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We formulate a simple extension of general relativity which incorporates space-time variations
in the Newtonian gravitation ’constant’, G, and the fine structure ’constant’, α, which generalises
Brans-Dicke theory and our theory of varying α. We determine the behaviour of Friedmann universes
in this theory. In the radiation and dust-dominated eras αG approaches a constant value and the
rate of variation of α is equal to the magnitude of the rate of variation in G. The expansion dynamics
of the universe are dominated by the variation of G but the variation of G has significant effects upon
the time variation of α. Time variations in α are extinguished by the domination of the expansion
by spatial curvature or quintessence fields, as in the case with no G variation.

I. INTRODUCTION

There have been many studies of the cosmological consequences of allowing some of the traditional constants of
Nature to change. These include evaluations of the effects of altering the observed value of a constant to another
constant value and studies of the time-evolution of ’constants’ in generalisations of the general theory of relativity
that allow them to become space-time variables. The most studied case is that of varying the Newtonian gravitation
constant, G, through the Brans-Dicke (BD) scalar-tensor theory of gravity [1]. Recently, following Bekenstein, [2],
Sandvik, Barrow and Magueijo [3], [4] have developed a theory (BSBM) which describes the space-time variation of
the fine structure constant. In these, and other, studies of varying constants only a single constant is allowed to vary
at one time. However, since we have no understanding of why the constants of Nature take the values that they
do, whether they are logically independent, or even whether they all are truly constant, this restriction is somewhat
artificial. Motivated by recent observational evidence for a time evolution of the fine structure ’constant’, α, at
redshifts z ∼ 1 − 3.5, [5], [6], [7], we have unified the BD and BSBM theories to produce an exact theory which
describes the simultaneous variation of α and G. This type of model also provides a framework within which to
consider the consequences of changes in the scale of extra dimensions of space on apparent three-dimensional coupling
constants.
In section 2 we set up the theory and evolution equations for Friedmann universes in a theory that generalises

general relativity to include varying α and G. In section 3 we show how to find the cosmological solutions during the
dust-dominated eras. We find an exact solution where αG is constant during the dust era while α and G−1 both
increase with time. We then determine analytically the coupled evolution of α and G during the radiation, curvature,
and vacuum-energy dominated eras of cosmological expansion. From here we go on to check the solutions numerically
and we show how in Universes like our own, with actual initial values for α and G the asymptotic behaviour is never
reached. Instead we find constant α and G in the radiation era, slow growth of α and slow decrease in G in the dust
epoch, constant values for both in curvature dominated universe, and constant α and decreasing G in Λ dominated
epoch. Generally we find that the overall evolution of the expansion scale factor of the universe is dictated by the G
variation and assumes the form found in the Brans-Dicke theory to a very good approximation irrespective of the α
variation. The evolution of α is influenced by the G variation but does not differ much from that found in the BSBM
cosmologies where only α varies.

II. FIELD EQUATIONS

We introduce the structure of the BSBM theory for varying α as another matter field in Brans-Dicke theory. The
resulting theories has two scalar fields: the BD field φ propagating variations in G, and the field ψ propagating
variations in α. The action for this theory becomes

S =

∫

d4x
√−g

(

Rφ+
16π

c4
L − ωBD

φ,µφ
,µ

φ

)

(1)
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where

L = Lm + Lem exp(−2ψ) + Lψ, (2)

and

Lψ = −ω
2
ψ,µψ

,µ.

The field equations for the theory, specialised to the case of a homogeneous and isotropic Friedmann space-time
metric containing dust and radiation perfect fluids are:

3
ȧ2

a2
=

8π

φ
(ρm(1 + |ζ| exp(−2ψ)) + ρr exp(−2ψ) + ρψ)− 3

ȧ φ̇

a φ
+
ωBD
2

φ̇2

φ2
− k

a2
(3)

φ̈+ 3
ȧ

a
φ̇ =

8π

3 + 2ωBD
(ρm − 2ρψ) (4)

ψ̈ + 3Hψ̇ = − 2

ω
exp(−2ψ)ζρm (5)

