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In this paper, we formulate a generalization of the simple Bekenstein-Sandvik-Barrow-Magueijo theory

of varying alpha by allowing the coupling constant! for the corresponding scalar field c to depend on c .

We focus on the situation where ! is exponential in c and find the late-time behaviors that occur in

matter-dominated and dark-energy dominated cosmologies. We also consider the situation when the

background expansion scale factor of the Universe evolves in proportion to an arbitrary power of the

cosmic time. We find the conditions under which the fine-structure ‘‘constant’’ increases with time, as in

the Bekenstein-Sandvik-Barrow-Magueijo theory, and establish a cosmic no-hair behavior for accelerat-

ing universes. We also find the conditions under which the fine-structure constant can decrease with time

and compare the whole family of models with astronomical data from quasar absorption spectra.

DOI: 10.1103/PhysRevD.85.023514 PACS numbers: 98.80.Cq

I. INTRODUCTION

The electromagnetic fine-structure constant, � ¼
e2=ℏc, has traditionally been thought of as a fundamental
constant of nature. However, high-redshift observations of
quasar absorption spectra have continued to suggest [1–5]
that this ‘‘constant’’ may exhibit very slow temporal and
spatial variation. One theory that generalizes Maxwell’s
theory of electromagnetism and the general theory of
relativity in order to accommodate and test these possible
variations in � is the Bekenstein-Sandvik-Barrow-
Magueijo (BSBM) theory [6–8]. In this theory, space-
time variations in � are carried by a scalar field which
couples to electrically charged matter; this is an example of
what has since become known as a ‘‘chameleonic’’ scalar
field. These variations, in turn, contribute to the space-time
geometry and cosmological dynamics. Such a theoretical
development is important because almost all published
observational bounds on variations in� derive from simply
allowing � to become a variable in the conventional equa-
tions of physics in which it is strictly a constant. The
BSBM theory provides a self-consistent varying-� theory
in the way that Brans-Dicke theory [9] describes a varying
Newtonian gravitation constant, G, via a covariantly con-
served Brans-Dicke scalar field �BD �G�1.

In the BSBM theory, the quantities c and ℏ are taken to
be constants, and variations in � are ascribed to changes in
e, the electron charge. We write e ¼ e0e

c , where c �
c ðx�Þ is a dimensionless scalar field, and e0 is the present
value of e. The BSBM Lagrangian is [7]

L ¼ ffiffiffiffiffiffiffi�g
p ðLg þLmat þLc þLeme

�2c Þ; (1)

where Lg ¼ R
16�G , Lc ¼ � !

2 @�c @�c , and Lem ¼
� 1

4 f��f
��. Here, R is the Ricci curvature scalar, ! is a

coupling constant, and we have defined an auxiliary gauge
potential, a� ¼ ecA�, with corresponding field tensor

f�� ¼ ecF�� ¼ @�a� � @�a�, so that the covariant de-

rivative takes its usual form,D� ¼ @� þ ie0a�. The quan-

tity Lem is usually parametrized by the ratio � ¼ Lem=�,
where � is the total baryon energy density. This ratio �
describes the fraction of nonrelativistic matter in the
Universe that contributes to Lem. The cosmological value
of � (denoted �m) has to take into account nonbaryonic
matter, and thus depends strongly on the nature of dark
matter, the nature and constituents of which are currently
uncertain. In general, therefore, �m is determined by the
relative role of magnetic B and electric E fields in the
dominant cold dark-matter content of the Universe, and
�m ¼ ðE2 � B2Þ=ðE2 þ B2Þ can take any value between
�1 and 1 [7,8]; also, during the radiation era, h�mi ¼ 0.
In the situations where �m < 0, a slow logarithmic increase
in � occurs during the matter-dominated era but � then
tends to a constant when dark energy causes the expansion
of the Universe to accelerate [8]. Therefore, if� is found to
decrease with time during the matter-dominated era, the
simple BSBM model with �m < 0 would be inconsistent
with this variation.
Observational searches for varying � at cosmological

redshifts have used high-precision studies of quasar spectra
coupled with many-body calculations of the effects of
small changes to � on relativistic corrections to atomic
transition frequencies [10]. The most recent analysis by
Webb et al. [5] of a new set of observations of quasar
spectra from the Very Large Telescope gives the following
best fits for ��=� � ð�ðzÞ � �0Þ=�0, where �0 denotes
the present value of � and z is the redshift of the absorption
lines:

��=� ¼ ð�0:06� 0:16Þ � 10�5 for z < 1:8;

��=� ¼ ð0:61� 0:20Þ � 10�5 for z > 1:8:

For comparison, an earlier analysis of data from the
Keck Telescope gave [1,2,4]

��=� ¼ ð�0:54� 0:12Þ � 10�5 for z < 1:8;

��=� ¼ ð�0:74� 0:17Þ � 10�5 for z > 1:8:
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All the errors quoted are 1� errors. Note that, for red-
shifts z > 1:8, the sense in which�ðzÞ varies is different for
these two sets of observations. The two samples were
obtained from telescopes in different hemispheres of the
Earth, which has led to a proposal in [5] that there may be a
strong spatial (dipolar) dependence in the variation of �.
However, the sense of the overall temporal variation is
unclear, and it is conceivable that � could increase, de-
crease, or remain constant with time during the matter era.
Further evidence that � may increase during part of the
matter-dominated era can be found from observations
based on single ion differential measurements, which place
a constraint of ��=� ¼ ð0:566� 0:267Þ � 10�5 at z ¼
1:84 [11,12] that the authors interpret as an upper limit
because of unknown systematics. For a summary of these
results and others, the reader is referred to the recent
theoretical reviews by Martins [13] and Uzan [14].
However, note that the observational results announced
by Srianand et al. [15], which appeared at first to be
consistent with no significant redshift variation in �,
have been shown to have methodological problems, and
a subsequent reanalysis of the same data produced results
consistent with the variations found in [1–4]. For a dis-
cussion of some of the observational problems, see [16].

