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Abstract

We review properties of theories for the variation of the gravitation

and fine structure ’constants’. We highlight some general features of the

cosmological models that exist in these theories with reference to recent

quasar data that are consistent with time-variation in the fine structure

’constant’ since a redshift of 3.5. The behaviour of a simple class of

varying-alpha cosmologies is outlined in the light of all the observational

constraints.

1 Introduction

There are several reasons why the possibility of varying constants should be
taken seriously [1]. First, we know that the best candidates for unification of the
forces of nature in a quantum gravitational environment only seem to exist in
finite form if there are many more dimensions of space than the three that we are
familiar with. This means that the true constants of nature are defined in higher
dimensions and the three-dimensional shadows we observe are no longer funda-
mental and do not need to be constant. Any slow change in the scale of the extra
dimensions would be revealed by measurable changes in our three-dimensional
’constants’. Second, we appreciate that some apparent constant might be de-
termined partially or completely by spontaneous symmetry-breaking processes
in the very early universe. This introduces an irreducibly random element into
the values of those constants. They may be different in different parts of the
universe. The most dramatic manifestation of this process is provided by the
chaotic and eternal inflationary universe scenarios where both the number and
the strength of forces in the universe at low energy can fall out differently in

1

http://arxiv.org/abs/astro-ph/0511440v1


different regions. Third, any outcome of a theory of quantum gravity will be in-
trinsically probabilistic. It is often imagined that the probability distributions
for observables will be very sharply peaked but this may not be the case for
all possibilities. Thus, the value of the gravitation ’constant’, G, or its time
derivative, Ġ, might be predicted to be spatial random variables. Fourth, a
non-uniqueness of the vacuum state for the universe would allow other numer-
ical combinations of the constants to have occurred in different places. String
theory indicates that there is a huge ’landscape’ (> 10500) of possible vacuum
states that the universe can find itself residing in as it expand and cools. Each
will have different constants and associated forces and symmetries. It is sobering
to remember that at present we have no idea why any of the constants of Nature
take the numerical values they do and we have never successfully predicted the
value of any dimensionless constant in advance of its measurement. Fifth, the
observational limits on possible variations are often very weak (although they
can be made to sound strong by judicious parametrisations). For example, the
cosmological limits on varying G tell us only that Ġ/G ≤ 10−2H0, where H0

is the present Hubble rate. However, the last reason to consider varying con-
stants is currently the most compelling. For the first time there is a body of
detailed astronomical evidence for the time variation of a traditional constant.
The observational programme of Webb et al [2, 3] has completed detailed anal-
yses of three separate quasar absorption line data sets taken at Keck and finds
persistent evidence consistent with the fine structure constant, α, having been
smaller in the past, at z = 1 − 3.5. The shift in the value of α for all the data
sets is given provisionally by ∆α/α = (−0.57± 0.10)× 10−5. This result is cur-
rently the subject of detailed analysis and reanalysis by the observers in order
to search for possible systematic biases in the astrophysical environment or in
the laboratory determinations of the spectral lines.

The first investigations of time-varying constants were those made by Lord
Kelvin and others interested in possible time-variation of the speed of light at
the end of the nineteenth century. In 1935 Milne devised a theory of gravity,
of a form that we would now term ’bimetric’, in which there were two times
– one (t) for atomic phenomena, one (τ) for gravitational phenomena – linked
by τ = log(t/t0). Milne [4] required that the ’mass of the universe’ (what we
would now call the mass inside the particle horizon M ≈ c3G−1t) be constant.
This required G ∝ t. Interestingly, in 1937 the biologist J.B.S. Haldane took a
strong interest in this theory and wrote several papers [5] exploring its conse-
quences for the evolution of life. The argued that biochemical activation energies
might appear constant on the t timescale yet increase on the τ timescale, giving
rise to a non-uniformity in the evolutionary process. Also at this time there
was widespread familiarity with the mysterious ’large numbers’ O(1040) and
O(1080) through the work of Eddington (although they had first been noticed
by Weyl [6] – see ref. [7] and [1] for the history). These two ingredients were
merged by Dirac in 1937 in a famous development (supposedly written on his
honeymoon) that proposed that these large numbers (1040) were actually equal,
up to small dimensionless factors. Thus, if we form N ∼ c3t/Gmn ∼ 1080,
the number of nucleons in the visible universe, and equate it to the square
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of N1 ∼ e2/Gm2
n ∼ 1040, the ratio of the electrostatic and gravitational forces

