalized variables for the case of
constant ! coupling. The next two sections then use this
formulation to study various cases for constant potential
(Sec. V) and nonconstant potentials (Sec. VI), respectively.
The phase plane analysis for nonconstant coupling is more
subtle, so in Sec. VII we will formulate the theory in a
slightly different way to allow both a potential and cou-
pling function to be described as a dynamical system.
This is then explored in more detail for the case of an
exponential potential. We draw conclusions in Sec. VIII.
Appendix A gives more details on how our methods can be
extended to closed universes, while Appendix B gives
some approximate solutions valid when the dynamics be-
come dominated by the scalar field.

In this paper we choose units so that 8�G ¼ c ¼ ℏ ¼ 1.

II. THE MODEL

The model we shall study in this paper is defined by the
following action:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
R� 1

2
!ð�Þ@a�@a�� Vð�Þ

þ e�2�Lem þLm

�
; (3)

where Lem ¼ � 1
4FabF

ab, Lm is the Lagrangian of the

matter fields, and the coupling function !ð�Þ and the
potential Vð�Þ are both arbitrary functions of the scalar
field � that drives variations in � via Eq. (2); the cosmo-
logical constant has been absorbed into the potential, V.
Note that � does not directly couple to the matter fields.
The model is therefore distinct from chameleon theories,
where the scalar field typically couples to all the fields. For
the theory to satisfy basic stability requirements we should
demand that the scalar field has positive energy and is not a
ghost field. This can be done by assuming that !ð�Þ � 0
and Vð�Þ � 0 (or, more weakly, that the potential is
bounded from below). In this paper we shall always
make this assumption unless stated otherwise.

The Einstein equations for this theory are easily found
by varying with respect to the metric and yield

Gab ¼ Tm
ab þ T�

ab þ e�2�Tem
ab ; (4)

where the energy-momentum tensor for each sector of the

theory is defined in the usual way by Tab
i ¼ 2ffiffiffiffiffi�g

p �ð ffiffiffiffiffi�g
p

LiÞ
�gab

.

For the scalar field this is

T�
ab ¼ !ð�Þ@a�@b�þ gabL�; (5)

with L� ¼ � 1
2!ð�Þ@a�@a�� Vð�Þ, while Tm

ab and Tem
ab

take their usual forms. Varying the action with respect
to the scalar field gives its equation of motion (where 0 ¼
d=d�Þ:

h�þ !0ð�Þ
2!ð�Þ@a�@a�� V 0ð�Þ

!ð�Þ ¼
2

!ð�Þ e
�2�Lem: (6)

It is this equation which directly governs how � evolves. It
is missing from attempts to limit the possibility of varying
� by simply writing in a time (or space) dependence into
the usual equations of physics. Such attempts ignore the
energetics of the � variations and their effects on the
curvature of spacetime, which are captured by the field
equations, (4). Finally, varying with respect to the gauge
potential gives us the generalized Maxwell equation:

rbðe�2�FabÞ ¼ ��Lm

�Aa

: (7)

Some points can be made about this theory. First, this is the
most general theory of its kind we could write down with
second-order equations of motion. In particular, there is no
loss of generality in restricting to an exponential coupling:
the case with arbitrary coupling to Lem may be reduced to
(3) by a field redefinition. In fact, one can reformulate (3)
as a field theory with canonical kinetic terms but arbitrary
coupling terms. This will be demonstrated explicitly in
Sec. VII.
Second, these equations admit a well-posed initial value

formulation, at least for analytic !ð�Þ and Vð�Þ (see
theorem 10.1.3 of [43]). As a classical theory it is therefore
free from pathologies. From a quantum mechanical point
of view it corresponds to a theory with nonrenormalizable
interaction terms. This can be seen explicitly by redefining
the field � ¼ �ð�Þ so that the Lagrangian is canonically
normalized:

L �þe�2�Lem¼�1

2
@a�@a�� �Vð�ÞþAð�ÞLem: (8)

Expanding out the function Að�Þ perturbatively shows that
the terms which mix photons and scalars are of the form
An�

nLem, and so are power-counting nonrenormalizable.
In the original BSBM theory with constant ! we would

define� ¼ �=
ffiffiffiffi
!

p
to get Að�Þ ¼ e

�2�ffiffi
!

p
, so one should view

1=
ffiffiffiffi
!

p
as the coupling constant for these interaction terms.

If ! is large enough then these terms will be suppressed
enough so that photon-scalar mixing will not be observed
in experiments. Notice that due to our choice of units
!�Oð1Þ corresponds to choosing the fundamental energy
scale (

ffiffiffiffi
!

p
) to be near the Planck scale,! � 1 corresponds

to sub-Planckian scales. The coupling vanishes in the limit
! ! 1. One can place noncosmological bounds on !
from tabletop experiments [32] and constraints on the
polarization of star light [44]; typically these bounds
are at best ! * 10�11 (corresponding to an energy scale
E * 109 GeV).
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It is usual to rewrite the right-hand side of (6) somewhat
differently, by defining for a configuration the dimension-
less parameter � by

� ¼ Lem

�
; (9)

and �m ¼ Lem=�m for its cosmological value, where �m is
the energy density of nonrelativistic matter. We do this
because, as explained in the Introduction, nonrelativistic
matter is the only source term for the scalar field. Since
Lem ¼ 1

2 ðE2 � B2Þ, and the energy density of the electro-

magnetic field is �em ¼ 1
2 ðE2 þ B2Þ, then clearly � may

take values in the interval

�1 � � � 1: (10)

If � > 0 then the configuration is dominated by electro-
static energy, while a system with � < 0 is dominated by its
magnetostatic energy. In general � will vary from material
to material. However, the cosmological value should be
approximately constant, at least over the time scales we
consider, and in this paper we will always make this
assumption.

The value of �m is not easy to estimate for several
reasons. First, since the dominant contribution to �m comes
from dark matter then if dark matter has any electric or
magnetic fields it will dominate �m. Normally one would
expect �DM to be very small if not zero; almost by defini-
tion it does not interact with electromagnetic radiation, so
it would seem peculiar if �DM � 0. Despite this, it is worth
bearing in mind that one cannot rule out that it makes a
significant contribution to �m (for limits on the charge or
dipole moments of dark matter see [45,46]).

Even estimating � for ordinary baryonic matter is not
trivial. Naively, one would expect in an atom that the
dominant contribution to Lem would come from the
Coulomb binding energy of the nucleon, with all other
effects subleading. This can be estimated from the Bethe-
Weizsäcker formula

EC ’ 98:25�
ZðZ� 1Þ

A
1
3

MeV; (11)

with � � 1
137 . This would lead one to expect that �b �

10�3, with the cosmological value an order of magnitude
lower at �m � 10�4 (unless �DM � 0). However, this sim-
ple argument may overestimate its value. In particular,
Bekenstein has argued [47] that in this theory a careful
analysis shows that the Coulomb contribution cancels, so
the leading contribution to �b is actually from the much
smaller magnetic dipole of the nucleon. This gives a nega-
tive �m with magnitude j�mj � 10�6.

One of the interesting consequences of theories like (3)
is that they generically predict violations of the weak
equivalence principle (WEP) [32]. It is easy to see why.
A fraction of any particle’s mass is electromagnetic in
origin and thereby depends on �. This means that in a

spatial gradient of �, which one would expect in a gravi-
tational potential through the Einstein equations, the force
on a particle falling in a gravitational potential h will have
an additional contribution from EC ¼ j�jM of

F ¼ �Mrh�rEC ¼ �Mrh� @EC

@�
r�

¼ �Mrh� j�jMr�
�

; (12)

where we have implicitly assumed EC is proportional to �,
but this is not crucial for the argument. Clearly then if �1 �
�2 for two bodies then they will fall differently in the
gravitational field and the WEP will be violated [48–50].
Now in the Newtonian limit (4) and (6) reduce respec-

tively to

r2h ¼ 1

2
ð1þ j�jÞ�; r2��m2

!0

� ¼ 2�

!0

�; (13)

where m2 ¼ V 00ð0Þ is the scalar field mass, and we have
ignored the cosmological constant term in Poisson’s equa-
tion. For a massless scalar field then the scalar field to this

order is given precisely by � ¼ 4�
!0

h. Using this we can

estimate the Eötvös parameter � for the accelerations, a1
and a2, of two freely falling bodies of different composi-
tion (‘‘1’’ and ‘‘2’’) on Earth to be

� ¼ 2ja1 � a2j
a1 þ a2

’ 8�earth � j�1 � �2j
!0

: (14)

If we took!0 �Oð1Þ then the naive value for �b one would
get from the Coulomb model would give an unacceptable
large �� 10�6, in gross conflict with the present limits
that � & Oð10�13Þ [51]. However, Bekenstein [47] has
shown, through a detailed study of the full nonlinear equa-
tions, that in this model any WEP violations are at unde-
tectable small levels: ��Oð10�19Þ with !0 �Oð1Þ. This
means this model is not in violation with the weak equiva-
lence principle.