In this paper, wewill show how the simple BSBM theory
can be generalized in a natural manner by allowing the
coupling constant ! in Lc to take on a c dependence, so

that ! ¼ !ðc Þ. We will show that a simple choice of the
coupling function !ðc Þ permits ��=� to increase or
decrease during the matter-dominated era according to
the value of a single parameter which vanishes when the
new theory reduces to the BSBM case (with constant !).
However, there is still a general pattern to the late-time�ðtÞ
behavior in an expanding universe, and solutions for �ðtÞ
generally tend to a particular asymptotic form which is
independent of the initial conditions. We shall focus our
analysis on the late-time behavior of the matter-dominated
and �-dominated eras of a zero-curvature Friedmann uni-
verse, but also provide solutions for the more general case
in which the scale factor of the Universe evolves as aðtÞ ¼
tn, where n is a constant, which mimics negative curvature-
dominated expansion when n ¼ 1. We find that, as in the
original BSBM theory, this extended theory still predicts
that any variation in � is rapidly suppressed during the
�-dominated era, thus allowing complex atoms to persist
into the far future (see [17]). Our generalized theory also
gives more scope for spatial variations in � to be described
because gradients in � can now be driven by gradients in
!ðc Þ.

In Sec. II we set up the basic equations of the generalized
BSBM theory and explore some of their key properties. In
Sec. III we discuss the choice of !ðc Þ and in Sec. IV we
study the cosmological solutions in a dust-dominated flat
Friedmann universe. In Sec. V we compare this with the
behavior in a wider range of Friedmann background

metrics. In Sec. VI we investigate what happens to the
variation of � when the Universe undergoes accelerated
expansion, dominated by dark energy in the form of a
positive cosmological constant. In Sec. VII we summarize
these results and compare themwith the cosmological data.
Finally, Sec. VIII contains some concluding discussion.

II. THE UNDERLYING MODEL AND
BACKGROUND EQUATIONS

Consider the modified BSBM Lagrangian,

L ¼ ffiffiffiffiffiffiffi�g
p ðLg þLmat þLc þLeme

�2c Þ; (2)

where Lg ¼ R
16�G , Lc ¼ � !ðc Þ

2 @�c @�c , and Lem ¼
� 1

4 f��f
��, where the coupling ! is now taken to be a

function of the scalar field c . In order to ensure that

the energy density of the scalar field, � ¼ !ðc Þ
2

_c 2, is

non-negative, we will impose the no-ghost condition
!ðc Þ � 0. As in the BSBM theory, the fine-structure
constant is determined by

� ¼ �0 expð2c Þ: (3)

Varying (2) with respect to c gives the equation of motion
for the scalar field:

0 ¼ ffiffiffiffiffiffiffi�g
p �

!0ðc Þ
2

@�c @�c � 2Leme
�2c

þ!ðc Þ@�@�c þ!ðc Þ@�c @�
ffiffiffiffiffiffiffi�g

p
ffiffiffiffiffiffiffi�g

p
�
: (4)

We now specialize to the case of a spatially flat
Friedmann universe with coordinates ðt; xiÞ and metric
g�� ¼ diagð�1; a2ðtÞ; a2ðtÞ; a2ðtÞÞ. We will adopt a system

of units in which G ¼ 1 and c ¼ 1. The modified
Friedmann equation, obtained by varying (2) with respect
to the metric, is

_a2

a2
¼8�

3
ð�mð1þj�je�2c Þþ�nbþ�re

�2c þ�c þ��Þ:
(5)

Here, an overdot indicates a derivative with respect to the

comoving proper time t. In this equation, �� ¼ �
8� is a

constant denoting the density of dark energy, �nb / a�3 is
the contribution of nonbaryonic matter that is assumed to

form the cold dark matter, and �c ¼ !ðc Þ
2

_c 2. This equa-

tion is unchanged from the corresponding equation for
BSBM, since any new contributions due to the c depen-

dence of! will be of the form @L
@c

@c
@g��

, and we have @c
@g��

¼
0. Furthermore, (5) can be approximated by a standard
Friedmann equation at late times if the conditions

j�je�2c � 1 and _c 2! � �c (6)

are satisfied, where �c represents the dominant
form of matter in the Universe during the epoch being
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considered. In this paper, we will be mainly interested in
the cold dark matter and �-dominated eras, in which �c ¼
�m and �c ¼ ��, respectively. [Note that the first condi-
tion in (6) is automatically satisfied if c increases to
infinity at late times. However, this is not a necessary
requirement; for example, j�j could be small and c could
tend to a large constant.]

We will call these two conditions the consistency con-
ditions, and will use them to check that our late-time
solutions are consistent with our assumption that the solu-
tion for the expansion scale factor aðtÞ is unaffected by the
small variations in c that we are interested in modeling. In
contrast, the evolution of c is significantly affected by the
cosmological expansion.

The evolution equation (4) for c becomes

€c þ 3H _c þ!0ðc Þ
2!

_c 2 ¼ � 2��m

!
e�2c (7)

and, after substituting!0ðc Þ _c ¼ _!, we can rewrite this as

ð!1=2 _c a3Þ: � N

!1=2
e�2c ; (8)

where N � �2��ma
3 is a constant. In some sense, this

equation is just the BSBM equation in disguise. This can be

seen by defining a new time coordinate T with d
dT ¼

!1=2 d
dt , so that T ¼ R

!�1=2dt. (Since !�1=2 > 0, this is

a monotonic reparametrization.) Then (8) becomes

d

dT

�
dc

dT
a3
�
¼ Ne�2c ; (9)

which is of the same form as the corresponding BSBM
equation for c , but with a different time parameter, T.
However, this observation is of limited use for finding
solutions, because we do not know the behavior of c ðtÞ
at the outset, and so we do not know the behavior of
!ðc ðtÞÞ.

Inspection of the conservation equation (7) reveals an
important feature of the evolution of c (and hence �). In
the case where N > 0, if _c vanishes anywhere, then €c > 0
at that turning point, so c can be monotonic or have a
minimum, but it cannot have a maximum. Similarly, in the
case where N < 0, c can be monotonic or have a maxi-
mum, but it cannot have a minimum. Therefore, in either
case, c cannot oscillate, although some analyses [18] of
the linearized version of (7) have been misled into deduc-
ing oscillatory behavior for �.