between two protons then we are led to conclude that one of the constants,
e,G, c, h,mn must vary with time. Dirac [8] chose G ∝ t−1 to carry the time
variation. Unfortunately, this hypothesis did not survive very long. Edward
Teller [9] pointed out that such a steep increase in G to the past led to huge
increases in the Earth’s surface temperature in the past. The luminosity of
the sun varies as L ∝ G7 and the radius of the Earth’s orbit as R ∝ G−1 so
the Earth’s surface temperature T⊕ varies as (L/R2)1/4 ∝ G9/4 ∝ t−9/4 and
would exceed the boiling point of water in the pre-Cambrian era. Life would
be eliminated. Gamow subsequently suggested that the time variation needed
to reconcile the large number coincidences be carried by e rather than G, but
again this strong variation was soon shown to be in conflict with geophysical and
radioactive decay data. This chapter was brought to an end by Dicke [10] who
pointed out that the N ∼ N2

1 large number coincidence was just the statement
that t, the present age of the universe when our observations are being made,
is of order the main-sequence stellar lifetime, tms ∼ (Gm2

n/hc)
−1h/mnc

2 ∼ 1010

yrs, and therefore inevitable for observers made out of chemical elements heav-
ier than hydrogen and helium. Dirac never accepted this anthropic explanation
for the large number coincidences (believing that ’observers’ would be present
in the universe long after the stars had died) but curiously can be found mak-
ing exactly the same type of anthropic argument to defend his own varying G
theory by highly improbable arguments (that the Sun accretes material peri-
odically during its orbit of the galaxy and this extra material cancels out the
effects of overheating in the past) in correspondence with Gamow in 1967 (see
[1] for fuller details).

Dirac’s proposal acted as a stimulus to theorists, like Jordan, Brans and
Dicke [11], to develop rigorous theories which included the time variation of
G self-consistently by modelling it as arising from the space-time variation of
some scalar field φ(x, t) whose motion both conserved energy and momentum
and created its own gravitational field variations. In this respect the geometric
structure of Einstein’s equations provides a highly constrained environment to
introduce variations of ’constants’. Whereas in Newtonian gravity we are at
liberty to introduce a time-varying G(t) into the law of gravity by

F = −G(t)Mm

r2
(1)

This creates a non-conservative dynamical system but can be solved fairly
straightforwardly [12]. However, this strategy of simply ’writing in’ the variation
of G by merely replacing G by G(t) in the equations that hold when G is a
constant fails in general relativity. If we were to imagine the Einstein equations
would generalise to (Gab is the Einstein tensor)

Gab =
8πG(t)

c4
Tab (2)

then taking a covariant divergence and using ∇aGab = 0, together with energy-
momentum conservation (∇aTab = 0) requires that ∇G ≡ 0 and no variations
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are possible in eq. (2). Brans-Dicke theory is a familiar example of how the
addition of an extra piece to Tab together with the dynamics of a G(φ) fields
makes a varying G theory possible. Despite the simplicity of this lesson in the
context of a varying G theory it was not taken on board when considering the
variations of other non-gravitational constants and the literature is full of limits
on their possible variation which have been derived by considering a theory in
which the time-variation is just written into the equations which hold when the
constant does not vary. These ’limits’ are clearly invalid but they will play an
important role in guiding us towards the areas where a full theory will find the
strongest rigorous bounds. Recently, the interest in the possibility that α varies
in time has led to the first extensive exploration of simple self-consistent theories
in which a variations occur through the variation of some scalar field.

2 A Simple Varying-Alpha Theory

We are going to consider some of the cosmological consequences of a simple
theory with time varying α. Such a theory was first formulated by Bekenstein
[13] as a generalisation of Maxwell’s equations but ignoring the consequences
for the gravitational field equations. Recently, Magueijo, Sandvik and myself
have completed this theory [14, 15, 16, 17, 18] to include the coupling to the
gravitational sector and analysed its general cosmological consequences. This
theory considers only a variation of the electromagnetic coupling and so far
ignores any unification with the strong and electroweak interactions. Extensions
to include the weak interaction via a generalised Weinberg-Salam theory have
also been developed recently, see refs. [19, 20].

