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Abstract
We construct a local ψ-epistemic hidden-variable model of Bell correlations by a
retrocausal adaptation of the originally superdeterministic model given by Brans. In
our model, for a pair of particles the joint quantum state |ψe(t)〉 as determined by
preparation is epistemic. The model also assigns to the pair of particles a factoris-
able joint quantum state |ψo(t)〉 which is different from the prepared quantum state
|ψe(t)〉 and has an ontic status. The ontic state of a single particle consists of two
parts. First, a single particle ontic quantum state χ(�x, t)|i〉, where χ(�x, t) is a 3-space
wavepacket and |i〉 is a spin eigenstate of the future measurement setting. Second, a
particle position in 3-space �x(t), which evolves via a de Broglie–Bohm type guid-
ance equation with the 3-space wavepacket χ(�x, t) acting as a local pilot wave. The
joint ontic quantum state |ψo(t)〉 fixes the measurement outcomes deterministically
whereas the prepared quantum state |ψe(t)〉 determines the distribution of the |ψo(t)〉’s
over an ensemble. Both |ψo(t)〉 and |ψe(t)〉 evolve via the Schrodinger equation. Our
model exactly reproduces the Bell correlations for any pair of measurement settings.
We also consider ‘non-equilibrium’ extensions of the model with an arbitrary distri-
bution of hidden variables. We show that, in non-equilibrium, the model generally
violates no-signalling constraints while remaining local with respect to both ontology
and interaction between particles. We argue that our model shares some structural
similarities with the modal class of interpretations of quantum mechanics.
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1 Introduction

One of the most important contributions to the long standing debate about the physical
interpretation of Quantum Mechanics (QM) is Bell’s theorem [1], which proved that
any hidden-variable completion of QM as envisaged by EPR [2] must be nonlocal.
It has however often been under-emphasized in the literature that the theorem makes
an important assumption about the relationship between the hidden-variables and the
measurement settings.

The assumption is that the hidden variables describing the quantum systems, and
the measurements that these systems are subjected to in future, are uncorrelated. That
is, the following is assumed about the hidden-variable distribution:

ρ(λ||ψ〉, M) = ρ(λ||ψ〉) (1)

where the hidden-variables are labelled by λ, the preparation by quantum state |ψ〉,
and the observable beingmeasured (or themeasurement basis) byM . This assumption,
often termed as Measurement Independence [3,4] in recent literature, is necessary to
rule out local hidden-variable models of QM via Bell’s theorem. There are atleast two
physically different kinds of hidden-variable models where Measurement Indepen-
dence fails, thereby circumventing the theorem.

Superdeterministic models posit that the hidden variables and the measurement
settings are correlated by common causes in the past. Such models attempt to explain
the Bell correlations by yet another correlation, now at the hidden-variable level—
correlation between the hidden variables which describe the quantum systems and
the hidden variables which determine the measurement settings, due to past common
causes. However, how can we be sure such common causes always exist whenever a
Bell inequality violation is observed, or that such correlations at the hidden-variable
level are exactly of the magnitude to reproduce the Bell correlations at the quantum
level, each time? For such reasons they have been widely criticised in the literature
as ‘conspiratorial’ [5,6], with some important exceptions [7,8]. Recently experiments,
which employ cosmic photons to determine the measurement settings, have been
proposed [9] and conducted [10] which severely constrain these models.

Retrocausal models on the other hand posit that the measurement settings act as a
cause (in the future) to affect the hidden-variable distribution during preparation (in
the past). This is highly counterintuitive to our sense of causality and time, but its
proponents [11–13] claim it is our latter notions that are suspect at the microscopic
level. Both kinds of models have implications for the most important questions in the
interpretation of QM—the reality of the quantum state, and nonlocality, but there are
at present few models of either type in literature. In this article we present a local
retrocausal model of Bell correlations, adapting a model given by Brans [7] in the
1980s, who presented it as an example to argue in favour of superdeterminism. The
Brans model itself has been generalised to arbitrary preparations and measurements
[14], and proven to be maximallyψ-epistemic in any number of dimensions of Hilbert
space [15].