At present, !ðc Þ is an arbitrary function. However, if
the observed behavior of �ðzÞ and c ðtÞ is monotonic, it
should be possible (in principle) to obtain the form of!ðc Þ
if our observational data are sufficiently accurate to allow
us to fit a function for�ðzÞ, and hence determine c ðtÞ. This
can be done as follows. First, note that Eq. (8) can be
rewritten as a first-order differential equation for !ðtÞ:

_c a3

2
_!þ!ð _c a3Þ ¼ Ne�2c ;

which has the general solution

!ðtÞ ¼ 2N

ð _c a3Þ2
Z

e�2c _c a3dt: (10)

Given an expression for c ðtÞ, we can calculate the right-
hand side of (10) in terms of t, and then write t ¼ tðc Þ to
obtain an expression for !ðc Þ.
For example, in the matter era with a / t2=3 and �m /

t�2, the general solution (10) allows us to solve explicitly
for !ðtÞ, given a specified behavior for c ðtÞ:

!ðtÞ ¼ 2N

ð _c t2Þ2
Z

e�2c _c t2dt:

If, for example, c ¼ A lnt, where A > 0 and A � 1, then

!ðtÞ ¼ Nt�2A

Að1� AÞ þ
k

t2
¼ Ne�2c

Að1� AÞ þ ke�2c =A:

On the other hand, if c ¼ lnt, then

!ðtÞ ¼ 1

t2
ð2N lntþ kÞ ¼ e�2c ð2Nc þ kÞ;

where k is an arbitrary constant. It is easy to check that the
consistency conditions (6) hold in both cases (which im-

plies that the approximate cosmological solution a� t2=3

is valid).

III. A CHOICE OF !ðc Þ
The coupling function !ðc Þ is a free function and its

introduction generalizes the BSBMmodel, in which!was
a constant. This generalization introduces another way in
which spatial inhomogeneity can be created in c and �.
We are interested here in situations where !ðc Þ remains
non-negative and finite for all real values of c . We make
the choice !ðc Þ / e�c , where � is a constant to be
determined or constrained by observation. Other forms of
!ðc Þ either take negative values [e.g., !ðc Þ ¼ c ], blow
up at the origin [e.g., !ðc Þ ¼ c�2] or are more compli-
cated than the simple form above. Thus, in the remainder
of this paper, we will restrict ourselves to considering the
form

!ðc Þ ¼ !0e
�c ; (11)

where !0 and � are constants. Note that the BSBM theory
is recovered in the � ! 0 limit.

IV. SOLUTIONS IN THE MATTER ERA

We need to investigate the cosmological evolution of c
in the epoch that includes the astronomical observations of
quasars and low-redshift information on the possible evo-
lution of �, so we begin our study in the matter-dominated
era. We will assume that the Universe contains a perfect
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‘‘dust’’ fluid, with zero pressure, and that the background

scale factor is of the form aðtÞ ¼ a0t
2=3. We will need to

check that the consistency conditions (6) hold in order to
ensure that we can ignore any corrections to the scale
factor evolution from the evolution of c ðtÞ. We will
present exact solutions for certain special cases, but for
the general behavior we will use numerical investigations
to provide insight into the evolutionary behavior of �.

From (7), the general evolution equation for c ðtÞ in a
Friedmann background with expansion scale factor aðtÞ is

€c þ�

2
_c 2 þ 3

_a

a
_c ¼ Ca30e

�ð2þ�Þc

a3
; (12)

where ! ¼ !0e
�c and C ¼ N=ð!0a

3
0Þ. In the matter-

dominated era, the scale factor evolves as aðtÞ ¼ a0t
2=3,

so this equation reduces to

€c þ�

2
_c 2 þ 2

t
_c ¼ Ce�ð2þ�Þc

t2
: (13)

The consistency conditions are

j�je�2c � 1 and e�c _c 2t2 � 1 as t ! 1:

Equation (13) can be transformed into an Emden-Fowler
equation using the substitution c ¼ 2

� lnð	t�1Þ:

€	 ¼ �C

2
	�4=��1t4=�:

Note that 	ðtÞ must be positive, and that €	 always has the
same sign. The consistency conditions become

ð	=tÞ�4=� � 1 and ð _	� 	t�1Þ2 � 1. The second condi-
tion implies that 	ðtÞ must grow at most as t lnt as t ! 1
[and that if 	ðtÞ � t lnt then the constant of proportionality
should be very small]. In applying these conditions, how-
ever, we note that in the standard cosmology the matter era
lasts for a limited period of time before giving way to an
accelerated expansion with p ’ ��. Thus, for example, if
�< 0, then a solution with 	 growing asymptotically
faster than t would be acceptable, as long as 	ðtÞ � 
t
throughout the matter epoch (where 
 is a small constant).

For two special cases, exact solutions can be found:
Case S1.—In the case where � ¼ �2, the governing

equation is €	 ¼ � C	
t2
. This equation is equidimensional

and has solutions of the form 	ðtÞ ¼ tk, where k is a
constant. If C ¼ 1

4 , then

	 ¼ �1

ffiffi
t

p þ �2

ffiffi
t

p
lnt;

where we require that �2 > 0, or that �2 ¼ 0 and �1 > 0.
This solution satisfies both consistency conditions. The
corresponding solution for c is

c ¼ 1
2 lnt� lnð�1 þ �2 lntÞ:

In this (very) special case, c therefore increases logarith-
mically at late times and the fine-structure constant evolves
as

� � expð2c Þ ¼ t

ð�1 þ �2 lntÞ2
� t

ðlntÞ2 :

On the other hand, if C< 1
4 , then

	 ¼ �1t
ð1� ffiffiffiffiffiffiffiffiffi

1�4C
p Þ=2 þ �2t

ð1þ ffiffiffiffiffiffiffiffiffi
1�4C

p Þ=2

at late times, where, again, we require that �2 > 0, or that
�2 ¼ 0 and �1 > 0. In the former case, we require C> 0
for the first consistency condition to hold; in the latter case,
there is no condition onC. (As noted above, it is possible to
have a consistent solution in the former case when C< 0,
as long as�2 is very small.) The corresponding solution for
c is

c ¼ 1
2ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4C

p Þ lnt� lnð�2 þ �1t
� ffiffiffiffiffiffiffiffiffi

1�4C
p

Þ:
At late times, this solution tends to c ¼ 1

2 ð1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4C

p Þ lnt� �1t
� ffiffiffiffiffiffiffiffiffi

1�4C
p

and � evolves as

� ¼ t1�
ffiffiffiffiffiffiffiffiffi
1�4C

p

ð�2 þ �1t
� ffiffiffiffiffiffiffiffiffi

1�4C
p

Þ2 � t1�
ffiffiffiffiffiffiffiffiffi
1�4C

p
:

Note that, in this case, c decreases at late times if and only
if C< 0.
Finally, if C> 1