Our aim in studying this theory is to build up understanding of the effects of
the expansion on varying α and to identify features that might carry over into
more general theories in which all the unified interactions vary [21, 22, 23]. The
constraint imposed on varying α by the need to bring about unification at high
energy is likely to be significant but the complexities of analysing the simulta-
neous variation of all the constants involved in the supersymmetric version of
the standard model are considerable. At the most basic level we recognise that
any time variation in the fine structure could be carried by either or both of the
electromagnetic or weak couplings above the electroweak scale.

The idea that the charge on the electron, or the fine structure constant, might
vary in cosmological time was proposed in 1948 by Teller, [9], who suggested that
α ∝ (ln t)−1 was implied by Dirac’s proposal that G ∝ t−1 and the numerical
coincidence that α−1 ∼ ln(hc/Gmp), where mp is the proton mass. Later, in
1967, Gamow [24] suggested α ∝ t as an alternative to Dirac’s time-variation
of the gravitation constant, G, as a solution of the large numbers coincidences
problem and in 1963 Stanyukovich had also considered varying α, [25], in this
context. However, this power-law variation in the recent geological past was
soon ruled out by other evidence [26].

There are a number of possible theories allowing for the variation of the
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fine structure constant, α. In the simplest cases one takes c and ~ to be con-
stants and attributes variations in α to changes in e or the permittivity of free
space (see [27] for a discussion of the meaning of this choice). This is done
by letting e take on the value of a real scalar field which varies in space and
time (for more complicated cases, resorting to complex fields undergoing spon-
taneous symmetry breaking, see the case of fast tracks discussed in [28]). Thus
e0 → e = e0ǫ(x

µ), where ǫ is a dimensionless scalar field and e0 is a constant
denoting the present value of e. This operation implies that some well estab-
lished assumptions, like charge conservation, must give way [29]. Nevertheless,
the principles of local gauge invariance and causality are maintained, as is the
scale invariance of the ǫ field (under a suitable choice of dynamics). In addition
there is no conflict with local Lorentz invariance or covariance.

With this set up in mind, the dynamics of our theory is then constructed as
follows. Since e is the electromagnetic coupling, the ǫ field couples to the gauge
field as ǫAµ in the Lagrangian and the gauge transformation which leaves the
action invariant is ǫAµ → ǫAµ+χ,µ, rather than the usual Aµ → Aµ+χ,µ. The
gauge-invariant electromagnetic field tensor is therefore

Fµν =
1

ǫ
((ǫAν),µ − (ǫAµ),ν) , (3)

which reduces to the usual form when ǫ is constant. The electromagnetic part
of the action is still

Sem = −
∫

d4x
√−gFµνFµν . (4)

and the dynamics of the ǫ field are controlled by the kinetic term

Sǫ = −1

2

ℏ

l2

∫

d4x
√−g ǫ,µǫ

,µ

ǫ2
, (5)

as in dilaton theories. Here, l is the characteristic length scale of the theory,
introduced for dimensional reasons. This constant length scale gives the scale
down to which the electric field around a point charge is accurately Coulombic.
The corresponding energy scale, ~c/l, has to lie between a few tens of MeV and
Planck scale, ∼ 1019GeV to avoid conflict with experiment.

Our generalisation of the scalar theory proposed by Bekenstein [13] described
in refs. [15, 16, 17, 18] includes the gravitational effects of ψ and gives the field
equations:

Gµν = 8πG
(

Tmatter
µν + Tψµν + T em

µν e
−2ψ

)

. (6)

The stress tensor of the ψ field is derived from the lagrangian Lψ = −ω
2
∂µψ∂

µψ
and the ψ field obeys the equation of motion

�ψ =
2

ω
e−2ψLem (7)

where we have defined the coupling constant ω = (c)/l2. This constant is of
order ∼ 1 if, as in [14], the energy scale is similar to Planck scale. It is clear
that Lem vanishes for a sea of pure radiation since then Lem = (E2 − B2)/2 =
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0. We therefore expect the variation in α to be driven by electrostatic and
magnetostatic energy-components rather than electromagnetic radiation.