We also consider arbitrary distributions of hidden variables in our model, that do
not reproduce the Bell correlations. Valentini [16,17] has argued that hidden-variable
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models must accommodate non-fine-tuned or ‘non-equilibrium’ distributions which
do not reproduce the QMpredictions. This is because initial conditions do not have the
status of a law in a theory, but are instead contingent. The same conclusion can also
be drawn from the more recent work byWood and Spekkens [18], who have criticised
causal explanations of Bell correlations as being ‘conspiratorial’, in the sense that such
models require a fine tuning in the hidden-variable distribution to be non-signalling.
If we take the concept of a hidden variable model underlying QM seriously, it follows
that QM is a special case of a fine-tuned distribution in the hidden-variable model,
which itself contains amuchwider physics described by non-equilibriumdistributions.
Astrophysical and cosmological tests for the existence of such non-equilibrium distri-
butions have been proposed [19]. We therefore discuss a non-equilibrium extension of
ourmodel, and explore the interplay between locality, retrocausality and no-signalling.

The structure of this paper is as follows. We first take the superdeterministic model
given by Brans and present its equations without invoking any physical interpretation
(superdeterministic or retrocausal or otherwise) of correlation between the hidden
variables and the measurement settings. Then we provide a retrocausal interpretation,
present our model in detail and show how it reproduces the Bell correlations. Next
we consider non-equilibrium extensions of the model, and show that a non-fine-tuned
distribution of hidden variables leads to nonlocal signalling in general. We conclude
by discussing properties of the model and its connection with modal interpretations
of QM.

2 The Brans Model

Consider the standard Bell scenario [20], where two spin-1/2 particles are prepared in
a spin-singlet state and then local measurements σ̂â ⊗ Î and Î ⊗ σ̂b̂ are subsequently
performed on the particles at a spacelike separation.1 Let λ′

i and λ′
j , i, j ∈ {+,−}, be

local hidden-variables describing the two particles, and let their distribution be given
by

p(λ′
i , λ

′
j ||ψsinglet 〉, σ̂â, σ̂b̂) = |〈ψsinglet |(|i〉â ⊗ | j〉b̂)|2 (2)

where |i〉â(b̂) denotes an eigenstate of σ̂â(b̂). The local outcomes are specified by

A(λ′
i ) = i (3)

B(λ′
j ) = j (4)

The model reproduces Bell correlations:

〈σ̂â ⊗ σ̂b̂〉 =
∑

i j

A(λ′
i )B(λ′

j )p(λ
′
i , λ

′
j ||ψsinglet 〉, σ̂â, σ̂b̂) (5)

=
∑

i j

i . j .|〈ψsinglet |(|i〉â ⊗ | j〉b̂)|2 (6)

1 σ̂â(b̂) ≡ σ̂ · â(b̂).
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= |〈ψsinglet |(|+〉â ⊗ |+〉b̂)|2 − |〈ψsinglet |(|+〉â ⊗ |−〉b̂)|2
− |〈ψsinglet |(|−〉â ⊗ |+〉b̂)|2 + |〈ψsinglet |(|−〉â ⊗ |−〉b̂)|2 (7)

The model satisfies locality and determinism, from Eqs. 3 and 4. But it does not
satisfy Measurement Independence from Eq. 2, as the hidden-variable distribution
depends on the measurement settings σ̂â and σ̂b̂.

3 A Retrocausal Interpretation of the Brans Model

We now lend a retrocausal interpretation to the equations of the Brans model. We first
posit that the information about measurement settings made in the future, σ̂â ⊗ Î and
Î ⊗ σ̂b̂, is made available to the particles at the preparation source in the past, by an as
yet not understood ‘retrocausal mechanism’. This causes the particles to be prepared
in one of the eigenstates of the future measurement settings. . That is, the pairs of
particles are prepared in one of these joint spin states: |+〉â ⊗ |+〉b̂, |+〉â ⊗ |−〉b̂,
|−〉â ⊗ |+〉b̂, |−〉â ⊗ |−〉b̂.2