˙ρm + 3Hρm = 0 (6)

ρ̇r + 4Hρr = 2ψ̇ρr (7)

where ρψ = ω
2 ψ̇

2 is the kinetic energy density for the ψ fluid, with ω the coupling setting the relevant energy scale
for the ψ-field. ζ is defined as the ratio Lem/ρm averaged over all types of matter in the universe. The fine structure
’constant’ is given by (h̄ = c = 1)

α ≡ α0 exp(2ψ), (8)

where α0 is the present day value of the fine structure ’constant’. The present-day value of G is set equal to unity.
We shall confine our attention to the case with ζ < 0 where the magnetic energy dominates the electric field

energy of the matter coupling to electric charge in the universe. This places particular constraints upon the nature
of the cold dark matter dominating the universe today. From our earlier studies, [3]- [4], we know that this case
provides a slow variation with α increasing logarithmically in time during the dust era but staying constant during
any subsequent curvature or cosmological constant dominated era. Also, in a universe with a matter-radiation balance
like our own, α remains constant during the radiation era except close to the initial singularity. Negative ζ models are
well behaved and correspond to the dark matter in the universe being dominated by magnetic coupling, (for example
superconducting cosmic strings contribute ζ = −1). The expansion scale factor evolution is not affected by variations
in α to leading order. By contrast, the choice ζ > 0 creates major changes to cosmological evolution. It does not lead
to slow increase of α with time during the dust era, as observations suggest, and the evolution of the expansion scale
factor is affected to leading order (see for example refs. [9,10] who discuss related theories for the variation of α with
ζ > 0 and hence α̇ < 0 cosmological behaviour in the dust era in contrast to our discussions in [3]- [4] and below). In
what follows we shall investigate how the ζ < 0 evolution of the fine structure constant couples to variation of G in
the Brans-Dicke theory.
The constant ωBD is the Brans-Dicke parameter and ω is the analogous parameter for the coupling of the ψ field

driving variations in α. We have used the facts that dust is pressureless, p = ρr/3 for a sea of radiation and p = ρψ
for a fluid with kinetic energy only. Equation (3) can be recast for numerical solutions

ȧ

a
= −1

2

φ̇

φ
± 1

2

√

√

√

√

√

(

φ̇

φ

)2

+
4

3





8πρ

φ
+
ωBD
2

(

φ̇

φ

)2


− 4
k

a2
(9)

and eqn. (7) integrates to give ργ exp(−2ψ) ∝ a−4. Note that this is the combination that appears in the generalised
Friedmann equation, (3). In ref. [4] we showed how to deduce the solutions of these equations when G is constant.
Here, we will extend this analysis to the new situation where both α and G vary in time.

III. DUST ERA EVOLUTION

From our study of the Friedmann models in BSBM theory we know that, to a very good approximation, the α
variations do not significantly affect the evolution of the expansion scale factor a(t). The effects of varying G in
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Brans-Dicke theories is different. No matter how slow the variation in G, a correction will occurs to the power of the
time-variation of the expansion scale factor. In the dust era we assume the asymptotic solution for the Brans-Dicke
(BD) flat dust model holds to high accuracy. This is an exact solution of (3) for ζ = k = ψ = ργ = 0 and is the
late-time attractor of the general flat BD dust solution (see refs. [11,12], [13]) which differs only as t → 0, where
the solution becomes dominated by the kinetic energy of the φ field and approaches the BD vacuum solution. Thus,
to leading order the expansion dynamics and φ evolution are described at late times by the exact Brans-Dicke dust
solution with k = 0:

a(t) ∝ t(2−n)/3;φ = φ0t
n (10)

ρ =Ma−3 Ṁ ≡ 0 (11)

φ0 ≡ 8πM

n(3 + 2ωBD)
(12)

where n is related to the Brans-Dicke parameter by

n ≡ 2/(4 + 3ωBD), (13)

and M is the present density of the universe in Planck units, M ∼ 10−123.
What is the asymptotic solution for α during the dust era? The relevant equation is (5), which can now be rewritten

as

d

dt
(t2−nψ̇) = N exp(−2ψ) (14)

where

N ≡ −2ζ

ω
ρma

3 = −2ζM

ω
> 0 Ṅ ≡ 0,

and −ζ/ω ≈ 10−4 is the best fit of this parameter ratio to the observations of Webb et. al. [5]- [7]1.
Unlike the case with constant G, there is an exact solution (for ωBD positive and finite)