III. COSMOLOGICAL EQUATIONS

Since we are interested in the cosmology of this model
we now specialize our study to the case when the metric
takes a Friedmann-Robertson-Walker (FRW) form:

ds2 ¼ �dt2 þ a2ðtÞ
�

dr2

1� kr2
þ r2ðd�2 þ sin 2�d�2Þ

�
:

(15)

By such a choice � can only have time dependence, so we
cannot directly use these results to explain the apparent
spatial dipole in �. This will be investigated elsewhere.
For this choice of metric it is easy to see that the scalar

field equation of motion takes the form

€�þ3H _�þ !0ð�Þ
2!ð�Þ

_�2þV 0ð�Þ
!ð�Þ ¼

�2

!ð�Þe
�2��m�m: (16)
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The equivalent Friedmann equation is

_a2

a2
¼ 1

3

�
�mð1þ j�mje�2�Þ þ �re

�2�

þ 1

2
!ð�Þ _�2 þ Vð�Þ

�
� k

a2
; (17)

while the acceleration equation becomes

€a

a
¼ � 1

6
�mð1þ j�mje�2�Þ � 1

3
�re

�2� � 1

3
½!ð�Þ _�2

� Vð�Þ	: (18)

As usual we have assumed that the matter may be modeled
as a perfect fluid. The second term multiplying �m in these
equations arises because, by definition, nonrelativistic mat-
ter of density �m has electromagnetic energy component
j�mj�m, which couples in the Einstein equations to e�2�.
The continuity equation for matter, with the exception of
radiation, is unaffected by the scalar field—in particular
�m / a�3 as in general relativity with no varying �. Since
radiation couples directly to the scalar field in the action it
is easy to see the continuity equation takes the form

_� r þ 4H�r ¼ 2 _��r: (19)

This integrates up immediately to give

�re
�2� / �r

�
/ 1

a4
: (20)

This equation has a number of unusual cosmological
implications. Statistical mechanics will give �r / T4

r in
the usual way, but the evolution of the temperature with

scale factor will be Tr / �1=4a�1 and the temperature-
redshift relation becomes

Tr ¼ Tr0ð1þ zÞ
�
�ðzÞ
�0

�
1=4

; (21)

which can be tested by detailed constraints on the CMB
temperature with redshift, as has also been discussed in
Ref. [52]. The relation (21) also means that the combina-
tion T3

r =�m, which determines the entropy per baryon in
the standard cosmology with constant �, is no longer
constant as the Universe expands. Instead we have

T3
r =�m / �3=4: (22)

Hence, any small change in the value of � between the
epoch of deuterium synthesis in the early Universe and the
present will affect deductions of the range of values of
the entropy per baryon (and hence the baryon density) that
best fit the observed deuterium abundance and effects at
CMB last scattering. The evolution given by Eq. (21) also
changes the calculated value of the time and redshift when
the matter and radiation densities are equal, and hence the
location of the peak of the matter power spectrum. These
effects were not included in the uses of the Planck data [20]
to constrain possible variations in � because no underlying
theory of � variation was used. In addition, we see that the

evolution of a neutrino density will not be affected by the
fine structure constraint coupling and will evolve as usual,
with �	 / T4

	, and the ratio of the photon to neutrino
temperature will not remain constant but evolve as the
quarter power of the fine structure ‘‘constant’’:

Tr

T	

/ �1=4: (23)

We expect, given the existing observational constraints,
that the evolution of �ðzÞ will be small but these deviations
from the standard picture, which can be computed in detail
once a solution for �ðtÞ is found from the Friedmann
equations, may lead to new constraints on � variation.
We also expect that there will be a powerful constraint

on the possible time evolution of the electromagnetic
gauge coupling from any requirement that ‘‘grand unifica-
tion’’ occurs at very high energies, T � 1015 GeV. There
have already been claims that the requirement of a triple
crossover of the effective interaction strengths of the strong
and electroweak couplings was evidence of the need for
supersymmetry. However, the addition of an intrinsic time
(and hence temperature) evolution over and above that
induced by the quantum vacuum effects would likely de-
stroy the possibility of a grand unification of interaction
strengths unless there was considerable fine-tuning of the
variations. We suspect that they would be constrained to be
extremely small over the period of evolution from about
t� 10�30 s to the present.
Equations (16) and (17) are in general too difficult to

solve exactly except in highly idealized cases. Most pre-
vious studies have proceeded by making some analytical
approximations, such as that the scalar terms in (17) can
be neglected. A variant on this theme is explored in
Appendix B. It is the goal of the paper to understand their
qualitative behavior, without any approximation. Beforewe
do so let us note some general features of the cosmology.
First, with zero potential (V ¼ 0), it is clear from (17)

that the influence of the scalar field on cosmological
dynamics is to increase the expansion rate: there is no
question of the � field causing collapse. Similarly, (18)
shows that it cannot cause the Universe to accelerate, and
so cannot be a source of early inflation or late-time accel-
erated expansion of the Universe. Obviously these conclu-
sions may be changed by the addition of a potential.
Second, it is important to note that if we do not specify

the potential or coupling function then we cannot hope to
say much about the cosmological dynamics. In fact, given
an observed expansion history forHðtÞ and�ðtÞ it is always
possible to reconstruct functions Vð�Þ and !ð�Þ which
lead to this history. This can be seen by noting that
Eqs. (16) and (17) can be rewritten as

1

2
! _�2 þ V ¼ 3H2 þ 3k

a2
� �mð1þ j�mje�2�Þ � �re

�2�


 fðtÞ; (24)
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1

2
_! _�2 þ _V ¼ � _�ð €�þ 3H _�Þ!� 2�me

�2��m
_�


 gðtÞ!þ hðtÞ: (25)

Differentiating (24) and using (25) gives

!ðtÞ ¼ � 1

3H _�2
ð _fþ 2�me

�2��m
_�Þ; (26)

which gives !ð�Þ implicitly. Once we have this we
can use (24) to find Vð�Þ. In principle, we could use
this as a solution-generating technique to find a desired
solution through the choice of ‘‘designer’’ potentials (in a
similar manner to the literature on exact inflationary
solutions).

Third, the vacuum solutions of this theory are easy to
understand, since in this case Eqs. (16) and (17) reduce to
the usual equations governing inflation with a single scalar
field. We can find the exact solution when Vð�Þ ¼ 0 by

noting that (16) can be written as d
dt ð _�!1=2a3Þ ¼ 0, which

allows us to find the general solution,

aðtÞ ¼ a0t
1
3;

Z ffiffiffiffiffiffiffiffiffiffiffiffi
!ð�Þ

q
d� ¼

ffiffiffi
2

3

s
ln t: (27)

We can also find the exact solution with radiation present
without too much difficulty if oneworks in conformal time.
These solutions are the general attractors when t ! 0, a
conclusion explicitly confirmed by the analysis of Sec. V.

Finally, it is worth noting an important theorem about
the behavior of �ðtÞ, first given in [36]: in the absence of a
nontrivial potential � cannot exhibit oscillatory behavior
(as often might appear to be the case from a linearization of
the equations in�). The proof is immediate from the scalar

equation of motion, (16). At an extrema where _� ¼ 0 the

sign of €� is fixed uniquely by �m, so � may only have a
maxima (minima) when �m > 0 (�m < 0): it cannot have
maxima and minima. In particular, � cannot have
oscillatory behavior and solutions showing such behavior
(e.g. in Ref. [53]) are spurious, arising from uncontrolled
linearization of (16). This result can also be extended to
certain classes of potentials. For instance, for an exponen-
tial potential V ¼ V0 exp ½
�	, when �m > 0 and 
> 0
then � can only have maxima; when �m < 0 and 
< 0 it
can only have minima.

IV. DYNAMICAL SYSTEMS ANALYSIS WITH
CONSTANT COUPLING, !

We shall now perform an analysis of Eqs. (16)–(18) by
the methods of dynamical systems [54]. This is a well-
known method which has been applied widely in cosmol-
ogy, for instance see [53,55–57]. We will first look at the
case when the coupling function !ð�Þ is a constant. The
case of a general coupling function will be dealt with in
Sec. VII.

The first step is to cast Eqs. (16)–(18) into autonomous
form. To do so, define the following expansion-normalized
variables:1

x1 ¼
ffiffiffiffi
!

p _�ffiffiffi
6

p
H

; x2 ¼
ffiffiffiffi
V

p
ffiffiffi
3

p
H
; x3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mj�mj

p
e��ffiffiffi

3
p

H
;

x4 ¼
ffiffiffiffiffi
�r

p
e��ffiffiffi
3

p
H

; x5 ¼
ffiffiffiffiffiffijkjp
aH

: (28)

We will also define

x0 ¼
ffiffiffiffiffiffiffi
�m

pffiffiffi
3

p
H
; (29)

although this variable is not independent of the others
because the Friedmann equation reduces to a constraint

1 ¼ x20 þ x21 þ x22 þ x23 þ x24 � k̂x25; (30)

where k̂ ¼ k=jkj is the sign of the curvature. Physically,
these variable are the density parameters of each compo-
nent in the Friedmann equation. Notice that the sign of all
these variables, with the exception of x1, is fixed by the
Hubble parameter: this means in an expanding universe
they are always positive. In principle x1 can take on either
sign. In these variables the fine structure constant � is
given by

� ¼ j�mj
�
x0
x3

�
2
; (31)

and the associated scalar field by

� ¼ ln

�
x0
x3

�
þ�0; (32)

where�0 is an arbitrary constant. The Hubble parameter is
given by �

H

H0

�
2 ¼

�
x0;0
x0

�
2
e�3N; (33)

whereH0 and x0;0 is the Hubble parameter and the value of

x0 respectively at time N ¼ 0, where N ¼ ln a. The accel-
eration equation (18) reduces to

_H

H2
¼ � 1

2
ð3þ 3x21 � 3x22 þ x24 þ k̂x25Þ: (34)

If the potential is not constant then we also need to define
the following new variables:

� ¼ �V0

V
; � ¼ VV 00

V02 : (35)

We can now derive the evolution equations for each vari-
able. This is most conveniently done if one uses the number

1Note our definition of x2 implicitly assumes that V � 0. If we
wanted to allow for a negative cosmological constant we would
have to modify these definitions slightly.
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of e-folds, N ¼ ln a, as the time coordinate; it is better
behaved than the proper time, t, as it is nonsingular for all
finite time (e.g. N ! �1 corresponds to the initial
singularity).