Hence each particle is described in our model by an ontic quantum state of the form
χ(�r , t)|i〉, i ∈ {+,−}, where χ(�r , t) is a single particle 3-space wavepacket and |i〉 is
an eigenstate of the future measurement setting. The pair of particles is described by
the initial joint ontic quantum state 〈�r1|〈�r2|ψo(0)〉 = χ1(�r1, 0)|i1〉â ⊗ χ2(�r2, 0)|i2〉b̂
(see Fig. 1). We term the preparation-determined quantum state 〈�r1|〈�r2|ψe(0)〉 =
χ1(�r1, 0)χ2(�r2, 0)|ψsinglet 〉 as the epistemic quantum state. Both the joint ontic quan-
tum state

(
with two single particle 3-spacewavepacketsχ1(�r1, t) andχ2(�r2, t)

)
and the

epistemic quantum state
(
with a single configuration space wavepacket χ12(�r1, �r2, t)

in general
)
evolve via the Schrodinger equation in our model.

We next posit that each particle has a definite position at all times, with velocity
given by

�v = �∇S(�r , t)
m

(8)

where χ(�r , t) = R(�r , t)ei S(�r ,t) is the 3-space wavepacket of that particle, contained
in the ontic quantum state. The trajectory of the particle (and hence the measurement
outcome) is thus determined locally by the single-particle ontic quantum state. This
completes description of the ontology of our model. We now turn to describe the
distribution of these hidden variables for an ensemble of pairs of particles having the
same epistemic quantum state |ψe(0)〉.

We first assume that the expansion of the preparation-determined (epistemic) quan-
tum state in the future measurement basis

|ψsinglet 〉 = c++|+〉b̂ + c+−|−〉b̂ + c−+|+〉b̂ + c−−|−〉b̂ (9)

2 The role of the preparation-determined quantum state |ψsinglet 〉 in our model is explained below.
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Fig. 1 Schematic illustration of our model. A preparation device P prepares a quantum state
〈�r1|〈�r2|ψe(0)〉 = χ1(�r1, 0)χ2(�r2, 0)|ψsinglet 〉 of the two spin-1/2 particles. The detectors D1 and D2

are set, at the spacetime regions indicated, to measure the observables σ̂â ⊗ Î and Î ⊗ σ̂b̂ respectively.
This information about the measurement settings is made available at P retrocausally, and fixes the ontic
quantum state of the two particles to an eigenstate 〈�r1|〈�r2|ψo(0)〉 = χ1(�r1, 0)|i1〉â ⊗ χ2(�r2, 0)|i2〉b̂ ,
where i1, i2 ∈ {+,−} are chosen randomly. Both |ψe(t)〉 and |ψo(t)〉 evolve via the Schrodinger equa-
tion. The wavepackets χ1(�r1, t) and χ2(�r2, t) act as local pilot waves for the corresponding particles via
Eq. 8. The resulting dynamics deterministically fixes the measurement outcomes for an individual case. The
preparation-determined quantum state |ψe(t)〉 plays a purely statistical role of determining the distribution
of the various ontic quantum states for an ensemble

determines the ensemble-proportions |c++|2, |c+−|2, |c−+|2, |c−−|2 of the ini-
tial joint ontic quantum states χ1(�r1, 0)|+〉â ⊗ χ2(�r2, 0)|+〉b̂, χ1(�r1, 0)|+〉â ⊗
χ2(�r2, 0)|−〉b̂, χ1(�r1, 0)|−〉â⊗χ2(�r2, 0)|+〉b̂, χ1(�r1, 0)|−〉â⊗χ2(�r2, 0)|−〉b̂ respec-
tively. Thus the preparation-determined (epistemic) quantum state plays a purely
statistical role in our model. We will see later that the statistical relationship between
the epistemic and ontic quantum states is preserved with time (see Eqs. 12 and 14).