In order to make quantitative predictions we need to know how much of the
non-relativistic matter contributes to the RHS of Eqn. (7). This is parametrised
by ζ ≡ Lem/ρ, where ρ is the energy density, and for baryonic matter Lem =
E2/2. For protons and neutrons ζp and ζn can be estimated from the electro-
magnetic corrections to the nucleon mass, 0.63 MeV and −0.13 MeV, respec-
tively [30]. This correction contains the E2/2 contribution (always positive),
but also terms of the form jµa

µ (where jµ is the quarks’ current) and so cannot
be used directly. Hence we take a guiding value ζp ≈ ζn ∼ 10−4. Furthermore
the cosmological value of ζ (denoted ζm) has to be weighted by the fraction of
matter that is non-baryonic. Hence, ζm depends strongly on the nature of the
dark matter and can take both positive and negative values depending on which
of Coulomb-energy or magnetostatic energy dominates the dark matter of the
Universe. It could be that ζCDM ≈ −1 (superconducting cosmic strings, for
which Lem ≈ −B2/2), or ζCDM ≪ 1 (neutrinos). BBN predicts an approximate
value for the baryon density of ΩB ≈ 0.03 (where ΩB is the density of matter
in units of the critical density 3H2/8πG) with a Hubble parameter of H = 60
Kms-1 Mpc-1, implying ΩCDM ≈ 0.3. Thus depending on the nature of the dark
matter ζm can be virtually anything between −1 and +1. The uncertainties in
the underlying quark physics and especially the constituents of the dark matter
make it difficult to impose more certain bounds on ζm.

We should not confuse this theory with other similar variations. Bekenstein’s
theory does not take into account the stress energy tensor of the dielectric field
in Einstein’s equations. Dilaton theories predict a global coupling between the
scalar and all other matter fields (not just the electromagnetically charged ma-
terial) [31, 32, 33, 34, 35]. As a result they predict variations in other constants
of nature, and also a different cosmological dynamics.

2.1 The cosmological equations

Assuming a homogeneous and isotropic Friedmann metric with expansion scale
factor a(t) and curvature parameter k in eqn. (6), we obtain the field equations
(c ≡ 1)

(

ȧ

a

)2

=
8πG

3

(

ρm (1 + ζm exp [−2ψ]) + ρr exp [−2ψ] +
ω

2
ψ̇2

)

− k

a2
+

Λ

3
, (8)

where Λ is the cosmological constant. For the scalar field we have the propaga-
tion equation,

ψ̈ + 3Hψ̇ = − 2

ω
exp [−2ψ]ζ

m
ρm, (9)

where H ≡ ȧ/a is the Hubble expansion rate. We can rewrite this more simply
as

6



(ψ̇a3)̇ = N exp[−2ψ] (10)

where N is a positive constant defined by

N = −2ζmρma
3

ω
(11)

Note that the sign of the evolution of ψ is dependent on the sign of ζm. Since
the observational data is consistent with a smaller value of α in the past, we
will in this paper confine our study to negative values of ζm, in line with our
recent discussion in Refs. [14, 15, 16, 17, 18]. The conservation equations for
the non-interacting radiation and matter densities are

˙ρm + 3Hρm = 0 (12)

ρ̇r + 4Hρr = 2ψ̇ρr. (13)

and so ρm ∝ a−3 and ρr e
−2ψ ∝ a−4, respectively. If additional non-interacting

perfect fluids satisfying equation of state p = (γ− 1)ρ are added to the universe
then they contribute density terms ρ ∝ a−3γ to the RHS of eq.(8) as usual.
This theory enables the cosmological consequences of varying e, to be analysed
self-consistently rather than by changing the constant value of e in the standard
theory to another constant value, as in the original proposals made in response
to the large numbers coincidences.

We have been unable to solve these equations in general except for a few
special cases. However, as with the Friedmann equation of general relativity,
it is possible to determine the overall pattern of cosmological evolution in the
presence of matter, radiation, curvature, and positive cosmological constant by
matched approximations. We shall consider the form of the solutions to these
equations when the universe is successively dominated by the kinetic energy of
the scalar field ψ, pressure-free matter, radiation, negative spatial curvature,
and positive cosmological constant. Our analytic expressions are checked by
numerical solutions of (8) and (9).