Using (16)–(18) and (30)–(34) it is easy to show that the
evolution equations for the autonomous variables are

dx1
dN

¼ 1

2
x1ð�3þ 3x21 � 3x22 þ x24 þ k̂x25Þ

�
ffiffiffiffi
6

!

s
�̂mx

2
3 þ

ffiffiffiffiffiffiffi
3

2!

s
�x22; (36)

dx2
dN

¼ �
ffiffiffiffiffiffiffi
3

2!

s
�x1x2 þ 1

2
x2ð3þ 3x21 � 3x22 þ x24 þ k̂x25Þ;

(37)

dx3
dN

¼�
ffiffiffiffi
6

!

s
x1x3þ1

2
x3ð3x21�3x22þx24þ k̂x25Þ; (38)

dx4
dN

¼ 1

2
x4ð�1þ 3x21 � 3x22 þ x24 þ k̂x25Þ; (39)

dx5
dN

¼ 1

2
x5ð1þ 3x21 � 3x22 þ x24 þ k̂x25Þ; (40)

d�

dN
¼ �

ffiffiffiffi
6

!

s
�2ð�� 1Þx1; (41)

where we write �̂m ¼ �m=j�mj for the sign of �m. Note that
these do indeed form an autonomous system, because in
general, as � ¼ �ð�Þ, we can solve implicitly for � ¼
�ð�Þ which allows us to write � ¼ �ð�Þ ¼ �ð�Þ, closing
the system. For a constant or exponential potential, � ¼
constant and the system is defined fully by the variables in
(28); for a more general system one must also include �.
Additional perfect fluids in the Friedmann equation can be
included without difficulty.

Now that we have the system cast in autonomous form
we can determine its behavior through the qualitative
theory of ordinary differential equations. We first of all
determine the stationary points of the system, defined by
dxi=dN ¼ 0. Usually the late and early time attractors of
the system will be amongst these points. To determine their
stability we linearize the system _xi ¼ fiðxjÞ about the sta-
tionary point x0i. Explicitly, if we write xi ¼ x0i þ yi then
the linearization is given by

_y i ¼ Aijyj with Aij ¼ @fi
@xj

��������xi¼x0i

: (42)

One can then deduce stability through the eigenvalues of
Aij. It is a standard result that if the real part of the

eigenvalues of A are entirely negative then the point is
stable, while if any are positive it is unstable. If there is a

mixture the point is a saddle point, meaning that it is not an
attractor at late times but the solutions can come arbitrarily
close to the point during its evolution. Provided there are
no zero eigenvalues the Hartman-Grobman theorem guar-
antees that the behavior near a stationary point is given by
the linear approximation. If there is an eigenvalue with
zero real part, and no eigenvalue with positive real part,
then stability cannot be decided by the linear terms, and
one must go at least to second order to decide.
Note that by diagonalizing (42), it is easy to see that the

general solution for yi is given by

yi ¼
X
j

cje
�jt
i;j; (43)

where 
i;j is the ith component of the jth eigenvector of A

associated to the eigenvalue �j, and the cj are constants.

This solution gives the leading order correction to the
motion near the stationary point.
It is worth pointing out the limitations of these methods.

They do not give one much useful information about the
solution at intermediate times which is often the case of
most interest. It is also worth noting that strictly speaking
the above results only hold in a neighborhood of a sta-
tionary point. As well as tending to a stationary point the
late time behavior might be a limit cycle, or a strange
attractor (the last case is excluded for two-dimensional
systems by the Poincaré-Bendixson theorem [54]). If the
variables are not compact there may also be stationary
points at infinity. For an expanding universe with constant
potential, limit cycles are ruled out by the arguments of
Sec. III: for there to be one x3, and thereby �, would need
to possess both a maximum and a minimum, which is not
possible in this case.
Despite this, Eqs. (36)–(41) are easy enough to simulate

numerically, which allows one to check explicitly its late
time behavior. In the next two sections we shall use both
methods to understand the cosmology.

V. COSMOLOGIESWITH CONSTANT POTENTIAL,
V, AND CONSTANT COUPLING, !

Consider first the case where we have a constant poten-
tial. This means � ¼ 0 and so the system is specified fully
by (36)–(40). Although it is not too difficult to do the
phase-plane analysis for the entire system, in view of the
large number of variables it will be more enlightening to
look at special cases in turn.

A. Dynamics with dust

The simplest case is when the Universe contains only
dust and the scalar field with the potential zero, that is only
x1 and x3 are nonzero. In this case there are four stationary
points shown in Table I. The first point is the dust-
dominated Einstein–de Sitter universe with constant �.
Near this point the motion is given by
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aðtÞ ¼ a0t
2
3; �ðtÞ ¼ constant: (44)

Since it has a zero eigenvalue, its stability cannot be
determined by the linear approximation. The second and
third points correspond to a universe dominated entirely by
the kinetic energy of the scalar field. Dynamically, they
behave like universes with a stiff fluid and �ðtÞ scaling like
a power law,

aðtÞ ¼ a0t
1
3; �ðtÞ ¼ �0 �

ffiffiffiffiffiffiffi
2

3!

s
ln t: (45)

They are always unstable at late times, although by revers-
ing the time it is easy to see they are the attractor solutions
at early times. Point 4 again corresponds to a universe
dominated by the scalar field which evolves in a power-
law fashion as

aðtÞ ¼ a0t
2!

8þ3!; �ðtÞ ¼ �0 þ 8

8þ 3!
ln t: (46)

Notice that this exponent takes values between 1
3 to

2
3 so it

expands faster than points 2 and 3, but slower than point 1.
From the eigenvalues we see that this is a saddle point at
late time (notice that since point 4 expands faster than a
stiff universe it cannot be the early-time attractor either).

To determine the nonlinear stability of the dust station-
ary point we follow the procedure outlined in [56] for
the stability analysis with a zero eigenvalue. The first
step is to split the system into critical and noncritical
variables, where the critical variables are given by the
eigenvector of the zero eigenvalue. If we write z0 for the
critical variable, and zi for the noncritical variables (where
i ¼ 1; 2; . . . ; n� 1) then the system (36)–(40) will be in
the form

_z 0 ¼ q0ðz0; . . . ; zn�1Þ; (47)

_z i ¼ piz0 þ pijzj þ qiðz0; . . . ; zn�1Þ; (48)

where q0 and qi are of quadratic or higher order in the
variables. The system is in canonical form if in addition
pi ¼ 0. In general, one always has the freedom to put the
system into this form by an additional (nonlinear) trans-
formation (see [56] for details). Once this is done the
stability of the point is determined by the leading term of
q0ðz0; 0; . . . ; 0Þ. If this term is of the form gzm0 (m � 2) then
the stationary point is unstable ifm is even, orm is odd and

g > 0. It is asymptotically stable ifm is odd and g < 0, and
transcendentally stable if q0ðz0; 0; . . . ; 0Þ ¼ 0. By tran-
scendentally stable we mean that the solution approaches
a neighborhood of the stationary point at late times, but
jzðtÞj =! 0 as t ! 1. In fact, at late times these solutions
approach z0 ¼ constant, zi ¼ 0 instead of the stationary
point itself.
In our case these methods are quite easy to apply.

One can easily check that y3 is the critical variable, and
the perturbation equations about (0, 0) are already in the
required form:

_y3 ¼ �
ffiffiffiffi
6

!

s
y1y3 þ 3

2
y3y

2
1;

_y1 ¼ � 3

2
y1 þ 3

2
y31 �

ffiffiffiffi
6

!

s
�̂my

2
3:

(49)

From this we deduce that the first stationary point is tran-
scendentally stable. Note this does not prove it is the global
attractor of the system: there may be other stationary points
at infinity to which the system evolves. If it is the attractor,
it tells us that at late times x1 ! 0, but does not tell us the
behavior of x3. In fact, this depends only on the sign of �m,
as can be seen from numerical simulations.

When �̂m ¼ �1, we find that x3 ! 0, regardless of
initial conditions or the value of !. In particular, it decays
as x3 � 1ffiffiffi

N
p for large N. This is in agreement with earlier

analysis of this model [35]: the universe tends to a dust-
dominated universe, with �ðtÞ growing like ln t. That the
point (0, 0) is indeed the global attractor of this system can
also be seen very clearly from the phase-plane diagram
shown in Fig. 1.

The case of �̂m ¼ 1 is more complex. Numerically, for
reasonable initial data, one finds that initially x1 decreases
and x3 grows slowly. At early times, it behaves as a dust-
dominated universe with decreasing �. This is only true for
low N though; eventually x3 will be large enough such that
the scalar field makes non-negligible contributions to the
Friedmann equation and the approximation breaks down.
This is why the methods of [35] cannot be used consis-
tently in this case. Following the evolution numerically,
one finds that at some critical e-fold N (proportional to
1=!) x3 and x1 rapidly increase and the dynamics become
dominated by the scalar field. It is not easy to extract more

TABLE I. Stationary points for a universe with dust and a scalar field. The variables are defined in (28) and (29). Point 1 is the
attractor when �m < 0, while the late-time behavior is singular when �m > 0.