Our second assumption is about the initial distribution of the positions of par-
ticles. Consider an ensemble of pairs of particles having the same joint ontic
quantum state χ1(�r1, 0)|i1〉â ⊗ χ2(�r2, 0)|i2〉b̂. Let the initial distribution of positions
for this ensemble be denoted by ρi1i2(�r1, �r2, 0). We assume that ρi1i2(�r1, �r2, 0) =
|χ1(�r1, 0)|2|χ2(�r2, 0)|2. Since |ψo(t)〉 evolves via the Schrodinger equation, the cor-
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responding continuity equation3 defines time evolution of the respective ensemble
distribution ρi1i2(�r1, �r2, t). The distribution of positions over all the ensembles at any
time is given by

ρ(�r1, �r2, t) =
∑

i1,i2

|ci1i2 |2ρi1i2(�r1, �r2, t) (10)

Note that: (a) the distribution of the joint ontic quantum states given by Eq. 9 is
identical to the distribution of (λ′

i , λ′
j ) in Eq. 2; and (b) the spin eigenket |i〉 of the

future measurement setting, contained in the ontic quantum state, determines the local
measurement outcome analogous to the hidden variableλ′

i in Eq. 3. This establishes the
connection to the Brans model, which was originally proposed as superdeterministic.

Now let us describe themeasurement process. First, themeasuring apparatus creates
a correlation between the positions of particles and their spins (along the directions
chosen by experimenters). For this stage of the measuring process, we assume an
interaction Hamiltonian ĤI = g( p̂x̂1 ⊗ σ̂â ⊗ Î ⊗ Î + Î ⊗ Î ⊗ p̂x̂2 ⊗ σ̂b̂). Here g is a
constant proportional to the strength of interaction, and p̂x̂1 and p̂x̂2 are the momenta
conjugate to x̂1 and x̂2 respectively.4 The constant g is assumed to be large enough
so that, in the time interval ĤI is acting, the remaining terms in the Hamiltonian can
be ignored, i.e Ĥ ≈ ĤI . Let us first consider the evolution of the epistemic quantum
state |ψe(0)〉:

〈�r1|〈�r2|ψe(t)〉 = 〈�r1|〈�r2|e−i Ĥ t |ψe(0)〉 (11)

= c++χ1(�r1 − gt x̂, 0)χ2(�r2 − gt x̂, 0)|+〉â |+〉b̂
+ c+−χ1(�r1 − gt x̂, 0)χ2(�r2 + gt x̂, 0)|+〉â |−〉b̂
+ c−+χ1(�r1 + gt x̂, 0)χ2(�r2 − gt x̂, 0)|−〉â |+〉b̂
+ c−−χ1(�r1 + gt x̂, 0)χ2(�r2 + gt x̂, 0)|−〉â |−〉b̂ (12)

We see from the above expression that over time the configuration space wavepacket
evolves into four effectively disjoint eigenpackets.

Now consider what happens to an ontic quantum state |ψo(0)〉 = |χ1〉|i1〉â ⊗
|χ2〉|i2〉b̂. From the Schrodinger equation, using the same interaction Hamiltonian we
find

〈�r1|〈�r2|ψo(t)〉 = 〈�r1|〈�r2|e−i Ĥ t |ψo(0)〉 (13)

= χ1(�r1 − i1gt x̂, 0)|i1〉â ⊗ χ2(�r2 − i2gt x̂, 0)|i2〉b̂ (14)

We see that the joint ontic quantum state remains factorisable at all times, and that
the single-particle wavepackets χ1(�r1, t) and χ2(�r2, t) separate in physical space in a
3 The Schrodinger equation −∇2ψ