There are a number of conclusions that can be drawn from the study of the
simple BSBM models with ζm < 0. These models give a good fit to the varying
α implied by the QSO data of refs. [2, 3]. There is just a single parameter to
fit and this is given by the choice

−ζm
ω

= (2± 1)× 10−4 (14)

The simple solutions predict a slow (logarithmic) time increase during the
dust era of k = 0 Friedmann universes. The cosmological constant turns off
the time-variation of α at the redshift when the universe begins to accelerate
(z ∼ 0.7) and so there is no conflict between the α variation seen in quasars at
z ∼ 1−3.5 and the limits on possible variation of α deduced from the operation
of the Oklo natural reactor [36] (even assuming that the cosmological variation
applies unchanged to the terrestrial environment). The reactor operated 1.8
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billion years ago at a redshift of only z ∼ 0.1 when no significant variations
were occurring in α. The slow logarithmic increase in α also means that we
would not expect to have seen any effect yet in the anisotropy of the microwave
backgrounds [37, 38]: the value of α at the last scattering redshift, z = 1000,
is only 0.005% lower than its value today. Similarly, the essentially constant
evolution of α predicted during the radiation era leads us to expect no measur-
able effects on the products of Big Bang nucleosynthesis (BBN) [39] because α
was only 0.007% smaller at BBN than it is today. This does not rule out the
possibility that unification effects in a more general theory might require varia-
tions in weak and strong couplings, or their contributions to the neutron-proton
mass difference, which might produce observable differences in the light element
productions and new constraints on varying α at z ∼ 109 − 1010. By contrast,
varying-alpha cosmologies with ζ > 0 lead to bad consequences unless the scalar
field driving the alpha variations is a ’ghost’ field, with negatively coupled ki-
netic energy, in which case there are interesting cosmological consequences, [44].
The fine structure falls rapidly at late times and the variation is such that it
even comes to dominate the Friedmann equation for the cosmological dynamics.
We regard this as a signal that such models are astrophysically ruled out and
perhaps also mathematically badly behaved.

We should also mention that theories in which α varies will in general lead
to violations of the weak equivalence principle (WEP). This is because the α
variation is carried by a field like ψ and this couples differently to different
nuclei because they contain different numbers of electrically charged particles
(protons). The theory discussed here has the interesting consequence of leading
to a relative acceleration of order 10−13 [40] if the free coupling parameter is
fixed to the value given in eq. (14) using a best fit of the theories cosmological
model to the QSO observations of refs. [2, 3]. Other predictions of such WEP
violations have also been made in refs. [41, 30, 42, 43]. The observational upper
bound on this parameter from direct experiment is just an order of magnitude
larger, at 10−12, and limits from the motion of the Moon are of similar order,
but space-based tests planned for the STEP mission are expected to achieve a
sensitivity of order 10−18 and will provide a completely independent check on
theories of time-varying e and α.This is an exciting prospect for the future.

2.2 The nature of the Friedmann solutions

Let us present the predicted cosmological evolution of α in the BSBM theory,
that we summarised above, in a little more detail. During the radiation era the
expansion scale factor of the universe increases as a(t) ∼ t1/2 and α is essentially
constant in universes with an entropy per baryon and present value of α like our
own. It increases in the dust era, where a(t) ∼ t2/3. The increase in α however,
is very slow with a late-time solution for ψ proportional to 1

2
log(2N log(t)), and

so

α ∼ 2N log t (15)
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This slow increase continues until the expansion becomes dominated by neg-
ative curvature, a(t) ∼ t, or by a cosmological vacuum energy, a(t) ∼ exp[Λt/3].
Thereafter α asymptotes rapidly to a constant. If we set the cosmological con-
stant equal to zero and k = 0 then, during the dust era, α would continue to
increase indefinitely. The effect of the expansion is very significant at all times.
If we were to turn it off and set a(t) constant then we could solve the ψ equation
to give the following exponentially growing evolution for α, [45]:

α = exp[2ψ] = A−2 cosh2[AN1/2(t+ t0)]; A constant. (16)

From these results it is evident that non-zero curvature or cosmological con-
stant brings to an end the increase in the value of α that occurs during the
dust-dominated era. Hence, if the spatial curvature and Λ are both too small

it is possible for the fine structure constant to grow too large for biologically
important atoms and nuclei to exist in the universe. There will be a time in the
future when α reaches too large a value for life to emerge or persist. The closer
a universe is to flatness or the closer Λ is to zero so the longer the monotonic
increase in α will continue, and the more likely it becomes that life will be ex-
tinguished. Conversely, a non-zero positive Λ or a non-zero negative curvature
will stop the increase of α earlier and allow life to persist for longer. If life can
survive into the curvature or Λ-dominated phases of the universe’s history then
it will not be threatened by the steady cosmological increase in α unless
the universe collapses back to high density.