4 , we obtain

	¼ t1=2

0
@�1 cos

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C�1

p
2

lnt

1
Aþ�2 sin

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C�1

p
2

lnt

1
A
1
A:

In this case, physical solutions do not exist because 	ðtÞ
takes negative values.
Case S2.—In the case where � ¼ �4, the governing

equation becomes €	 ¼ �2Ct�1 with the exact solution
	 ¼ �2Ct lntþ �1tþ �2, where �1 and �2 are arbitrary
constants. Since we require 	ðtÞ to be positive (at least at
late times), this means that a solution exists only if C< 0.
The corresponding solution for c is

c ¼ � 1

2
ln

�
�2C lntþ �1 þ �2

t

�
;

and �� 1= lnt at late times. This solution decreases at late
times, and therefore it is necessary to impose the require-
ment that �2C lntm� � 1, where tm� is the time at which
the matter era ends.
We now consider general values of �. We determine

asymptotic forms for the solutions and illustrate the be-
havior with numerical plots of c against lnðlntÞÞ for a wide
range of initial conditions. Remarkably, there are just two
simple asymptotes:
Case 1: C> 0—Here, there are two cases depending on

the value of�. If �<�2, there is a finite-time singularity
at which c , and thus �, becomes unboundedly large.
However, if �>�2, all solutions tend to a common
asymptote, similar to the behavior found during the matter
era in the standard BSBM scenario described in [8]
(Fig. 1). This result does not seem to depend on the initial
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conditions. The rate at which c increases along this
asymptote can be made as gentle as desired by taking �
to be sufficiently large (Fig. 2).

We will now obtain an explicit formula for the asymp-
tote by showing that, at late times,

c ! 1

2þ�
lnðð2þ�ÞC lntÞ;

and so

� ! ðlntÞ2=ð2þ�Þ:

Note that this is consistent with the earlier BSBM result
[8], c ! 1

2 lnð2C lntÞ, which is recovered when � ! 0.

In order to extract the asymptotic solution in finer detail,
we will proceed as in [8]. Using the substitution x ¼
lnðt=t1Þ, where t1 is an arbitrary constant, we can transform
(13) to the following equation:

c 00 þ c 0 þ�

2
c 02 ¼ Ce�ð2þ�Þc ; (14)

where a prime denotes d=dx. We now write

c ¼ A lnðBxÞ þ X1
n¼1

anx
�n:

Substituting this series into (14) gives

Ax�1 þ
�
�

2
A2 � A� a1

�
x�2

þ X1
n¼2

ððn��AÞðn� 1Þan�1 � nanÞx�n�1

þ�

2

�X1
n¼1

nanx
�n�1

�
2

¼ CðBxÞ�ð2þ�ÞA exp
�
�ð2þ�Þ X1

n¼1

anx
�n

�
:

In order for the leading terms (in x�1) to match, we need

�1 ¼ �ð2þ�ÞA and thus A ¼ 1
2þ� . We also need A ¼

CB�ð2þ�ÞA, which forces B ¼ ð2þ�ÞC. This leads to
1

ð2þ�Þxþ
�
�

2
A2 � A� a1

�
x�2 þ X1

n¼2

ððn��AÞ

� ðn� 1Þan�1 � nanÞx�n�1 þ�

2

�X1
n¼1

nanx
�n�1

�
2

¼ 1

ð2þ�Þx exp

�
�ð2þ�Þ X1

n¼1

anx
�n

�
:

The successive terms of ðanÞ1n¼1 can now be chosen so as to
make the left-hand side vanish. This requires

a1 ¼ � 4þ�

2ð2þ�Þ2 ; a2 ¼ � 1

4

ð4þ�Þ2
ð2þ�Þ3 ;

FIG. 2. As in Fig. 1, but with � ¼ 6. All solutions still
converge to a common increasing asymptote at late times.
However, the slope of the asymptote is more gentle than that
in Fig. 1, because the value of � has increased. The slope of the
asymptote can be made as gentle as desired by taking � to be
sufficiently large.

FIG. 1. A plot of the four solutions of Eq. (13) for the various
choices c ðlnx ¼ 0Þ 2 f�1;�0:5; 0; 0:5g and dc =dðlnxÞjlnx¼0 ¼
0. Here, x is defined as lnðt=t1Þ, where t1 is an arbitrary constant,
and we have chosen (arbitrarily) the parameters � ¼ 2 and
C ¼ 0:1. Notice that, in this case (�>�2), all the solutions
eventually converge to a common increasing asymptote, inde-
pendently of the initial conditions.
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and so forth, which leads to

1

ð2þ�Þx ¼ 1

ð2þ�Þx exp

�
�ð2þ�Þ X1

n¼1

anx
�n

�

! 1

ð2þ�Þx ;

as x ! 1. Therefore, we have

c ¼ 1

2þ�
lnðð2þ�ÞCxÞ þ X1

n¼1

anx
�n

and

� ¼ e2c ¼ ½ð2þ�ÞC lnðt=t1Þ	2=ð2þ�Þ

� exp

�
� 4þ�

ð2þ�Þ2 lnðt=t1Þ
�

(15)

to leading order.
In order for this solution to hold during the matter era,

the value of t1 should be less than the value of t at the
beginning of the matter-dominated era.

Case 2: C< 0.—The analysis again breaks down into
two cases. If �>�2, then at some finite future time, c
becomes unboundedly negative, driving � to zero; we
ignore this case with a finite-time singularity. However, if
�<�2, the behavior mimics the C> 0, �>�2 behav-
ior, and solutions tend to a common asymptote

c ! 1

2þ�
lnðð2þ�ÞC lnðt=t1ÞÞ;

where, again, t1 is an arbitrary constant. The analysis is
similar to the above, but now c and � both decrease with
time (Figs. 3 and 4).

Summary.—To summarize, there are three interesting
conclusions to be drawn, assuming this form of !ðc Þ ¼
!0 expð�c Þ:

(i) If � decreases during the late matter era, we must
have �<�2 and C< 0. Note that care must be
taken in this case to ensure that the consistency
conditions for the Friedmann equation are not vio-

lated, since e�2c ¼ ½ð2þ�ÞC lnt	�2=ð2þ�Þ is in-
creasing and, if �4<�<�2, then e�c _c 2t2 is
increasing.

(ii) If � increases during the late matter era, we must
have �>�2 and C> 0. In this case, both consis-
tency conditions are automatically satisfied. This
includes the original case of the BSBM theory, in
which � ¼ 0.

(iii) It is possible to have special behavior of � in the
case where � ¼ �2, and various conditions on C
are required depending on whether � is decreasing
or increasing.