2m + V (�x)ψ = i ∂ψ
∂t implies the continuity equation �∇ · (|ψ |2 �∇S

m ) +
∂|ψ |2

∂t = 0 where ψ(�x, t) = R(�x, t)ei S(�x,t). Here �x represents a point in, and �∇ is acting on, the configu-
ration space.
4 Here �r1 ≡ x1 x̂ + y1 ŷ + z1 ẑ and �r2 ≡ x2 x̂ + y2 ŷ + z2 ẑ, where x̂, ŷ, ẑ are unit vectors along x , y and z
axes respectively.
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manner that depends on the ontic spin states |i1〉â and |i2〉b̂ respectively. Further, since
the single-particlewavepackets act as pilot waves for the corresponding particles (from
Eq. 8), the particle trajectories also separate in physical space. From Eqs. 12 and 14,
we note that, as expected, |ψe(t)〉 continues to describe an ensemble distribution of
various |ψo(t)〉’s over time. The ensemble distribution |ci1i2 |2 of ontic quantum states
remains constant throughout since |〈ψo(0)|ψe(0)〉|2 = |〈ψo(t)|ψe(t)〉|2.

After the wavepackets corresponding to different spin eigenvalues have sufficiently
separated from each other, the positions of the particles are measured. This is usually
in the form of a photographic plate on which the particles impinge after the interaction
Hamiltonian has been turned off. Since, for a particular joint ontic quantum state,
the distribution of positions is given by ρi1i2(�r1, �r2, t) = |χ1(�r1 − i1gt x̂, 0)|2|χ2(�r2 −
i2gt x̂, 0)|2, each particle impinges on the plate in the appropriate region, which allows
us to discern which wavepacket it belonged to and hence its spin. The probability of
obtaining a particular pair of results {i1, i2} is equal to the probability of having a
particular joint ontic quantum state in the ensemble of pairs of particles. The latter
probability equals |ci1i2 |2, and the Bell correlations are thus exactly reproduced.

4 Effective Nonlocal Signalling in Non-equilibrium

The discussion up till now has assumed a particular initial distribution of hidden vari-
ables that exactly reproduces theBell correlations.Wenowdiscuss a ‘non-equilibrium’
extensionof ourmodel having an arbitrary distributionof hiddenvariables. Thedynam-
ics of the model is kept unchanged: the joint ontic quantum state and the epistemic
quantum state evolve via the Schrodinger equation, and the position of each particle
is guided locally by its corresponding 3-space wavepacket just as before.

Our model has two distinct hidden-variable distributions—the distribution of posi-
tions of particles in 3-space, and the distribution of ontic quantum states.We separately
consider non-equilibrium for these two distributions.

4.1 Non-equilibrium for the Distribution of Positions

Suppose the initial distributions of positions are given by arbitrary ρi1i2(�r1, �r2, 0),
i1, i2 ∈ {+,−}, instead of |χ1(�r1, 0)|2|χ2(�r2, 0)|2, while the distribution of ontic
quantum states remains in equilibrium. The position distributions evolve via the equa-
tion

∂ρi1i2(�r1, �r2, t)
∂t

+ �∇ ·
(

ρi1i2(�r1, �r2, t)
�∇Si1i2
m

1

)
= 0 (15)

where the density |χ1(�r1 − i1gt x̂, 0)|2|χ2(�r2 − i2gt x̂, 0)|2 has been replaced by
ρi1i2(�r1, �r2, t) in the continuity equation. It is clear that, as long as the interaction
Hamiltonian acts for a sufficient period of time, the trajectories of particles belonging
to different ontic quantum states will separate, regardless of the initial distribution
of position. Thus the final positions where the particles strike the photographic plate
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will continue to yield unambiguous measurement results. Since the distribution of
measurement outcomes is fixed by the distribution of ontic quantum states, the out-
come probabilities remain unchanged. Hence a violation of no-signalling predicated
on outcome probabilities is ruled out. However, as we show below, the local (marginal)
position distribution,which determines the shapes of spots formed on the photographic
plate over time at one wing, will depend on the measurement setting at the other wing.
Thus, no-signalling predicated on position probabilities will still be violated.5,6

Consider for instance the shapes of spots on the photographic plate corresponding
to the local outcomes |+〉â and |−〉â . These will be determined by the local distribution
of position of the first particle over all ensembles. From Eq. 10

ρ(�r1, t) ≡
∫

d�r2 ρ(�r1, �r2, t) =
∑

i1,i2

|ci1i2 |2
∫

d�r2 ρi1i2(�r1, �r2, t)