Stationary point (SP) x0 x1 x3 Existence Eigenvalues Stability

1 1 0 0 All !, �̂m 0, � 3
2 Transcendentally stable

2 0 1 0 All !, �̂m 3, 3
2 �

ffiffiffi
6
!

q
Unstable node !> 8

3 , saddle point !< 8
3

3 0 �1 0 All !, �̂m 3, 3
2 þ

ffiffiffi
6
!

q
Unstable node

4 0
ffiffiffiffiffi
8
3!

q ffiffiffiffiffiffiffiffiffiffi
3!�8
3!

q
!> 8

3 , �̂m ¼ �1 8
! ,

4
! � 3

2 Saddle point
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definite information than this, as the numerical simulations
break down at this point. If we look at the phase-plane
diagram for this system (Fig. 2), we see that the system
flows to the circle x0 ¼ 0. From (33), this means that
at some finite value of the scale factor the Hubble rate
diverges, and the universe encounters some type of finite-
time singularity.

It is important to note that this somewhat pathological
behavior is not necessarily a practical problem for finding a

realistic cosmology with decreasing �. Any nonzero cur-
vature or cosmological constant will cause the scalar field
to freeze in once they dominate the dynamics (Secs. VB
and VC), so the scalar field can only dominate if it has
enough time to do so in the matter era [58]. In practice,
provided that the scalar field does not dominate within
N � 10 there will be no problem. This can be satisfied
for ! * Oð10�2Þ.

B. Dynamics with a cosmological constant

A simple extension is to consider the addition of a
positive cosmological constant, �, into the dynamics.
This changes the behavior radically. There are now five
types of stationary points shown in Table II. In addition to
the four stationary points found in Sec. VA, there is also a
new one (point 5) corresponding to the de Sitter universe,

aðtÞ ¼ a0e
Ht; �ðtÞ ¼ constant; (50)

where H ¼ ffiffiffiffiffiffiffiffiffi
�=3

p
. Since its eigenvalues are strictly nega-

tive this is the global attractor for these solutions, a phe-
nomena which is seen very clearly from numerical
simulations of the full system.
This confirms the behavior found in [35] that �ðtÞ

quickly asymptotes to a constant once the universe be-
comes � dominated. In fact, we can use these results to
calculate the leading corrections to the solution about the
stationary point as from (43) and (50) we have that

x1 ¼ c1
a3

; x2 ¼ 1þ c2
a3

; x3 ¼ c3

a3=2
: (51)

These can be explicitly solved to yield

lna� 3c2
a3

¼ Ht )

aðtÞ � eHt

�
1þ c2

3
e�3Ht þOðe�6HtÞ

�
;

(52)

�ðtÞ ¼ �0 � c1

ffiffiffiffiffiffi
2�

!

s Z dt

a3 þ c2

� �0 � c1
3

ffiffiffiffi
6

!

s
e�3Ht þOðe�6HtÞ: (53)

This means �ðtÞ decays exponentially fast on approach to
the de Sitter point. In fact, � will asymptote to a constant
whenever the background expansion is dominated by an
effective fluid stress with �þ 3p � 0 which causes the
expansion to accelerate [35].

C. Dynamics with curvature

We can also consider the effects of adding curvature to
the dynamics in a similar manner. For an open universe
(k < 0) the stationary points are given in Table III. The new
stationary point is the curvature-dominated Milne universe
with solution

0.0 0.5 1.0

x1

x3 0.0

0.5

1.0

FIG. 2 (color online). Phase plane diagram for the model with
dust and a scalar field where �̂m ¼ 1 (! ¼ 3

2 ). The point (0, 0) is

now a saddle for the system, with the attractors at infinity. Note
that physical values of the parameters must lie inside the circle
x21 þ x23 ¼ 1.

0.0 0.5 1.0

0.0

0.5

1.0

x1

x3

FIG. 1 (color online). Phase plane diagram for the model with
dust and a scalar field where �̂m ¼ �1 (! ¼ 3

2 ). The point (0, 0)

is the global attractor for all physical values of this system.
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aðtÞ ¼ a0t; �ðtÞ ¼ constant; (54)

which is the global attractor for this system. As far as the
scalar field is concerned, the effects of curvature are very
similar to a cosmological constant. The only difference is
that the freeze in of �ðtÞ happens a little slower. One can
see this by calculating the first order corrections to the
motion near the stationary point. One will find that

aðtÞ þ c5 ln aðtÞ ¼
ffiffiffiffiffiffi
jkj

p
t; (55)

�ðtÞ ¼ �0 � c1

ffiffiffiffiffiffiffiffi
6jkj
!

s Z dt

a2ðaþ c5Þ

� �0 � c1
jkj

ffiffiffiffiffiffiffi
3

2!

s
1

t2
þO

�
1

t3

�
; (56)

where c1 and c5 are constants. In general�ðtÞ decays like a
power law of time in the presence of curvature.
The case of a closed universe is a not so simple, since the

variables (28) are no longer compact. Indeed, they diverge
at the point of maximum expansion. One can avoid the
problem by changing the definition of the variables (28) to
avoid this. This is done in Appendix A. These results show
that closed universes undergo the same collapse as in
general relativity, with � diverging in the collapse as a
power law of time.

D. Dynamics with radiation

As a final case, let us study the addition of radiation to
the dynamics. It is easy to see this does not alter the late-
time asymptotes, so for simplicity let us just consider
the case of radiation and dust. The stationary points for
this case are given in Table IV. For the dust-dominated

TABLE II. Stationary points for a universe with dust, positive cosmological constant, and a scalar field. Point 5 (the de Sitter
solution) is the global attractor for the system.

SP x0 x1 x2 x3 Existence Eigenvalues Stability

1 1 0 0 0 All !, �̂m 0, � 3
2 Unstable saddle

2 0 1 0 0 All !, �̂m 3, 3
2 �

ffiffiffi
6
!

q
Unstable node !> 8

3 , saddle point !< 8
3

3 0 �1 0 0 All !, �̂m 3, 3
2 þ

ffiffiffi
6
!

q
Unstable node

4 0
ffiffiffiffiffi
8
3!

q
0

ffiffiffiffiffiffiffiffiffiffi
3!�8
3!

q
!> 8

3 , �̂m ¼ �1 8
! ,

4
! � 3

2 Saddle point

5 0 0 1 0 All !, �̂m �3, � 3
2 Stable node

TABLE III. Stationary points for a universe with dust, negative curvature, and a scalar field. Point 5 (the Milne solution) is the global
attractor for this system.

SP x0 x1 x3 x5 Existence Eigenvalues Stability

1 1 0 0 0 All !, �̂m 0, � 3
2 ,

1
2 Unstable saddle

2 0 1 0 0 All !, �̂m 3, 2, 3
2 �

ffiffiffi
6
!

q
Unstable node !> 8

3 , saddle point !< 8
3

3 0 �1 0 0 All !, �̂m 3, 2, 3
2 þ

ffiffiffi
6
!

q
Unstable node

4 0
ffiffiffiffiffi
8
3!

q ffiffiffiffiffiffiffiffiffiffi
3!�8
3!

q
0 !> 8

3 , �̂m ¼ �1 8
! ,

4
! � 3

2 ,
4
! þ 1

2 Saddle point

5 0 0 0 1 All !, �̂m �2, �1, � 1
2 Stable node

TABLE IV. Stationary points for a universe with dust, radiation, and a scalar field. At early times the system comes near points 5 or 6
depending on the initial conditions. At late times the system becomes dust dominated.

SP x0 x1 x3 x4 Existence Eigenvalues Stability

1 1 0 0 0 All !, �̂m 0, � 3
2 , � 1

2 Transcendentally stable

2 0 1 0 0 All !, �̂m 3, 1, 3
2 �

ffiffiffi
6
!

q
Unstable node !> 8

3 , saddle point !< 8
3

3 0 �1 0 0 All !, �̂m 3, 1, 3
2 þ

ffiffiffi
6
!

q
Unstable node

4 0
ffiffiffiffiffi
8
3!

q ffiffiffiffiffiffiffiffiffiffi
3!�8
3!

q
0 !> 8

3 , �̂m ¼ �1 8
! ,

4
! � 3

2 ,
4
! � 1

2 Saddle point

5 0 0 0 1 All !, �̂m �1, 1, 1
2 Saddle point

6 0
ffiffiffiffi
!
24

p ffiffiffiffi
!
12

p ffiffiffiffiffiffiffiffiffiffiffiffi
1� !

8

p
�̂m ¼ �1, !< 8 1, � 1

2 �
ffiffiffiffiffiffiffiffiffiffiffiffi
2ð!�6Þ

p
4 Saddle point
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stationary point, we can use the methods of Sec. VA to
show this is also transcendentally stable, as one would
expect since radiation is only important at late time. The
fifth point corresponds to a radiation-dominated Tolman
universe:

aðtÞ ¼ a0t
1
2; �ðtÞ ¼ constant: (57)

This is only a saddle point as one would expect. The last
stationary point is rather interesting, in particular it is a
physical stationary point provided that!< 8. It evolves as
a radiation-dominated universe with � growing like a
power law:

aðtÞ ¼ a0t
1
2; �ðtÞ ¼ �0 þ 1

4
ln t: (58)

It is the analogous solution to the radiation-dominated
solutions found in [35], although unlike in that case this
is an exact solution of the full set of equations. Like the
Tolman solution it is also a saddle point. At early times
then, depending on the initial conditions, it is possible for
the system to spend much of its time near this point, not the
radiation-dominated one.