FIG. 3. A plot of four solutions of Eq. (13) for the various choices
c ðlnx ¼ 0Þ 2 f�1;�0:5; 0; 0:5g and dc =dðlnxÞjlnx¼0 ¼ 0,
where, again, x is defined as lnðt=t1Þ. The parameter values are
now� ¼ �4 andC ¼ �0:1. In this case, ð�<�2Þ, the solutions
eventually converge to a common decreasing asymptote, and this
behavior is insensitive to the initial conditions.

FIG. 4. As in Fig. 3, but with � ¼ �6. All solutions still
converge to a common decreasing asymptote at late times.
However, the slope of the asymptote is more gentle than that
in Fig. 3 (because� is now more negative). Again, this slope can
be made as gentle as desired by taking a sufficiently large
negative �.
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V. SOLUTIONS WHEN aðtÞ ¼ a0t
n

We now consider the evolution of �ðtÞ in situations
where the cosmological scale factor exhibits general
power-law behavior a ¼ a0t

n, where n > 0. The equation
of motion for the scalar field becomes

€c þ�

2
_c 2 þ 3n

t
_c ¼ Ce�ð2þ�Þc

t3n
; (16)

where, as before, ! ¼ !0e
�c and C ¼ N=ð!0a

3
0Þ. The

substitution x ¼ lnðtÞ then yields the equation,

c 00 þ ð3n� 1Þc 0 þ�

2
c 02 ¼ Ce�ð2þ�Þcþð2�3nÞx; (17)

for c ðxÞ. Two separate cases then arise, depending on
whether � ¼ �2 or � � �2.

Case 1.—In the case where � ¼ �2, the evolution
equation becomes

€c � _c 2 þ 3n

t
_c ¼ C

t3n
: (18)

Let y ¼ _c . Then

_y ¼ C

t3n
� 3n

t
yþ y2:

This is a Riccati equation, which can be solved by making
the substitution y ¼ � _u

u . Then u satisfies

€uþ 3n

t
_uþ C

t3n
u ¼ 0:

The solution of this differential equation is

u ¼ �1t
ð1�3nÞ=2Jð1�3nÞ=ð3n�2Þ

�
2

ffiffiffiffi
C

p ðt1�3n=2Þ
2� 3n

�

þ �2t
ð1�3nÞ=2Jð3n�1Þ=ð3n�2Þ

�
2

ffiffiffiffi
C

p ðt1�3n=2Þ
2� 3n

�
;

where �1 and �2 are arbitrary constants, and JmðxÞ is a
Bessel function of the first kind. There are two types of
late-time behavior. If n < 2

3 then

u 
 �1t
�3n=2 cos

�
2

ffiffiffiffi
C

p
t1�3n=2

2� 3n
�

�
1� 3n

3n� 2

�
�

2
� �

4

�

þ �2t
�3n=2 cos

�
2

ffiffiffiffi
C

p
t1�3n=2

2� 3n
�

�
3n� 1

3n� 2

�
�

2
� �

4

�
;

so, at late times, c ! constþ 3n
2 lnt and � ! t3n. As

noted earlier, neither c nor � can exhibit oscillatory
behavior because, when _c is zero in (18), €c can only
have one sign (determined by the sign of C). Thus, c
cannot have both maxima and minima.

If n > 2
3 , then

u 
 �1t
ð1�3nÞ=2

� ffiffiffiffi
C

p
tð2�3nÞ=2

2� 3n

�ð1�3nÞ=ð3n�2Þ

þ �2t
ð1�3nÞ=2

� ffiffiffiffi
C

p
tð2�3nÞ=2

2� 3n

�ð3n�1Þ=ð3n�2Þ¼ A1 þ A2t
1�3n;

where A1 and A2 are new arbitrary constants. Therefore, at
late times,

c ! const� lnð�þ �t1�3nÞ ! const;

and �ðtÞ ! constant. Hence, c increases as lnt if n < 2
3 ,

but tends to a constant if n > 2
3 . The latter case includes the

important scenario of a curvature-dominated Friedmann
universe with n ¼ 1 and is indicative of the asymptotically
constant behavior of c and � also to be expected in the
dark-energy-dominated situation with n ! 1. We will
discuss this scenario in Sec. VI.
Case 2.—In the case where � � �2, we can define new

variables by w ¼ e�ð2þ�Þcþð2�3nÞx and z ¼ c 0ðxÞ. This
leads to the two-dimensional dynamical system,

w0 ¼ ð2� 3nÞw� ð2þ�Þzw;
z0 ¼ ��

2
z2 þ ð1� 3nÞzþ Cw;

which has three fixed points: ðw; zÞ ¼ ð0; 0Þ, ð0; 2� �
ð1� 3nÞÞ, and ðð2�3nÞð3n�þ12n�4Þ

2Cð2þ�Þ2 ; 2�3n
2þ�Þ. We will call these

points a, b, and c respectively.
Note that the fixed points a and b are asymptotic fixed

points, since, by definition,w never actually reaches zero. On

the other hand, point c exists only if ð2�3nÞð3n�þ12n�4Þ
C > 0.

This fixed point corresponds to the exact solution,

c ¼ 1

2þ�
ln

�
2Cð�þ 2Þ2

ð2� 3nÞð3nð�þ 4Þ � 4Þ
�
þ 2� 3n

�þ 2
lnt;

and this solution reduces to the one found in [19] for the
BSBM (� ¼ 0) case. We now investigate the stability of
these points in order to understand the late-time behavior.
Critical point a.—For (0, 0) the Jacobian matrix has the

eigenvalues (2� 3n) and (1� 3n). Therefore, if n � 1
3 and

n � 2
3 , this critical point is hyperbolic. It is a saddle point if

1
3 < n< 2

3 , an unstable node if n < 1
3 , and a stable node if

n > 2
3 . The case n < 1

3 is not of physical interest because it

derives from background expansion with p > �.
Critical point b.—For ð0; 2� ð1� 3nÞÞ, the two eigenval-

ues of the Jacobian are (3n� 1) and ( 3n�þ12n�4
� ), so the

trace of the Jacobian is T ¼ 6n� 1þ 4
� ð3n� 1Þ and the

determinant is D ¼ ð3n� 1Þð3nþ 4
� ð3n� 1ÞÞ. It is help-

ful to note that T2 � 4D ¼ ð4� ð3n� 1Þ þ 1Þ2 > 0 if � �

4ð1� 3nÞ. This means that, in general, the fixed point is
either a saddle point (ifD< 0) or a node (if T2 > 4D> 0).
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If n � 1
3 and n � 4

3ð�þ4Þ , this critical point is hyperbolic.
Various types of behavior can occur depending on the
values of n and �:

(i) n > 1
3 . Then this point is a saddle if 3n < 4�12n

� , and

an unstable node if 3n > 4�12n
� .