≡
∑

i1,i2

|ci1i2 |2ρi1i2(�r1, t) (16)

For the singlet state, we know that

|c++|2 = |c−−|2 = 1 − â · b̂
4

|c+−|2 = |c−+|2 = 1 + â · b̂
4

(17)

Plugging in the values in Eq. 16, we find

ρ(�r1, t) = 1 − â · b̂
4

ρ++(�r1, t) + 1 + â · b̂
4

ρ+−(�r1, t)

+ 1 + â · b̂
4

ρ−+(�r1, t) + 1 − â · b̂
4

ρ−−(�r1, t) (18)

We know that, in the case of the equilibrium distribution

ρ(�r1, t) = |χ1(�r1 − gt x̂, 0)|2 + |χ1(�r1 + gt x̂, 0)|2
2

(19)

so that the shape of the spot corresponding to |+〉â is given by |χ1(�r1 − gt x̂, 0)|2,
and that corresponding to |−〉â is given by |χ1(�r1 + gt x̂, 0)|2. Both the shapes are
independent of the measurement settings. But if ρi1i2(�r1, t) are arbitrary, then it is

5 In general, no-signalling is violated if the local probability of an event A depends non-trivially on an
event B which is space-like separated from the event A, i.e p(A|B) �= p(A|B′).
6 Since measurement outcomes are inferred from position measurements, it is logically impossible to have
signalling in the outcome distribution without signalling in the position distribution. If there is signalling
in the position distribution without signalling in the outcome distribution, only the shapes of spots at one
wing can have a non-trivial dependence on the measurement setting at the other wing.
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clear from Eq. 18 that the local position distribution ρ(�r1, t) will depend on the mea-
surement setting chosen at the other wing of the experiment. Given that the outcome
distribution has no such dependence, we conclude that the shapes of spots formed on
the photographic plate will be influenced by the measurements setting at the other
wing. This will constitute a signal from one wing of the experiment to the other.

4.2 Non-equilibrium for the Distribution of Ontic Quantum States

Let us now consider the case of a non-equilibrium distribution of only the ontic
quantum states. The equilibrium distribution is given by the modulus squared of the
coefficients ci1i2 , i1, i2 ∈ {+,−}, in Eq. 9. Consider a non-equilibrium distribution
defined by a different set of coefficients c′

i1i2
having the following relationship with

the equilibrium distribution

|c′++|2 = |c++|2 + |c−−|2
3

|c′+−|2 = |c+−|2 + |c−−|2
3

|c′−+|2 = |c−+|2

|c′−−|2 = |c−−|2
3

(20)

Since, as noted in the previous section, the equilibrium distribution |ci1i2 |2 is time-
independent, the non-equilibrium distribution |c′

i1i2
|2 as defined above is also time-

independent.7 Now consider the local probability of getting a |+〉â outcome. This will

be equal to |c′++|2 + |c′+−|2 = |c++|2 + |c+−|2 + 2× |c−−|2
3 . Using Eq. 17, this turns

out to be 4−â·b̂
6 . The expression depends on the measurement setting at the other wing

b̂, violating the no-signalling constraints predicated on outcome probabilities.
Will the shapes of spots formed on the photographic plate at one wing also depend

on the measurement setting at other wing? Replacing |ci1i2 |2 by |c′
i1i2

|2 in Eq. 10 and
using Eqs. 17 and 20, the marginal distribution of the position of the first particle turns
out to be

ρ(�r1, t) = 4 − â · b̂
6

|χ1(�r1 − gt x̂)|2 + 2 + â · b̂
6

|χ1(�r1 + gt x̂)|2 (21)

which indicates that the shape of the spot corresponding to |+〉â is given by |χ1(�r1 −
gt x̂, 0)|2, while that corresponding to |−〉â is given by |χ1(�r1 + gt x̂, 0)|2. Both the
shapes are independent of the measurement settings (only the relative proportion of
outcomes depends on themeasurement settings). Thus, in the case of a non-equilibrium