There have been several studies, following Carter, [46] and Tryon [47], of
the need for life-supporting universes to expand close to the ’flat’ Einstein de
Sitter trajectory for long periods of time. This ensures that the universe cannot
collapse back to high density before galaxies, stars, and biochemical elements
can form by gravitational instability, or expand too fast for stars and galaxies to
form by gravitational instability [48, 7]. Likewise, it was pointed out by Barrow
and Tipler, [7] that there are similar anthropic restrictions on the magnitude
of any cosmological constant, Λ. If it is too large in magnitude it will either
precipitate premature collapse back to high density (if Λ < 0) or prevent the
gravitational condensation of any stars and galaxies (if Λ > 0). Thus, we can
provide good anthropic reasons why we can expect to live in an old universe that
is neither too far from flatness nor dominated by a much stronger cosmological
constant than observed (|Λ| ≤ 10 |Λobs|).

Inflationary universe models provide a possible theoretical explanation for
proximity to flatness but no explanation for the smallness of the cosmologi-
cal constant. Varying speed of light theories [49, 27, 50, 51, 52] offer possible
explanations for proximity to flatness and smallness of a classical cosmologi-
cal constant (but not necessarily for one induced by vacuum corrections in the
early universe). We have shown that if we enlarge our cosmological theory to
accommodate variations in some traditional constants then it appears to be an-
thropically disadvantageous for a universe to lie too close to flatness or for the
cosmological constant to be too close to zero. This conclusion arises because of
the coupling between time-variations in constants like α and the curvature or
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Λ, which control the expansion of the universe. The onset of a period of Λ or
curvature domination has the property of dynamically stabilising the constants,
thereby creating favourable conditions for the emergence of structures. This
point has been missed in previous studies because they have never combined
the issues of Λ and flatness and the issue of the values of constants. By coupling
these two types of anthropic considerations we find that too small a value of Λ
or the spatial curvature can be as poisonous for life as too much. Universes like
those described above, with increasing α(t), lead inexorably to an epoch where
α is too large for the existence of atoms, molecules, and stars to be possible [16].

Surprisingly, there has been almost no consideration of habitability in cos-
mologies with time-varying constants since Haldane’s discussions [5] of the bio-
logical consequences of Milne’s bimetric theory of gravity. Since then, attention
has focussed upon the consequences of universes in which the constants are dif-
ferent but still constant. Those cosmologies with varying constants that have
been studied have not considered the effects of curvature or Λ domination on
the variation of constants and have generally considered power-law variation to
hold for all times. The examples described here show that this restriction has
prevented a full appreciation of the coupling between the expansion dynamics
of the universe and the values of the constants that define the course of local
physical processes within it. Our discussion of a theory with varying α shows
for the first time a possible reason why the 3-curvature of universes and the
value of any cosmological constant may need to be bounded below in order
that the universe permit atomic life to exist for a significant period. Previous
anthropic arguments [7] have shown that the spatial curvature of the universe
and the value of the cosmological constant must be bounded above in order for
life-supporting environments (stars) to develop. We note that the lower bounds
discussed here are more fundamental than these upper bounds because they de-
rive from changes in α which have direct consequences for biochemistry whereas
the upper bounds just constrain the formation of astrophysical environments by
gravitational instability. Taken together, these arguments suggest that within
an ensemble of all possible worlds where α and G are time variables, there might
only be a finite interval of non-zero values of the curvature and cosmological
constant contributions to the dynamics that both allow galaxies and stars to
form and their biochemical products to persist.