VI. COSMOLOGIES WITH NONTRIVIAL
POTENTIAL, Vð�Þ, AND CONSTANT !

We now turn to the case when Vð�Þ itself has nontrivial
dynamics. Since in general the coupling term provides only
small corrections to the Friedmann equation, we would
expect that the evolution of the scale factor is similar to
that in an uncoupled, quintessence model. This turns out to
be the case, and this means that, unlike in Sec. V, the scalar
field always modifies the background evolution in a non-
trivial manner.

Given this, we might imagine one could hope to drive
variations in � and a time-varying dark energy with the
same scalar field. While in principle this is possible, it does
not seem easy to build a phenomenologically viable theory
along these lines [40]. It is not difficult to see why. If the
Universe does accelerate at late times then it must become
potential dominated, so the coupling terms in (16) and (17)
may be neglected. This means at late times � obeys

€�þ 3H _�þ V0ð�Þ
!

� 0: (59)

Moreover, for the field � to cause acceleration it should

enter the slow-roll regime where _�2 � Vð�Þ and the €�
term may be neglected in (59) [these can be seen from the
acceleration equation (18)]. The scalar field will then at
late times be given by

_� � �V 0ð�Þ
3H!

� � V 0ð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Vð�Þp

!
: (60)

In particular, unless the potential is actually constant
_� � 0 at late times. This is not in general observationally

acceptable because it will lead to a value of _�=� ¼ 2 _� that
is too large to be consistent with observational limits
(unless the potential is fine-tuned). This heuristic argument
is confirmed explicitly by looking at some special cases.
Despite this, it is still interesting to see the different

dynamics which occurs when we have more complicated
potentials. We will examine the dynamics of the well-
known exponential and power-law potentials. For simplic-
ity we will just allow for dust in addition to the scalar field;
other components could be included without difficulty.

A. Dynamics with exponential potential

The first one we study is the case of an exponential
potential,

Vð�Þ ¼ �e
�; (61)

where� and
 are constants. Although the case
< 0 is the
one of most physical interest we will allow 
 to take either
sign. This reduces to a cosmological constant in the limit

 ! 0. Note that � ¼ �
 is a constant, so the system is
specified by (36)–(40) like in Sec. V. Solving the equations
we find that there are eight types of stationary points, given
in Table V. The first four stationary points are familiar from
Sec. V, though their stability is a little different here. The
next two stationary points are the end states when the
evolution becomes potential dominated. When 
< 0 at
least one of these points is an attractor, hence they represent
the late-time evolution of the system. Notice that the fifth
point reduces to the de Sitter state in the limit
 ! 0, while
the sixth has no analogue. A key difference to the equiva-
lent, de Sitter, attractor with a cosmological constant is that
for both of these points x1 � 0, so the scalar field never
freezes in. In fact, the solutions in this limit take the form

aðtÞ ¼ a0t
2!


2 ; �ðtÞ ¼ �0 � 2



ln t; (62)

for the first one and

aðtÞ ¼ a0t
2
3; �ðtÞ ¼ �0 � 2



ln t; (63)

for the second. The key point is that this system tends to a
universe where both the scale factor and � grow as a power

law of time: � ¼ �0t
�4=
. Such fast evolution of �ðtÞ

can be used to place strong bounds on 
, as was first done
in [40].
The last two stationary points are rather complex. Point

7 exists when �̂m ¼ �1, 
> 1 and 3!<
ð2þ 
Þ (the
last two conditions come from demanding that the varia-

bles are real). Point 8 exists when �̂m ¼ 1 and

3!>
ð2þ 
Þ; 3!ð5þ 
Þ< 4
ð2þ 
Þ;
and 3!þ 4ð2þ 
Þ> 0: (64)

Consideration of these conditions shows that it can only
exist when 
> 0 or 
<�5=2. In both cases these are
power-law solutions with
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aðtÞ ¼ a0t
2ð2þ
Þ
3
 ; �ðtÞ ¼ �0 � 2



ln t: (65)

The eigenvalues are

� 6

2þ 

; � 3ð8þ 6
þ 
2Þ

4ð2þ 
Þ2 � 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð24!ð10þ 3!Þ þ 8
ð9!� 16Þ � 
2ð128þ 21!Þ � 32
3Þ

!ð2þ 
Þ2
s

: (66)

We can show that one of these is always a real positive
number, or a complex number with positive real part, when

< 0, or when 
> 0 and 3!>
ð2þ 
Þ. When 
> 0
and 3!<
ð2þ 
Þ all the eigenvalues are negative or
have real negative part. We therefore conclude that point
8 is a saddle point, while point 7 is a stable node. This is
confirmed by numerical simulations (Fig. 3).

To summarize, when
< 0 then either point 5 or 6 is the
attractor for all !, and the late-time behavior is given by
the power-law solutions (62) and (63). For the less physi-
cally interesting case of 
> 0, if �m < 0 then point 5 is the
attractor provided 3!>
ð2þ 
Þ, otherwise point 7 will
be the attractor. By contrast, when �m > 0 point 5 is still the
attractor if 3!>
ð2þ 
Þ, but if this is not satisfied the

TABLE V. Stationary points for a universe with dust and a scalar field with exponential potential. When 
< 0, points 5 and 6 are the
global attractors of the system. When 
> 0, depending on the value of ! and �m, the late-time behavior may be point 5, point 7, or a
finite-time singularity.

SP x0 x1 x2 x3 Existence Eigenvalues Stability

1 1 0 0 0 All !, �̂m 0, � 3
2 Unstable saddle

2 0 1 0 0 All !, �̂m 3, 3þ 

ffiffiffiffiffi
3
2!

q
, 3
2 �

ffiffiffi
6
!

q
Saddle point

!<8
3 or 
<� ffiffiffiffiffiffiffi

6!
p

3 0 �1 0 0 All !, �̂m 3, 3� 

ffiffiffiffiffi
3
2!

q
, 3
2 þ

ffiffiffi
6
!

q
Saddle point 
>

ffiffiffiffiffiffiffi
6!

p

4 0
ffiffiffiffiffi
8
3!

q
0

ffiffiffiffiffiffiffiffiffiffi
3!�8
3!

q
!>8

3, �̂m ¼ �1 8
! ,

4
! � 3

2 ,
4þ2

! þ3

2 Saddle point

5 0 � 
ffiffiffiffiffi
6!

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

6!

q
0 j
j< ffiffiffiffiffiffiffi

6!
p �3þ 
2

! , �3þ 
2

2! ,� 3
2 þ 
ð2þ
Þ

2!

Stable node

� ffiffiffiffiffiffiffi
3!

p
<
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ3!

p �1,
saddle point otherwise

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3!


2

q
� 1




ffiffiffiffiffi
3!
2

q ffiffiffiffiffiffi
3!
2
2

q
0 !< 
2

3
3

 , � 3

4 � 3
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24!

2 � 7

q
Stable node 
<� ffiffiffiffiffiffiffi

3!
p

7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3!ð
�1Þ
2ð2þ
Þ2

q
�

ffiffiffiffiffi
3!

pffiffi
2

p ð2þ
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3!þ4ð2þ
Þ
2ð2þ
Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2þ
Þ�3!

ð2þ
Þ2
q

�̂m ¼ �1, 
> 1
and 3!<
ð2þ
Þ

See (66) Stable node

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
ð2þ
Þ�3!ð5þ
Þ

2ð2þ
Þ2
q

�
ffiffiffiffiffi
3!

pffiffi
2

p ð2þ
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3!þ4ð2þ
Þ
2ð2þ
Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3!�
ð2þ
Þ

ð2þ
Þ2
q

See (64) See (66) Saddle point
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FIG. 3 (color online). Simulations for a universe with dust and a scalar field with exponential potential, 
 ¼ 2 and �m > 0. The thick
blue (lower) curve is the value of x1, the red (upper) of x2, and the dashed yellow (intermediate) of x3. For (a) we have set x1 ¼ 0:01
and x3 ¼ 0:1 as our initial conditions, and ! ¼ 6. The solution clearly tends to the attractor point 5. For (b) we set x1 ¼ x3 ¼ 0:01
initially and choose ! ¼ 2. This solution tends to a singularity at a finite value of the scale factor.
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solution develops a finite-time singularity. This has been
checked using numerical simulations of the equations.

B. Dynamics with power-law potential

The next potential we examine is when Vð�Þ takes a
power-law form,

Vð�Þ ¼ ��n; (67)

where � and n are constants. For this potential � is no
longer a constant, instead � ¼ � n

� and � ¼ 1� 1
n . The

system is defined by Eqs. (36)–(41). Now Eq. (41),

d�

dN
¼

ffiffiffiffi
6

!

s
�2

n
x1; (68)

implies that any stationary point must have � ¼ 0 or x1¼0.
The first choice gives the same solutions as in Table II,
while the second only has the trivial solution x1;2;3 ¼ 0.
This means the model has the same stationary points as in
Table II with � ¼ 0, plus the point x0 ¼ 1, x1;2;3 ¼ 0 and

� ¼ constant. The eigenvalues for these points are the same
as given in Table II, but with an extra zero eigenvalue added
to all of them (the new point has a double zero eigenvalue
and a pair with values � 3

2 , so cannot be stable).