ψ(t) =
n

2
ln(t) +

1

2
lnN − 1

2
ln(

n

2
− n2

2
) (15)

so we have, using this solution for ψ to solve for φ in (4):

α(t) = α0 exp(2ψ) = α0
2Ntn

n(1 − n)
(16)

Hence, there is a simple relationship between α(t) and G(t):

φ = G−1 =
2πω(1− n)

−ζ(3 + 2ωBD)

α

α0
=

2πω(2 + 3ωBD)

−ζ(3 + 2ωBD)(4 + 3ωBD)

α

α0
∝ tn, (17)

so αG is always a constant. Note that for large values of ωBD we have a simple relation between the values of G and
α:

G
α

α0
≈ −ζωBD

πω
> 0 (18)

As expected, α increases whilst G falls as t→ ∞ in a flat universe. It is interesting to note that the asymptotic value
of Gα is uniquely determined by the parameters in the model with no arbitrary constants.
Although the asymptotic behaviour is now determined, the question of whether this can be reached on a cosmological

timescale depends strongly on the choice of initial conditions and needs to be investigated numerically. We can quickly
conclude that the asymptotic regime is not reached in our universe. Presently we have α ≈ 1/137, and in our units the

1The value used for −ζ/ω is the value fitted for the BSBM theory with constant G. However, since n is so close to zero it
should not be significantly different numerically in the case with varying G
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numerical value ofM is extremely small, ∼ 10−123. Obviously the actual value of α is then many orders of magnitude
larger than given by the solution in eq.(15) and we are thus nowhere near the asymptotic regime. Consequently, in
order to find the behaviour of α and G we turn to numerical solutions of the equations. We evolve the Friedmann
equations through time with initial conditions chosen so as to yield the present day values of G and α. For α we find a
behaviour very similar to the BSBM theory, with a slow growth giving a relative change of the order 10−4 throughout
the dust epoch. G goes through a decrease of order 10−3 during the same period. The numerical results are shown in
Figures 1 and 2.

FIG. 1. Evolution of the relative shift in the values of the two ’constants’ in a realistic flat cosmology with vacuum energy
and approximately accurate initial values for the fields. We start from a radiation-dominated universe where both α and G
stay constant. Thereafter we move into dust domination where α changes slowly, while G goes through a small decrease. As
the universe becomes dominated by the vacuum energy, α goes to a constant, while G goes on decreasing indefinitely as in
ordinary Brans Dicke theory. Values used for the couplings are the minimum allowed value of ωBD = 3500 and we take the
best fit value of ζ/ω = −10−4 from BSBM theory.

IV. RADIATION ERA EVOLUTION

The evolution in the radiation era is slightly more complicated because of the contribution of the ρψ term to the
right-hand side of the φ evolution equation. This means that we do not have the usual late-time asymptotic behaviour
of constant φ to accompany the a = t1/2 scale factor as in BD radiation universes. If we assume

a = t1/2

then we have

d

dt
(φ̇t3/2) = R− λt3/2ψ̇2 (19)

where

λ ≡ 8πω

3 + 2ωBD
, (20)

R ≡ 8πM

3 + 2ωBD
= − 4πωN

ζ(3 + 2ωBD)
(21)

The R term is negligible when the kinetic energy of the ψ field dominates the matter density during the radiation
era. Likewise, the λ term can be neglected when the matter density dominates the ψ kinetic energy. We also have
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FIG. 2. Evolution of the relative shift in the values of the two ’constants’ in an open universe through radiation, dust and
curvature-dominated epochs. Initial values for the fields are set so as to give realistic values at present time. Again α and G
are constants in the radiation dominated era, whilst α increases and G decreases through matter domination. As curvature
starts to take over the expansion, both α and G tends to constants. Values for the couplings are the minimum allowed value
of ωBD = 3500 and the best fit value of ζ/ω = −10−4 from the BSBM theory.