3 The Observational Evidence

New precision studies of relativistic fine structure in the absorption lines of dust
clouds around quasars by Webb et al., [2, 3], have led to widespread theoretical
interest in the question of whether the fine structure constant, αem = e2/~c, has
varied in time and, if so, how to accommodate such a variation by a minimal
perturbation of existing theories of electromagnetism. These astronomical stud-
ies have proved to be more sensitive than laboratory probes of the constancy of
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the fine structure ’constant’, which currently give bounds on the time variation
of α̇em/αem ≡ −0.4±16×10−16 yr−1, [53], |α̇em/αem| < 1.2×10−15 yr−1, [54],
α̇em/αem ≡ −0.9± 2.9× 10−16 yr−1, [55] by comparing atomic clock standards
based on different sensitive hyperfine transition frequencies, and α̇em/αem ≡
−0.3±2.0×10−15 yr−1 from comparing two standards derived from 1S-2S tran-
sitions in atomic hydrogen after an interval of 2.8 years [56]. The quasar data
analysed in refs. [2, 3] consists of three separate samples of Keck-Hires observa-
tions which combine to give a data set of 128 objects at redshifts 0.5 < z < 3.
The many-multiplet technique finds that their absorption spectra are consistent
with a shift in the value of the fine structure constant between these redshifts
and the present of ∆αem/αem ≡ [αem(z) − αem]/αem = −0.57 ± 0.10 × 10−5,
where αem ≡ αem(0) is the present value of the fine structure constant [2, 3].
Extensive analysis has yet to find a selection effect that can explain the sense
and magnitude of the relativistic line-shifts underpinning these deductions. Fur-
ther observational studies have been published in refs. [57, 58] using a different
but smaller data set of 23 absorption systems in front of 23 VLT-UVES quasars
at 0.4 ≤ z ≤ 2.3 and have been analysed using an approximate form of the
many-multiplet analysis techniques introduced in refs. [2, 3]. They obtained
∆αem/αem ≡ −0.6 ± 0.6 × 10−6; a figure that disagrees with the results of
refs. [2, 3] . However, reanalysis is needed in order to understand the accu-
racy being claimed and ensure that all spectral lines are being identified. Other
observational studies of lower sensitivity have also been made using OIII emis-
sion lines of galaxies and quasars. The analysis of data sets of 42 and 165
quasars from the SDSS gave the constraints ∆αem/αem ≡ 0.51 ± 1.26 × 10−4

and ∆αem/αem ≡ 1.2± 0.7× 10−4 respectively for objects in the redshift range
0.16 ≤ z ≤ 0.8 [59]. Observations of a single quasar absorption system at
z = 1.15 by Quast et al [60] gave ∆αem/αem ≡ −0.1 ± 1.7 × 10−6 , and ob-
servations of an absorption system at z = 1.839 by Levshakov et al [61] gave
∆αem/αem ≡ 2.4 ± 3.8 × 10−6. A preliminary analysis of constraints derived
from the study of the OH microwave transition from a quasar at z = 0.2467, a
method proposed by Darling [62], has given ∆αem/αem ≡ 0.51 ± 1.26 × 10−4,
[63].A comparison of redshifts measured using molecules and atomic hydro-
gen in two cloud systems by Drinkwater et al [64] at z = 0.25 and z = 0.68
gave a bound of ∆αem/αem < 5 × 10−6 and an upper bound on spatial vari-
ations of δαem/αem < 3 × 10−6 over 3 Gpc at these redshifts. A new study
comparing UV absorption redshifted into the optical with redshifted 21 cm
absorption lines from the same cloud in a sample of 8 quasars by Tzanavaris
et al [65]. This comparison probes the constancy of α2gpme/mp and gives
∆αem/αem ≡ 0.18 ± 0.55 × 10−5 if we assume that the electron-proton mass
ratio and proton g-factor, gp, are both constant.

Observational bounds derived from the microwave background radiation
structure [66] and Big Bang nucleosynthesis [39, 67] are not competitive at
present (giving ∆αem/αem . 10−2 at best at z ∼ 103 and z ∼ 109 − 1010) with
those derived from quasar studies, although they probe much higher redshifts.

Other bounds on the possible variation of the fine structure constant have
been derived from geochemical studies, although they are subject to awkward
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environmental uncertainties. The resonant capture cross-section for thermal
neutrons by samarium-149 about two billion years ago (z ≃ 0.15) in the Oklo
natural nuclear reactor has created a samarium-149:samarium-147 ratio at the
reactor site that is depleted by the capture process 149Sm+n → 150Sm+γ to
an observed value of only about 0.02 compared to the value of about 0.9 found
in normal samples of samarium. The need for this capture resonance to be
in place two billion years ago at an energy level within about 90 meV of its
current value leads to very strong bounds on all interaction coupling constants
that contribute to the energy level, as first noticed by Shlyakhter [68, 1]. The
latest analyses by Fujii et al [69] allow two solutions (one consistent with no
variation the other with a variation) because of the double-valued form of the
capture cross-section’s response to small changes in the resonance energy over
the range of possible reactor temperatures: ∆αem/αem ≡ −0.8± 1.0× 10−8 or
∆αem/αem ≡ 8.8± 0.7× 10−8. The latter possibility does not include zero but
might be excluded by further studies of other reactor abundances. Subsequently,
Lamoureax [70] has argued that a better (non-Maxwellian) assumption about
the thermal neutron spectrum in the reactor leads to 6σ lower bound on the
variation of ∆αem/αem > 4.5× 10−8 at z ≃ 0.15.