To determine if the de Sitter point—x2 ¼ 1, x0;1;3 ¼ 0,
� ¼ 0—is an attractor we must follow the procedure out-
lined in Sec. VA. We find that the point is (asymptotically)
stable when n < 0, and unstable for n > 0. This means the
system is attracted to the de Sitter solution at late timeswhen
n < 0. When n > 0 one finds, from numerical simulations,
that a finite-time singularity develops for the system.

That the late-time behavior is essentially identical to the
case with constant potential is not surprising. It is well
known that power-law potentials exhibit tracking behavior:
the scalar field tracks the energy density of dust at inter-
mediate times, before dominating entirely at late times. As
this is an effect at intermediate redshift it cannot be seen by
a phase-plane analysis of the system. For our case, numeri-
cal evolution shows, for n < 0, that the � rolls to zero very
slowly, and at intermediate redshift the solution is to a good
approximation give by � � constant. From Section VIA,
we see that x1 and x2 are approximately constant over a
redshift range where this is valid. Solving in this limit gives

aðtÞ ¼ a0 exp ½At2=ð2�nÞ	; �ðtÞ ¼ Bt2=ð2�nÞ; (69)

where A and B are constants depending on �. Ultimately, in
this model one would expect �ðtÞ to have a very fast time
variation, in conflict with observations.

VII. DYNAMICAL SYSTEMS ANALYSIS WITH
ARBITRARY COUPLING

We now wish to examine the cosmology when the
coupling is a function of the scalar field, first considered
with V ¼ 0 in [41]. For this analysis the formulation of the
theory given in Sec. II is not optimal. Instead, it is better to

make a field redefinition � ¼ �ð�Þ so that the action is
canonically normalized:

S¼
Z
d4x

ffiffiffiffiffiffiffi�g
p �

1

2
R�1

2
@a�@a�� �Vð�ÞþAð�ÞLemþLm

�
:

(70)

Explicitly, this can be done if we make the choiceZ ffiffiffiffiffiffiffiffiffiffiffiffi
!ð�Þ

q
d� ¼ �; (71)

which gives�ð�Þ implicitly. For instance, for the case of a
exponential coupling ! ¼ !0e

�� [41] solving this shows
that we should choose � so that

� ¼ 2

�
ln

�
��

2
ffiffiffiffiffiffi
!0

p
�
: (72)

It is easy to check that the coupling term Að�Þ takes a

power-law form, Að�Þ ¼ A0�
�4

�, in this case. Similarly,
for a power-law coupling function ! ¼ !0�

n the correct

choice is� ¼ A0
0�

2
2þn, which leads to Að�Þ ¼ e�2A0

0
�

2
2þn . It

is also easy to invert the transformation and go back to the
original theory: one simply solves Að�Þ ¼ e�2� to get
� ¼ �ð�Þ.
Since these two formulations of the theory are entirely

equivalent we are free to study either. We will use this
formulation to study the cosmology with arbitrary cou-
pling. In this formulation � is given by

� ¼ 1

Að�Þ : (73)

The equivalent cosmological equations to (16)–(18) are

€�þ 3H _�þ �V0ð�Þ ¼ A0ð�Þ�m�m; (74)

H2 ¼ 1

3

�
�mð1þ j�mjAð�ÞÞ þ �rAð�Þ þ 1

2
_�2 þ �Vð�Þ

�

� k

a2
; (75)

_H ¼ � 1

2
�mð1þ j�mjAð�ÞÞ � 2

3
�rAð�Þ � 1

2
_�2 þ k

a2
:

(76)

To cast this into autonomous form we follow the same
steps as in Sec. IV. We define autonomous variables by

x1 ¼
_�ffiffiffi
6

p
H
; x2 ¼

ffiffiffiffi
�V

p
ffiffiffi
3

p
H
; x3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mj�mjA

p
ffiffiffi
3

p
H

;

x4 ¼
ffiffiffiffiffiffiffiffiffi
�rA

p ffiffiffi
3

p
H

; x5 ¼
ffiffiffiffiffiffijkjp
aH

; (77)

and also define x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m=3H

2
p

. Note that in these varia-
bles � and H=H0 continue to be given by (31) and (33),
respectively. The scalar field is gotten by solving
�ðNÞ ¼ Að�Þ�1. If either the potential or the coupling is
nonconstant we also need to define
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�V ¼ � �V0
�V
; �V ¼ �V �V 00

�V 02 ;

�A ¼ �A0

A
; �A ¼ AA00

A02 :

(78)

The full evolution equations for this system are

dx1
dN

¼ 1

2
x1ð�3þ 3x21 � 3x22 þ x24 þ k̂x25Þ

�
ffiffiffi
3

2

s
�A�̂mx

2
3 þ

ffiffiffi
3

2

s
�Vx

2
2; (79)

dx2
dN

¼ �
ffiffiffi
3

2

s
�Vx1x2 þ 1

2
x2ð3þ 3x21 � 3x22 þ x24 þ k̂x25Þ;

(80)

dx3
dN

¼�
ffiffiffi
3

2

s
�Ax1x3þ1

2
x3ð3x21�3x22þx24þ k̂x25Þ; (81)

dx4
dN

¼ 1

2
x4ð�1þ 3x21 � 3x22 þ x24 þ k̂x25Þ; (82)

dx5
dN

¼ 1

2
x5ð1þ 3x21 � 3x22 þ x24 þ k̂x25Þ; (83)

d�V

dN
¼ � ffiffiffi

6
p

�2
Vð�V � 1Þx1; (84)

d�A

dN
¼ � ffiffiffi

6
p

�2
Að�A � 1Þx1: (85)

In addition, we also have the constraint equation,

1 ¼ x20 þ x21 þ x22 þ x23 þ x24 � k̂x25: (86)

This formalism is considerably more general than the one
developed in Sec. IV, and can be used to study the dynam-
ics for any potential or coupling function (although for the
case of constant coupling the formalism developed in
Sec. IV is more useful). Before we look at some specific
cases, it is worth noting that there are some general sta-
tionary points which exist regardless of the detailed form
of the potential or coupling. These include the points

ðx0; x1; x2; x3; x4; x5Þ ¼ ð1; 0; 0; 0; 0; 0Þ
½Einstein–de Sitter point	; (87)

¼ ð0; 0; 1; 0; 0; 0Þ and �V ¼ 0 ½de Sitter point	; (88)

¼ ð0; 0; 0; 0; 0; 1Þ and k̂ ¼ �1 ½Milne point	; (89)

¼ ð0; 0; 0; 0; 1; 0Þ ½Tolman point	; (90)

¼ ð0;�1; 0; 0; 0; 0Þ and �V; �A ¼ 0 or �V;�A ¼ 1

½scalar dominated point	 (91)

In general, the stability of these points will depend on the
form of the potentials, but in some cases the linear ap-
proximation is enough to decide. For instance, the eigen-
values of the last point always include 3, so it can never be
stable. By contrast, the eigenvalues of the de Sitter point
are �3, �3=2, �2, �1, and a double zero eigenvalue. If
there is no nonconstant potential or coupling then the point
is stable; if either potential or coupling is nontrivial its
stability must be determined by the nonlinear analysis
discussed in Sec. VA.

A. Case of exponential coupling

As an application of this formalism let us study the case
when the original coupling !ð�Þ takes an exponential
form:

! ¼ !0e
��: (92)

As explained above this is equivalent to a theory with a

power-law form for Að�Þ ¼ A0�
�4

�. Notice this means
that �A ¼ 4

�� and �A ¼ 1þ �
4 is a constant. For simplicity

we will restrict to the case of a constant potential. As in the
previous section the dynamics is strongly dependent on
whether V vanishes or not.
We will first examine the case of a positive cosmological

constant. To find the stationary points, note that (85) im-
plies that either x1 ¼ 0 or �A ¼ 0. We can then solve the
remaining equations to find that there are only four types of
stationary points, given in Table VI. For the last point the
value of �A is not fixed.
Clearly, from the eigenvalues, the only potentially stable

point is the third: the de Sitter point. It has a zero eigen-
value due to the de Sitter solution actually being a curve of
critical points given by x1 ¼ x3 ¼ 0 and x2 ¼ 1 in phase
space. Using the methods outlined in Sec. V, we can show
it is transcendentally stable for any value of �A. This is
confirmed from numerical simulations, which show that
for reasonable initial conditions the solution quickly
asymptotes to a de Sitter state, with the value of �A frozen
in close to its initial value. More precisely, if�> 0 then �A

decreases, while if �< 0 it increases before freezing in
[this can be seen directly from (85)].
The behavior with dust alone is more complex: in this

case the last stationary point vanishes and the only possible
attractor is the Einstein–de Sitter point. Since this point has
a double zero eigenvalue the techniques of Lyapunov and
Malkin described in [56] cannot be applied. Instead we
deduce the behavior from numerical simulations. Before
we describe the results, it is worth noting that when one
chooses the initial data for the simulations one is not free to
specify the initial value of �A freely once x1 and x3 are
chosen. Instead, it is given by (writing in terms of the
original parameters)

�A ¼ 2ffiffiffiffiffiffi
!0

p
�

x3

x0
ffiffiffiffiffiffiffij�m

p j
�
�=2

: (93)
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This is in addition to the constraint equation (86), which in
this case enforces x21 þ x23 � 1.

The results we find are as follows. When �̂m ¼ �1, then
in all cases x3 and x1 decreases (at least initially), which

means that �ðtÞ increases. When �> 0 then � increases
and the behavior is very similar to the ! ¼ constant case
discussed in Sec. VA: the solution tends to an Einstein–de
Sitter universe at late times, with � growing like the

TABLE VI. Stationary points for a universe with dust, positive cosmological constant, and a scalar field with exponential coupling.
Point 4 is the attractor for this system.