(ii) n < 1
3 . Then this point is a saddle if 3n > 4�12n

� , and

a stable node if 3n < 4�12n
� .

Critical point c.—In this case, the Jacobian matrix is

0 ð3n�2Þð3n�þ12n�4Þ
2ð2þ�ÞC

C 2�6n��
2þ�

0
@

1
A;

so T ¼ 2�6n��
2þ� andD ¼ ð2�3nÞð3n�þ12n�4Þ

2ð2þ�Þ . As before, there

are several cases. Note that we do not distinguish here
between whether the point is a node or a focus, since our
primary interest is whether the critical point is stable or
unstable.

(i) If n > 2
3 and �< 4

3n � 4, point c is a saddle point.

If n > 2
3 and

4
3n � 4<�<�2, point c is an unstable

node or focus.
If n > 2

3 and �>�2, point c is a saddle point.

(ii) If n < 2
3 and �<�2, point c is a stable node or

focus.
If n < 2

3 and �2<�< 4
3n � 4, point c is a saddle

point.
If n < 2

3 and �> 4
3n � 4, then point c is a stable

node or focus if �> 2� 6n, and is an unstable
node or focus if �< 2� 6n. (Note that this means
that if n < 1

3 and �> 4
3n � 4, point c must be a

stable node or focus.)
We can use these results to obtain a general result for the

case n > 2
3 by noting that the only stable critical point is at

ðw; zÞ ¼ ð0; 0Þ. Therefore, assuming that z ¼ t _c does not
diverge to infinity, we are likely to obtain the behavior
c ! const at late times in accelerating universes.

VI. SOLUTIONS IN AN ACCELERATING
UNIVERSE

The data from the Oklo natural reactor (z 
 0:14) [20],
the analysis of meteorites (z 
 0:45) [21], and laboratory
experiments [22] provide very tight bounds on the allowed
variation of alpha at low redshifts. We will show that our
generalization of the BSBM theory is still consistent with
negligible variation in � during the accelerating era of the
Universe, although we do not introduce the added com-
plexity of relating local terrestrial observations of varying
constants to their global cosmological evolution (see
Barrow and Shaw [23–25] for a detailed discussion of
this problem).

The cases of power-law expansion with n > 2=3
discussed in the last section cover the situation of an

accelerating universe dominated by a fluid with equation of
state �� < p<��=3. The remaining situation of special
interest is the particular case of a �-dominated era, with
p ¼ ��, in which the scale factor evolves according to the
de Sitter form,

a ¼ a0e
Mt;

where M � ffiffiffiffiffiffiffiffiffi
�=3

p
. The evolution equation (12) for c

becomes

€c þ�

2
_c 2 þ 3M _c ¼ Ce�ð2þ�Þc

e3Mt
; (19)

where C ¼ N=ð!0a
3
0Þ, and the consistency conditions (6)

are e�2c � 1 and _c 2e�c � 1.
Numerical investigation shows that there are two types

of solution. One type tends to a constant at late times, in
general increasing before it does so. The value of c along
the eventual constant asymptote depends on the initial
conditions. A notable feature of Fig. 5 is that the behavior
of c during the initial stages of the evolution can be
complicated, but all solutions seem to become constant
for t > t�, where t� is some fixed ‘‘cooling-off’’ time.
Therefore, if the matter era lasts past time t�, we would
expect negligible variation in c once the cosmological
constant begins to dominate.

FIG. 5. As in Fig. 1, but these solutions now occur within an
accelerating universe. The parameter values are now � ¼ 2,
C ¼ 0:1, and M ¼ 0:01. Regardless of the initial conditions,
the solutions all tend to constant values after a short initial time.
This illustrates how the time variation of � is suppressed in a
�-dominated universe.
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We might expect this behavior from (19) if _c is not too
large, because then we have, approximately,

€c ¼ �3M _c :

Since 3M> 0, _c is driven exponentially quickly to zero,
and c tends to a constant.

The second case occurs when _c is large, so that the �
2
_c 2

term comes into play. We then have

€c ¼ �
�
�

2
_c þ 3M

�
_c ; (20)

and there are two equilibria for _c : at _c ¼ 0 and _c ¼
�6M=�. Regardless of the sign of �, the fixed point at
_c ¼ 0 is stable and the fixed point at _c ¼ � 6M

� is un-

stable. Therefore, depending on the initial conditions, there
are two generic behaviors for _c : it may either tend to �1
exponentially quickly, or tend to zero. Assuming that
finite-time blowup does not occur, _c should tend to zero
at late times, so c tends to a constant as found above.
Otherwise, we obtain a second class of diverging solutions.

We can also perform an analysis similar to the one
performed in Sec. V for the general power-law case, but
this time we will work directly with Eq. (19). We begin by

defining the variables w ¼ e�ð2þ�Þc�3Mt and z ¼ _c . This
leads to the autonomous dynamical system,

_w ¼ �3Mw� ð2þ�Þzw;
_z ¼ ��

2
z2 � 3Mzþ Cw:

Again, this system has three fixed points, at ðw; zÞ ¼ ð0; 0Þ,
ð0;� 6M

� Þ, and ð� 9M2ð4þ�Þ
2Cð2þ�Þ2 ;� 3M

2þ�Þ. As before, we will

name these points a, b, and c, respectively. Again, points
a and b are asymptotic fixed points, and point c only exists
if ð4þ�Þ=C < 0. The analysis of the stability of these
fixed points now follows:

Critical point a.—At (0, 0), the Jacobian has the two
eigenvalues �3M;�3M. Therefore, the origin is always a
stable node.

Critical point b.—At ð0;� 6M
� Þ, the Jacobian has eigen-

values 3Mð1þ 4
�Þ and 3M. The trace and determinant are

therefore given by T ¼ 6Mð2� þ 1Þ and D ¼ 9M2ð4� þ 1Þ,
respectively, and we have T2 � 4D ¼ 144> 0. Hence, if
�4<�< 0, this critical point is a saddle. Otherwise, if
�> 0 or �<�4, it is an unstable node.
Critical point c.—If this fixed point exists, the corre-

sponding Jacobian matrix has determinantD ¼ � 9M2ð4þ�Þ
2ð2þ�Þ

and trace T ¼ � 6M
2þ� . Therefore, if �4<�<�2, this

point is an unstable node, and if either�>�2 or�<�4,
it is a saddle point.
Note that, for any value ofM, the origin (0, 0) is the only

stable node. Therefore, in an accelerating era, any bounded
late-time solution will satisfy c ! const, and we have a
form of the cosmic no-hair theorem for the evolution of c
and � in the de Sitter background metric.