Studies of the effects of varying a fine structure constant on the β-decay
lifetime was first considered by Peebles and Dicke [71] as a means of constrain-
ing allowed variations in αem by studying the ratio of rhenium to osmium in
meteorites. The β-decay 187

75 Re→ 187
76 Os+ν̄e+e− is very sensitive to αem and

the analysis of new meteoritic data together with new laboratory measurements
of the decay rates of long-lived beta isotopes has led to a time-averaged limit of
∆αem/αem = 8± 16× 10−7 [72, 73] for a sample that spans the age of the solar
system (z ≤ 0.45). Both the Oklo and meteoritic bounds are complicated by
the possibility of simultaneous variations of other constants which contribute to
the energy levels and decay rates; for reviews see refs. [74, 75]. They also apply
to environments within virialised structures that do not take part in the Hubble
expansion of the universe and so it is not advisable to use them in conjunction
with astronomical information from quasars without a theory that links the val-
ues of αem in the two different environments that differ in density by a factor
of O(1030). Detailed discussions of this problem when G and α vary have been
made in refs. [76, 77, 78].

4 The Role of Inhomogeneities

All early studies of the cosmological consequences of varying constants have as-
sumed that they vary homogeneously. Such an assumption is also implicit when
laboratory data or solar system observations are used to constrain cosmological
theories of varying G and α. In reality such a simple approach is very dangerous.
Our local observations are made inside a gross cosmological overdensity – 1030

times denser than the mean density of the background universe – that is not
taking part in the universal expansion. We should no more expect laboratory
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observations of the constancy of α to reflect what is happening on extragalactic
scales than we should expect a measurement of the density of the Earth to give
a good estimate of the density of the universe. In order to use our local obser-
vations effectively we need a theoretical description of how variations in, say, α
will vary with the local density of matter as a result of the process of galaxy,
star, and planetary formation. For example, when a cosmological overdensity
separates out from the expansion of the universe, and collapses under its own
gravity, it will eventually come into a stationary virial equilibrium. If α is a
space-time variable it will continue changing in the background universe after
it has ceased to change in the virialised protogalaxy with a density contrast of
about 106 with respect to the background universe. In this way we see that the
process of galaxy formation leads us to expect that any time variation in fun-
damental constants will be inevitably accompanied by a space variation that is
potentially much more marked. In particular both α and α̇ will exhibit different
values inside and outside galaxies and galaxy clusters. Moreover, we expect the
residual time variations inside galaxies (and hence in terrestrial laboratories)
to be significantly smaller than those to be found in extragalactic systems that
take part in the expansion of the universe [77, 78]. In contrast, if we go to very
large scales where we are observing very small fluctuations long before they col-
lapse into clusters and galaxies, we can calculate the effects of spatially varying
’constants’ on the isotropy of the microwave background radiation. The author
has recently shown [79] that the evolution eqn. (7) means that spatial varia-
tions in α are driven by spatial variations in the matter density which in turn
produce spatial variations in the gravitational potential. These potential vari-
ations create temperature anisotropies in the microwave background on large
angular scales. The observational bound on these variations from the COBE
and WMAP satellites allow us to conclude that in these theories spatial vari-
ations in α are bounded above by δα/α < 2 × 10−9. Very strong bounds can
be also derived in this way on allowed spatial variations in G and me/mpand in
Bran-Dicke theory and the new theory for varying me/mp recently devised by
Barrow and Magueijo [80].

These theoretical developments, together with the appearance of new obser-
vational probes of the constants of physics at high redshift, coupled with recent
rapid progress in direct laboratory probes of the stability of atomic systems
that depend sensitively on the value of the fine structure constant here and
now, promise to create an exciting new focal point in our quest to understand
the nature (as well as the number) of the fundamental constants of Nature.
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