SP x0 x1 x2 x3 �A Existence Eigenvalues Stability

1 1 0 0 0 0 All !, �̂m 0, � 3
2

Saddle point

2 0 1 0 0 0 All !, �̂m 0, 3, 3
2

Unstable node

3 0 �1 0 0 0 All !, �̂m 0 3, 3
2

Unstable node

4 0 0 1 0 Constant All !, �̂m 0, �3, � 3
2

Transcendental stable
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FIG. 4 (color online). Simulations for a universe with dust and a scalar field with exponential coupling, !0 ¼ 4 and �m < 0. The
thick blue (lower) curve is the value of x1, the red (intermediate) of x3, and the dashed yellow (upper) of x0 in both cases. For both
simulations we choose initial conditions x1 ¼ x3 ¼ 0:01. For (a) we have set � ¼ 0:01, in (b) � ¼ 10:01. Both show that at late times
the system tends to a dust-dominated universe, with x3 rolling slowly to zero and x1 subdominant. The only difference is that (b) shows
slower decrease of x3, which corresponds to � growing more slowly in time for this solution.
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FIG. 5 (color online). Simulation for a universe with dust and a scalar field with exponential coupling, !0 ¼ 4, � ¼ 0:01 and
�m > 0. In (a) the thick blue (lower) curve is the magnitude of x1, the red (intermediate) of x3, and the dashed yellow (upper) of x0. We
choose initial conditions x1 ¼ x3 ¼ 0:01. The solution early on is like a dust-dominated universe with decreasing �. However, at some
critical redshift (N ¼ 5078 here) both x1 and x3 rapidly increase, while x0 decreases, and the solution develops a finite-time singularity
due to the scalar field. Note that x1 goes through zero and becomes negative, and � decreases to zero as shown in (b).
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logarithm of time (Fig. 4). The only difference is that
the actual rate of growth depends on �; in particular, for
larger� the growth is slower. This is in line with the results
of [41].

When �̂m ¼ �1, but �< 0, then we now have that �
decreases. This is not inconsistent with � continuing to

increase, since as � ¼ A�1 ¼ �0�
4=�, then when �> 0

an increase of� leads also to an increase in �, while when
�< 0 the opposite is true. As noted in [41] there is a change
in behavior when �<�2, since for this value the simula-
tions develop a singularity in finite time [Fig. 6(a)]. This
is qualitatively different from the behavior found in
Sec. VA, since x3 continues to decrease upon approach
to this point. It may be that the solution becomes domi-
nated by the kinetic energy of the scalar field, although the
simulations do not have sufficient resolution to show this.

When �̂m ¼ 1, we again find that � decreases regardless
of the sign of �. For �> 0 then � decreases and the
behavior is similar to the solutions found in Sec. VA. The
solution becomes dominated by the scalar field at late time
and eventually hits a finite-time singularity, as shown in
Fig. 5.

By contrast when�<�2we find that now� increases,
and the behavior is not so singular. Instead, we find that x1
quickly decreases and x3 slowly increases [Fig. 6(b)]. At
late times it seems to dominate the dynamics completely.

VIII. CONCLUSIONS

In this paper we have studied a generalization of the
canonical BSBM theory of varying � ¼ exp ½2�	, to in-
clude both a potential Vð�Þ and generalized coupling term
!ð�Þ defining the theory. We were able to study in detail
the dynamics of this model in FRW universes by formulat-
ing the equations as a dynamical system, and so study the

full dynamics even in the cases where the background
expansion is affected by the variations in �. This extends
earlier studies of the situation with �m < 0, which assumed
that the variation of the� field has negligible effects on the
expansion scale factor of the Universe and the evolution of
the matter density. All the asymptotic behaviors were
identified and some exact solutions found. We confirm
the behavior found in earlier approximate and numerical
analyses in which the dynamics of � were assumed not
to affect the expansion dynamics of the Universe to
leading order [35,40,41]. We also studied the cases in
which �m > 0, whereas past studies have been confined
to the situation with �m < 0.
The general behavior at early times is that the solution

becomes dominated by the scalar field’s kinetic energy
unless the potential is nonconstant. The solution tends to
Eq. (27) as t ! 0 [59].
When only dust is present the late-time behavior de-

pends crucially on the sign of �m. In the zero curvature
case, if �m < 0 then the attractor is the Einstein–de Sitter
solution, with � growing logarithmically in time. If �m > 0
then after a transient Einstein–de Sitter phase, with de-
creasing �, the dynamics become dominated by the scalar
field and the solution develops a finite-time singularity.
When a positive cosmological constant is added (or equiv-
alently a constant potential V) the late-time solution tends
exponentially rapidly to a de Sitter universe with � frozen
in at a constant value.
When dust is accompanied by negative curvature the

solution at late times becomes curvature dominated and
evolves to a Milne universe with � frozen in at a constant
value. The only difference between this and the presence of
a cosmological constant is that the evolution is slower in
this case. With positive curvature the Universe undergoes
the process of collapse as in general relativity, although in
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FIG. 6 (color online). Simulations for a universe with dust and a scalar field with exponential coupling,!0 ¼ 4 and� ¼ �10:1. The
thick blue (lower) curve is the magnitude of x1, the red (intermediate) of x3, and the dashed yellow (upper) of x0. For both simulations
we choose initial conditions x1 ¼ x3 ¼ 0:01. For (a), with �m < 0, we find that the solution develops a finite-time singularity, but it is
qualitatively different from the one found in the �m > 0, �>�2 case. The only divergence occurs due to the x1 term (which becomes
negative), with x3 continuing to decrease. For (b), with �m > 0, the future evolution appears nonsingular, but x3 continues to increase
(in line with � decreasing) and x1 is always negligible. The late-time solution is one dominated by the scalar field.
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the recollapsing phase the scalar-field kinetic energy domi-
nates: � diverges like a power law on approach to this
singularity.

In the presence of radiation the late-time behavior is the
same as above. At early times, however, �may grow like a
power law of time depending on the initial conditions. We
also showed that the behavior of the radiation density and
temperature in the presence of varying � is significantly
different to the standard case where � cannot change: the

radiation temperature falls as Tr / �1=4a�1 and the radia-
tion entropy per baryon is not constant during the expan-

sion of the universe since T3
r =�m / �3=4.

When the scalar field driving � variations has a nonzero
self-interaction potential, the evolution changes. For an
exponential potential, Vð�Þ ¼ �e
�, we find that when

< 0 the late-time attractors are the power-law solutions
(62) and (63). In the less physically interesting case of

> 0, the late-time behavior may be a power-law attractor,
or a finite-time singularity depending on the defining
parameters. For a power-law potential, Vð�Þ ¼ ��n, again
we find that when n < 0 the late-time behavior is a scalar
field-dominated solution given by (69).

We also investigated the effects of generalizing the
coupling parameter ! to become a function, !ð�Þ. We
studied the detailed evolution of the dynamics. With an
exponential coupling, ! ¼ !0e

��, and a positive cosmo-
logical constant the late-time behavior is, as before, the de
Sitter solution. If the cosmological constant is dropped and
the matter source is only dust then the late-time behavior is
more complex. When �>�2 and �m < 0 the late-time
attractor is the Einstein–de Sitter solution with � increas-
ing as a power of a logarithm of time. When �<�2 and
�m > 0 then at late times the scalar field dominates the
dynamics and � decreases. When �>�2 and �m > 0 or
�<�2 and �m < 0 finite-time singularities develop due
to the scalar-field evolution [59].

Our work has been strictly limited to homogeneous and
isotropic universes. Given the recent experimental indica-
tions of a dipole in � it would be interesting to relax this
assumption: in particular to examine small perturbations
about this background (which were first studied for simple
BSBM models with constant ! and V ¼ 0 using a gauge
invariant formalism by Barrow and Mota [60]), or to look
at larger deviations to determine the conditions under
which modes for growing and decaying �ðtÞ can coexist
in the same solution. This will be explored elsewhere.
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APPENDIX A: DYNAMICAL SYSTEMS ANALYSIS
WITH CLOSED CURVATURE

To perform a dynamical systems analysis for a closed
universe the formalism of Sec. IV is not ideal, sinceH ! 0

if there is a point of maximum expansion and the variables
(28) diverge on approach to it. To remedy this we will
follow the strategy of [57]. We define

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ k=a2

q
; (A1)

which is finite at the turnover, and use it to define the new
variables,

x1 ¼
ffiffiffiffi
!

p _�ffiffiffi
6

p
D

; x2 ¼
ffiffiffiffi
V

p
ffiffiffi
3

p
D
; x3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mj�mj

p
e��ffiffiffi

3
p

D
;

x4 ¼
ffiffiffiffiffi
�r

p
e��ffiffiffi
3

p
D

; xH ¼ H

D
: (A2)

The curvature term x5 ¼
ffiffiffiffiffiffijkjp

=aD is not needed since

by (A1) x25 ¼ 1� x2H. As before we also have that x0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m=3D

2
p ¼ 1� x21 � x22 � x23 � x24. We will define a

modified time coordinate

N ¼
Z

Ddt: (A3)

Using this the autonomous variables obey the evolution
equations,

dxH
dN

¼ � 1

2
ð1� x2HÞð1þ 3x21 � 3x22 þ x24Þ; (A4)

dx1
dN

¼�
ffiffiffiffi
6

!