d

dt
(ψ̇t3/2) = N exp[−2ψ] (22)

as in the case with constant G. This has the exact solution

ψ =
1

2
ln(8N) +

1

4
ln(t) (23)

as before, so ψ̇2 = (16t2)−1. If we substitute this in (19)

d

dt
(φ̇t3/2) = R− λ

16
t−1/2 (24)

so

φ = φ0 + 2Rt1/2 − λ

8
ln(t) + Ct−1/2 (25)

where C and φ0 are constants. If the universe expands for long enough to reach the asymptotic regime then we have
(as R > 0)

ψ ≈ 1

4
ln(t) (26)

φ = G−1 ≈ − 8πωN

ζ(3 + 2ωBD)
t1/2 (27)

so, from eqns. (18) and (8),

G
α

α0
≈ −ζ(3 + 2ωBD)

8πωN
≈ −ζωBD

4πωN
(28)

for large ωBD. Thus we still have the nice asymptotic behaviour of αG in the radiation-dominated epoch. However,
we again need to compare with numerical results to determine whether these asymptotic solutions can indeed be
realised in the Universe. As in the case of dust, the same simple reality check can now be performed on the solution
(23). As in the case of constant G we are nowhere near this particular solution in our Universe. α would need to be
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several orders of magnitude smaller if it was to satisfy the solution, and as in the BSBM theory we expect instead
a constant value of α in the rad epoch. This assumption is indeed confirmed by the numerical solutions shown in
Figures (2) and (1).
Another possible problem for the analytic solutions above would arise if the kinetic energy of the ψ field dominates

the matter density during radiation domination. We regard this situation as unrealistic and it cannot be realised
asymptotically.

V. CURVATURE ERA EVOLUTION

During a curvature-dominated phase of an open universe the expansion scale factor tends to that of the Milne
vacuum universe, which is an exact solution of general relativity and of Brans-Dicke theory (with constant φ) with

a = t (29)

Using this in the propagation equations for φ and ψ,we find that, as t→ ∞, so leading order

ψ = ψ∗ −
N exp[−2ψ0]

t

φ = φ∗ +
4πωN

ζ(3 + 2ωBD)t

with ψ∗ and φ∗ constants, so both α and G tend to constant values as t→ ∞. In a universe that passes directly from
dust domination to curvature domination these constant values will be very close to the asymptotic attractors for the
dust era of evolution found above in eqn. (18) providing the dust epoch has lasted long enough for the attractor to
be reached.
The behaviour of G,α and Gα in a universe like our own but which eventually becomes dominated by negative

curvature is shown in Figure (2).

VI. COSMOLOGICAL ’CONSTANT’ ERA EVOLUTION

In flat Brans-Dicke cosmologies a solution of the Friedmann equation with cosmic vacuum energy (pv = −ρv) is

a = tωBD+ 1
2 (30)

φ = φot
2 (31)

φ0 ≡ 32πρv
(5 + 6ωBD)(3 + 2ωBD)

(32)

and ρv is constant. This is not the general solution but it is the attractor for the general pv = −ρv solution at late
times [17]. It is a power-law inflation model [18]. Note that in Brans-Dicke theory, unlike in general relativity, a
pv = −ρv stress behaves differently in the Friedmann equation to an explicit constant Λ term [17]. It is the former
that describes the stress contributed by a stationary scalar field with a constant potential. Every term in the BD
Friedmann equations falls as t−2 for this solution. It is unusual in that it appears to predict that if the universe has
just begun accelerating (as observations imply, [19,20]) then G should vary rapidly in the solar system. However, this
argument assumes that the vacuum stress is dominant everywhere, right down to the solar system scale, which in
reality it is not.
If we substitute this solution for a(t) (but not φ) in the ψ and φ evolution equations, (4) and (5) then we get, since

pv = −ρv = const,

that

φ̈+
3(2ωBD + 1 )