VII. SUMMARYAND THE RELATION TO
OBSERVATIONS

We are now in a position to summarize the results of the
previous sections, having determined the late-time behav-
iors for both power-law and exponential evolution of the
scale factor aðtÞ. For convenience, the different outcomes
are displayed in Table I.
We can now attempt to constrain the parameters of the

theory by using observational data [26]. Since most of the
observational evidence arises from the late matter-
dominated era, we will use the asymptotic behavior ob-
tained in earlier sections as the theoretical basis for
comparison.
In the matter-dominated era, the redshift-time relation,

aðt1Þ
aðt2Þ

¼ 1þ z2
1þ z1

¼
�
t1
t2

�
2=3

;

holds. From our results in Sec. IV above, solutions tend to
the asymptote,

c ! 1

2þ�
lnðð2þ�ÞC lnðt=t1ÞÞ;

TABLE I. This table lists the late-time behaviors of �ðtÞ for various choices of � and possible evolutions of the scale factor aðtÞ, of
both power-law and exponential forms. In the power-law case with n > 2=3, and in the exponential case, the fine-structure ‘‘constant’’
�ðtÞ tends to a constant value at late times. In other cases, �ðtÞ tracks an increasing asymptote if �>�2, and a decreasing asymptote
if �<�2.

Value of � Scale factor evolution aðtÞ / tn aðtÞ / eMt

1
3 < n< 2

3 n ¼ 2
3 n > 2

3

�> 0 � ! t2ð2�3nÞ=ð2þ�Þ if C> 0 � ! ½ð2þ�ÞC lnðt=t1Þ	2=ð2þ�Þ if C> 0 const const

� ¼ 0 (BSBM) � ! t2�3n if C> 0 � ! 2C lnðt=t1Þ if C> 0 const const

�2<�< 0 � ! t2ð2�3nÞ=ð2þ�Þ if C> 0 � ! ½ð2þ�ÞC lnðt=t1Þ	2=ð2þ�Þ if C> 0 const const

� ¼ �2 � ! t3n if C> 0 various cases, depending on C const const

�<�2 � ! t2ð2�3nÞ=ð2þ�Þ if C< 0 � ! ½ð2þ�ÞC lnðt=t1Þ	2=ð2þ�Þ if C< 0 const const
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where t1 is an arbitrary constant (corresponding to redshift
z1, say). Then, using (3), we can express the relative shift in
the value of the fine-structure constant expected between a
redshift z * z� � 0:5 and the present by

��

�
! �ðzÞ � �0

�0

¼ �ðzÞ � ��

��

¼
�
lnð1þ z1Þ � lnð1þ zÞ
lnð1þ z1Þ � lnð1þ z�Þ

�
2=ð2þ�Þ � 1;

FIG. 6 (color online). These contour plots display the value of the �2 statistic (according to the legend shown in the right-hand color
bars) for various choices of D, �, and c 0 in a model that exhibits a smooth transition between the dark-matter and dark-energy
dominated eras. Each picture corresponds to a different value of fð0Þ � e2c ð0Þ ranging from 10�3 to 104. The vertical and horizontal
axes represent the parameters � and D, respectively. Darker regions in the plots indicate parameter choices that give rise to a lower �2

statistic, and therefore correspond to a better fit.
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where �� ¼ �0 (to an excellent approximation) is the
value of � at the redshift signifying the onset of � domi-
nation and an accelerating universe.

Thus, defining the new parameters � ¼ 2=ð2þ�Þ and
Z ¼ lnð1þ z1Þ, we obtain the following approximate form
for the evolution of ��=� during the matter era:

��

�
!

�
Z� lnð1þ zÞ
Z� lnð1þ z�Þ

�
� � 1: (21)

The only constraint on Z is that it should correspond to a
redshift before dust domination, i.e., Z * 10. Taking
z� ¼ 0:5, sampling values of Z between 0.1 and 1000,
and values of � between �100 and 100, indicates that
the best-fit parameters generally satisfy the approximate
relation �� 2:5Z, or ð2þ�Þ lnð1þ z1Þ � 0:8. The asso-
ciated �2 value is approximately 168.75, with 143 degrees
of freedom; this indicates a fit that is reasonable but not
particularly strong. Equation (21) generalizes the analytic
approximation for ��=� obtained in the BSBM theory
(� ¼ 0).

In the above calculation, we have assumed a sharp
transition between dust domination and de Sitter expansion
at z ¼ z�, and assumed that c and � are constant when
z < z�. A more accurate approximation that evolves
smoothly between the dust and �-dominated eras could
be obtained by assuming a background cosmological evo-
lution in (12) where

a3 ¼ 8�G�0a
3
0

�
sinh2

� ffiffiffiffiffiffiffi
3�

p
2

tþ �

�
: (22)

This form of aðtÞ solves the Friedmann equation,

_a2

a2
¼ 8�G

3
�m þ�

3
;

for a universe containing dust and a cosmological constant.

In this model, the fractional densities are �m ¼
sech2ð

ffiffiffiffiffi
3�

p
2 tÞ and �� ¼ tanh2ð

ffiffiffiffiffi
3�

p
2 tÞ, respectively. Using

the approximate values ��0 ¼ 0:73 and �m0 ¼ 0:27
[27] and H0 ¼ 74:2 km s�1 Mpc�1 [28], we obtain � ¼
1:266 340� 10�35 s�2 and 8�G�0 ¼ 0:81H2

0 ¼ 4:684�
10�36 s�2. We have data for

��

�
¼ e2ðc�c 0Þ � 1 � e�2c 0f� 1

and we are interested in the evolution of fðzÞ � e2c .
The evolution equation for c ðtÞ, (13), can be trans-

formed into an evolution equation for fðzÞ:

½8�G�0ð1þ zÞ3 þ�	ð1þ zÞ
�
f00 þ�f02

4f
� f02

f

�

� ½4�G�0ð1þ zÞ3 þ 2�	f0
¼ 48�GD�0ð1þ zÞ2f��=2;

where D ¼ � �
4�G!0

. This allows us to determine the

behavior of f for various initial conditions, fð0Þ and
f0ð0Þ. Note that fð0Þ ¼ e2c 0 > 0, and, since the present-
day variation of � is negligible, we have assumed that
f0ð0Þ ¼ 0. Thus, our system has three arbitrary parameters:
the value of fð0Þ, the value of �, and the value of D. The
contour plots in Fig. 6 illustrate the regions of parameter
space for which there is a good fit to the observed data. The
best chi-squared statistic obtained using this model is
approximately 169 [attained when fð0Þ< 1], which still
indicates a fit that is not very strong.
It is important to note that these investigations of the

time variation of � may not be conclusive because recent
observations of � are consistent with a spatial variation,
and the latter will need to be accounted for before an
accurate estimate of � (or an accurate test of whether
� � 0) can be obtained. If we are interested in modeling
possible spatial variations in � at the redshifts of quasar
absorption spectra, the BSBM theory would require inho-
mogeneity in �=!. Since ! is constant in that theory, it
would be necessary for � to vary in space. This means that
the identity of the dominant form of cold dark matter
would vary throughout space, or has a strange character
that requires spatial variation in its electric and magnetic
composition. This is not appealing in the absence of other
evidence because the time evolutions of the densities of
these different varieties of pressureless matter will be the
same even if they have different � values, and, for one
value of � to be replaced by another, some type of decay
would need to occur. However, in the generalized theory
explored here, inhomogeneity in� can be caused by spatial
variation in �=!ðc Þ via c ð ~xÞ, and this is not unnatural.
This situation will be explored in greater detail elsewhere
by extending the results of [29–31].

VIII. CONCLUSIONS

We have shown that the BSBM theory of varying alpha
naturally generalizes to cases in which the scalar field
coupling !ðc Þ> 0 has a functional dependence on the
scalar field c . We have explored the features of the specific
case where this dependence is exponential, !ðc Þ / e�c .
The BSBM solution, which is recovered when� ¼ 0, may
now be viewed as just one of a range of possible solutions
with �>�2 which all exhibit similar asymptotic cosmo-
logical behavior in dust- or dark-energy–dominated eras at
late times. In all these cases, � increases slowly with time,
or (in the dark-energy–dominated cases) increases and then
tends to a constant-valued asymptote. In the case of a
de Sitter background, this gives an extension of the cosmic
no-hair behavior familiar from studies of general relativis-
tic cosmology with constant �.
We have also found different possible behaviors in the

cases where � � �2. In these cases, it is possible for c
(and �) to decrease with time, and the consistency con-
ditions must be checked numerically in order to ensure that
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our approximate solution to the Friedmann equation is
not changed by the growing gravitational effects of de-
creasing c .

Finally, it is important to note the limitations of this
analysis. In this paper, we have confined our attention to
theories where the late-time behavior of aðtÞ is unaffected
by the varying scalar field. However, if this was not the
case, then new possibilities might arise. We have also
highlighted the need for an analysis of the effects of spatial

variation of c and � in the post-recombination era; this
work will be presented elsewhere.

ACKNOWLEDGMENTS

S. Lip would like to thank the Gates Cambridge Trust for
its support. We also thank Anne Davis, Bill Fitzgerald,
João Magueijo, Michael Murphy, and John Webb for dis-
cussions and Sergei Levshakov for helpful comments.

[1] J. K. Webb, V. V. Flambaum, C.W. Churchill, M. J.
Drinkwater, and J. D. Barrow, Phys. Rev. Lett. 82, 884
(1999).

[2] M. T. Murphy, J. K. Webb, V.V. Flambaum, V.A. Dzuba,
C.W. Churchill, J. X. Prochaska, J. D. Barrow, and A.M.
Wolfe, Mon. Not. R. Astron. Soc. 327, 1208 (2001).

[3] J. K. Webb, M. Murphy, V. Flambaum, V. Dzuba, J. D.
Barrow, C. Churchill, J. Prochaska, and A. Wolfe, Phys.
Rev. Lett. 87, 091301 (2001).

[4] M. T. Murphy, V. V. Flambaum, J. K. Webb, V. V. Dzuba,
J. X. Prochaska, and A.M. Wolfe, Lect. Notes Phys. 648,
131 (2004).

[5] J. K. Webb, J. A. King, M. T. Murphy, V.V. Flambaum,
R. F. Carswell, and M.B. Bainbridge, Phys. Rev. Lett. 107,
191101 (2011).

[6] J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982).
[7] H. B. Sandvik, J. D. Barrow, and J. Magueijo, Phys. Rev.

Lett. 88, 031302 (2002).
[8] J. D. Barrow, H. B. Sandvik, and J. Magueijo, Phys. Rev. D

65, 063504 (2002).
[9] C. Brans and R.H. Dicke, Phys. Rev. 124, 925 (1961).
[10] J. C. Berengut et al., arXiv:astro-ph/1011.4136.
[11] S. A. Levshakov, P. Molaro, S. Lopez, S. D’Odorico, M.

Centurión, P. Bonifacio, I. I. Agafonova, and D. Reimers,
Astron. Astrophys. 466, 1077 (2007).

[12] P. Molaro, D. Reimers, I. I. Agafonova, and S. A.
Levshakov, Eur. Phys. J. Special Topics 163, 173 (2008).

[13] C. Martins, arXiv:astro-ph/1011.6591.
[14] J.-P. Uzan, Living Rev. Relativity 14, 2 (2011).
[15] R. Srianand, H. Chand, P. Petitjean, and B. Aracil, Phys.

Rev. Lett. 92, 121302 (2004).
[16] M. T. Murphy, J. K. Webb, and V.V. Flambaum, Phys.

Rev. Lett. 99, 239001 (2007); For a response by
Srianand et al., see R. Srianand, H. Chand, P. Petitjean,
and B. Aracil, Phys. Rev. Lett. 99, 239002 (2007).

[17] J. D. Barrow, H. B. Sandvik, and J. Magueijo, Phys. Rev. D
65, 123501 (2002).

[18] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod.
Phys. D 15, 1753 (2006).

[19] J. D. Barrow and D. F. Mota, Classical Quantum Gravity
19, 6197 (2002).

[20] T. Damour and F. Dyson, Nucl. Phys. B480, 37 (1996).
[21] K. A. Olive, M. Pospelov, Y.-Z. Qian, A. Coc, M. Cassé,
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