s
�̂mx

2
3þ

ffiffiffiffiffiffiffi
3

2!

s
�x22�

1

2
x1xHð3�3x21þ3x22�x24Þ;

(A5)

dx2
dN

¼�
ffiffiffiffiffiffiffi
3

2!

s
x1x2�þ1

2
x2xHð3þ3x21�3x22þx24Þ; (A6)

dx3
dN

¼ �
ffiffiffiffi
6

!

s
x1x3 þ 1

2
x3xHð3x21 � 3x22 þ x24Þ; (A7)

dx4
dN

¼ � 1

2
x4xHð1� 3x21 þ 3x22 � x24Þ: (A8)

When xH > 0 the solution is expanding, while when xH < 0
it is collapsing. The point of maximum expansion occurs
when xH ¼ 0. If we restrict to universes containing just
dust and curvature then we see that there are eight sta-
tionary points given in Table VII. For each stationary point
on the expanding branch there is a corresponding one on
the contracting branch, but attractors only exist on the
contracting branch. This tells us these solutions always
recollapse as in general relativity. The only difference is
that the solution becomes dominated by the kinetic energy
of the scalar field in the final stages of collapse. Near the
point of collapse t0 the dynamics are given by

GENERAL DYNAMICS OF VARYING-ALPHA UNIVERSES PHYSICAL REVIEW D 88, 103513 (2013)

103513-17



aðtÞ ¼ Aðt0 � tÞ13; �ðtÞ ¼ �
ffiffiffiffiffiffiffi
2

3!

s
ln ðt0 � tÞ þ�0;

(A9)

where A and�0 are constants. This means � behaves like a

power law, � ¼ �0ðt0 � tÞ�
ffiffiffiffi
8
3!

p
, near the collapse. This is

confirmed by numerical simulations of the system. One
finds that for �m > 0 the behavior of � is described by the
solution with the þ sign (so � ! 0), while for �m < 0 it is
the � sign (so � ! 1 at the ‘‘big crunch’’ singularity).

APPENDIX B: SOLUTIONS WITH SCALAR-FIELD
DOMINATION

Here we show that it is possible to solve Eqs. (16) and
(17) exactly in the limit where one of the scalar terms
dominates the Friedmann equation. For simplicity let us
restrict to zero potential and constant coupling (these as-
sumptions can be relaxed somewhat). We shall also ignore
the effects of radiation, and set k ¼ � ¼ 0. The first
approximation means we are restricting to solutions valid
at late times; the second assumption is because we know
from the analysis of Sec. V that otherwise the solutions will
never become scalar dominated at late time. We wish to
solve the equations

_a2

a2
¼ 1

3

�
�mð1þ j�mje�2�Þ þ 1

2
! _�2

�
; (B1)

€�þ 3H _� ¼ N
e�2�

a3
; (B2)

where N ¼ �2�m�ma
3=! is a constant The first limit we

shall look at is when the kinetic energy of the scalar field
dominates over the other terms in the Friedmann equation.
This may be the late-time limit of the dust solutions with
exponential coupling, �m < 0 and �<�2 considered in
Sec. VII A. In this limit the Friedmann equation becomes
_a
a �

ffiffiffi
!
6

p _�. This may be integrated to yield

a ¼ a0e
ffiffi
!
6

p
�: (B3)

Substituting this into the scalar equation gives us that

€�þ
ffiffiffiffiffiffiffi
3!

2

s
_�2 ¼ N0e�ð2þ

ffiffiffiffi
3!
2

p
Þ�: (B4)

Since this equation does not depend on t explicitly it may be

reduced to a first order equation. In fact, putting uð�Þ ¼ _�2

and replacing t with � gives us a linear equation
in uð�Þ,

du

d�
þ ffiffiffiffiffiffiffi

6!
p

u ¼ 2N0e�ð2þ
ffiffiffiffi
3!
2

p
Þ�: (B5)

It is worth noting that similar steps would give a solvable
equation even when ! ¼ !ð�Þ. Integrating this gives

) t¼
Z d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

Ce�
ffiffiffiffiffi
6!

p
�þ 2N0

� ffiffiffiffiffi
3!
2

q
� 2

��1
e�ð2þ

ffiffiffiffi
3!
2

p
Þ�
�s þ t0;

(B6)

where C and t0 are constants. Equations (B3) and (B6)
constitute the parametric solution for the scale factor in this
limit. The above integral can only be done in general with
the aid of hypergeometric functions, though it does sim-
plify whenC ¼ 0. In this case there is a power-law solution
of the form

� ¼ Aþ B ln t; aðtÞ ¼ a0t
ffiffi
!
6

p
B; (B7)

where A and B are constants given by

B¼ 1

1þ ffiffiffiffiffiffiffiffiffiffiffiffi
3!=8

p ; A¼ 1

2
ln

�
N0ð ffiffiffiffiffiffiffiffiffiffiffiffi

3!=8
p þ 1Þ2

ð ffiffiffiffiffiffiffiffiffiffiffiffi
3!=8

p � 1Þ
�
: (B8)

Note these particular solutions cannot be the attractors
if the scalar field does indeed dominate in this manner.
We can easily see this by noting they are not consistent

TABLE VII. Stationary points for a universe with dust, scalar field, and positive curvature. Points with xH > 0 correspond to
expanding universes, while xH < 0 to collapsing universes. Point 6 is the global attractor for this system.

SP x0 xH x1 x3 Existence Eigenvalues Stability

1 1 1 0 0 All !, �̂m 0, � 3
2 , 1 Unstable saddle

2 0 1 1 0 All !, �̂m 4, 3, 3
2 �

ffiffiffi
6
!

q
Unstable node !> 8

3 , saddle point !< 8
3

3 0 1 �1 0 All !, �̂m 4, 3, 3
2 þ

ffiffiffi
6
!

q
Unstable node

4 0 1
ffiffiffiffiffi
8
3!

q ffiffiffiffiffiffiffiffiffiffi
3!�8
3!

q
!> 8

3 , �̂m ¼ �1 1þ 8
! ,

4
! � 3

2 ,
8
! Saddle point

5 1 �1 0 0 All !, �̂m 0, 3
2 , �1 Unstable saddle

6 0 �1 1 0 All !, �̂m �4, �3, � 3
2 �

ffiffiffi
6
!

q
Stable node

7 0 �1 �1 0 All !, �̂m �4, �3, � 3
2 þ

ffiffiffi
6
!

q
Stable node !> 8

3 , saddle point !< 8
3

8 0 �1 �
ffiffiffiffiffi
8
3!

q ffiffiffiffiffiffiffiffiffiffi
3!�8
3!

q
!> 8

3 , �̂m ¼ �1 �ð1þ 8
!Þ, 3

2 � 4
! , � 8

! Saddle point
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solutions: the �m and �me
�2� terms always decay slower

in the Friedmann equation than the kinetic term 1
2!

_�2.

The other limit in which we can solve these equations is
when the second term in (B1) dominates over all others.
This seems to be the late-time behavior of the dust solu-
tions with �m > 0 and �<�2 discussed in Sec. VII A. In
this limit H2 � �2e�2�=a3, where �2 ¼ �ma

3j�mj=3 is
another constant. Substituting this into (B2) gives us

€�þ 3�e��

a3=2
_� ¼ Ne�2�

a3
: (B9)

If we now replace derivatives of t with a then it becomes
(writing 0 ¼ d=da from now on)

a2�00 þ 5

2
a�0 � a2�02 ¼ N

�2
: (B10)

Since this equation does not depend on � explicitly it may
be reduced to a first order equation by putting wðaÞ ¼ a�0
to give

aw0 ¼ w2 � 3

2
wþ N

�2
; (B11)

which is a separable equation. Notice that this equation
admits simple particular solutions corresponding to
w ¼ w0, where w0 is a constant given by

w0 ¼ 3

4
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
� 4N

�2

s
: (B12)

Since �0 ¼ w=a then in this case �ðaÞ ¼ w0 ln aþ�0.
Substituting this into the Friedmann equation shows that
these are power-law solutions with

aðtÞ ¼ a0t
2

3þ2w0 : (B13)

Note that these solutions only exist when �2 > 0, but since

N=�2 ¼ � 6
! �̂m this is always satisfied for �m > 0. In this

case then the larger and smaller value of w0 are positive
and negative, respectively.
Since (B11) is separable, we can find the general solu-

tion by integration. This gives

a ¼ a0

�
�þ 3=2� 2w

2w� 3=2þ �

�
1=�

with � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
� 4N

�2

s
:

(B14)

This can be inverted to give wðaÞ,

wðaÞ ¼ 3

4
þ �

2

�
a�0 � a�

a�0 þ a�

�
; (B15)

so that the scalar field is then

�ðaÞ ¼
Z wðaÞ

a
da

¼
�
3

4
þ�

2

�
lna� ln ða�0 þ a�Þ: (B16)

This allows us to find the solution implicitly, since if we
substitute this back into the Friedmann equation the time is
given by

t ¼
Z a1=2e�

�
da ¼ 1

�

Z a5=4þ�=2

a�0 þ a�
da: (B17)

This gives the implicit solution for the scale factor and the
scalar field.
We have not been able to solve these equations analyti-

cally in the limit when both scalar terms in the Friedmann
equation are non-negligible. There is one case of this kind
which can be solved though. If we know that at late times
these two terms approach some ratio (i.e. that x1=x3 tends
to a constant), then we can use either of these solutions
given above to find the general solution.
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