2t
φ̇ =

8π

3 + 2ωBD
(4ρv − 2ρψ) ≈

−8π

3 + 2ωBD
(4ρv − ωψ̇2)

ψ̈ +
3(2ωBD + 1 )

2t
ψ̇ = − 2

ω
e−2ψζρm ≈ 0
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So, at late times

ψ̇ = Aa−3 = Dt−3(ωBD+ 1
2
)

ψ = Et−3ωBD−
1
2 + F → F

φ̈+
3(2ωBD + 1 )

2t
φ̇ =

−8πω

3 + 2ωBD
(4ρv −Qa−6) → −32πωρv

3 + 2ωBD
,

so

φ = A+Bt2 + Ct−3ωBD−
1
2 → φ0t

2, (33)

and, as expected, we get the same growing behaviour as in pure BD. When the universe becomes vacuum-energy
dominated α tends to a constant value but αG ∝ G ∝ t−2 continues to fall. This behaviour is confirmed by numerical
solutions shown in Figure (1). Using eqn. (18), we see that if tv is the time when a vacuum-dominated era succeeds
a sufficiently long dust-dominated era in a flat universe, then at t ≥ tv in the vacuum-dominated era we expect

α(t)G(t) =
−ζωBD
πω

(

tv
t

)2

. (34)

Hence, today, we would have

α(t0)G(t0) =
−ζωBD

πω(1 + zv)
4

1+2ωBD

. (35)

We see that, as in the situation where G is constant, the effect of a vacuum energy or quintessence field is to turn off
variations in α when it takes over the expansion of the universe, [3].

VII. DISCUSSION

We have formulated a simple gravity theory which extends general relativity, by the addition of two scalar fields,
to include time variation of G and α. Previously, the study of the cosmological variation of physical ’constants’ has
confined attention to varying one constant only or to discussing the effects of altering the values of physical constants
without a self-consistent theory for their dynamical variation [24], [23]. The structure of unified gauge theories and
particle physics theories with extra dimensions has given some indication as to the self consistency conditions required
if traditional constants are allowed to vary, [21,22].
We have found that the expansion of the universe is affected by varying G to first order and the evolution of

the expansion scale factor follows the behaviour found in Brans-Dicke cosmologies to leading order without being
significantly affected by variations in α. The variations in α are affected by the variations in G through their influence
on the expansion rate. This is significant in the dust-dominated era of cosmic expansion, which is known to exhibit
a special mathematical behaviour in the absence of G variation, [4]. The effect of any G time variation simplifies
the α variation and allows an exact solution to be found with α ∝ tn,where n ≡ 2/(4 + 3ωBD) is determined by the
Brans-Dicke parameter ωBD.
In both the radiation and dust dominated eras, there are asymptotic solutions in which the product Gα remains

constant and its value is determined uniquely by the coupling constants of the theory. However in universes like our
own with the values of α and G near present values these asymptotic regimes are not reached throughout the life of
the universe. Typically our present values for α are much larger than the values required by the asymptotic solution.
In a curvature-dominated or quintessence-dominated era the variation in α ceases, just as in the situation with no

G variation [3]. This is an important feature of all models with varying α in theories of the BSBM sort because it
naturally reconciles evidence of variations in α at redshifts z ∼ 1− 3, with local (z = 0.1) constraints from the Oklo
natural reactor if the universal expansion began to accelerate at z ∼ 0.7, as current observations imply.
Finally, we reiterate that the conclusions drawn above apply only to varying-α theories with negative ζ. The exact

solutions given in eqs. (15),(16),and (23) for the evolution of α(t) during the radiation and dust eras no longer exist
when ζ > 0 and hence N < 0. During the curvature and cosmological constant-dominated eras the evolution of a(t)
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is significantly changed by the variations of ψ and the assumptions (29) and (30) for the scale factor evolution are no
longer valid.
The study performed here provides a simple cosmological model in which the variation of two ’constants’ can be

studied exactly. A number of extensions are possible. The variations of weak and strong couplings can be included
and the constraints imposed by any scheme grand unification can be imposed [21].
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