7 We do not concern ourselves here with the question of a relaxation mechanism to the equilibrium distri-
bution. We also note that perhaps ‘equilibrium’ might not be the best term for many retrocausal models,
because it incorporates a notion of an arrow of time in the word itself. For a complete discussion of quantum
equilibrium, please refer to the references given in the Introduction.
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Fig. 2 Schematic illustration of ‘effective nonlocal signalling’ in non-equilibrium. The red lines in the figure
indicate the flow of information from D2 to D1. The measurement setting Î ⊗ σ̂b̂ made in the space-time
region indicated by D2 retrocausally influences the distribution of hidden variables at preparation source
P. This distribution in turn influences the local probabilities at D1 (in non-equilibrium). Though the signal
is nonlocal, the underlying dynamics is local (Color figure online)

distribution of the ontic quantum states, there is no effect on the shapes of spots formed
on the photographic plate.

The nonlocal transfer of information, in either case of non-equilibrium, is achieved
by a Lorentz-covariant local dynamics. The measurement setting σ̂b̂ retrocausally
influences the distribution of positions (ontic quantum states) at the time of preparation,
and this in turn influences the local position probabilities (local outcome probabilities)
at the other wing, at a space-like separated point, via a ‘zigzag’ path in space-time not
exceeding the speed of light (see Fig. 2). Since the local probabilities depend on an
event that is space-like separated, we may term it as ‘effective nonlocal signalling’.

5 Discussion and Conclusion

Each particle in our model has an ontology consisting of position in 3-space and an
ontic quantum state. It might at first appear that position is not necessary as a hidden
variable, since the ontic quantum state already has a spin eigenket which determines
themeasurement outcome. But without including position in the ontology, there would
be no way to account for the final spot on the photographic plate without a collapse
of the 3-space wavepacket (in this model).
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It might also be mistakenly thought that the model isψ-ontic since there is an ontic
quantum state |ψo(t)〉 in the hidden-variable description. But this state must be distin-
guished from the preparation-determined (epistemic) quantum state |ψe(t)〉. The set
of possible |ψo(t)〉’s in an experiment is determined only by the future measurement
settings. It is only in the ensemble distribution of different |ψo(t)〉’s that |ψe(t)〉 plays
a role in our model. This can be readily seen if we prepare two different epistemic
quantum states (say a singlet state |ψe(0)〉singlet and a triplet state |ψe(0)〉tr i plet ) and
subject both to the sameBellmeasurement. The set of possible |ψo(0)〉′s will be identi-
cal, reflecting overlap in the hidden-variable space of |ψe(0)〉singlet and |ψe(0)〉tr i plet .
In other words, given knowledge of the hidden variable |ψo(0)〉, it will be impos-
sible to determine which preparation-determined quantum state it belongs to. Thus
our model is by definition ψ-epistemic [21,22]. Further, our ontic quantum state is
always factorisable and contains 3-space wavepackets for the two particles, whereas
the preparation-determined quantum state is entangled and contains a configuration
space wavepacket in general.

We have discussed the signalling properties of our model given a non-equilibrium
distribution of the hidden variables. If only the distribution of the positions of particles
is in non-equilibrium, the local position probabilities at one wing depend on the mea-
surement setting at the other wing, but the local outcome probabilities are unaffected.
This leads to the following effect: the shapes of spots formed on the photographic plate
at onewing are influenced by themeasurement setting at the otherwing. If instead, only
the distribution of the ontic quantum states is in non-equilibrium, the local outcome
probabilities at one wing depend on the measurement setting at the other wing, but the
shapes of the spots are unaffected. Hence, non-equilibrium in each hidden variable
distribution causes no-signalling to be violated in a different way. Since the dynam-
ics of the model is local throughout, we conclude that retrocausality may provide a
means for such violations while retaining Lorentz covariance at the hidden variable
level. From our viewpoint this is an attractive positive feature of retrocausal hidden-
variable models which suggests a solution to the problem of fine-tuning pointed out
by Wood and Spekkens [18]. Unlike other authors [23,24] who have appealed to the
symmetries in retrocausal models in order to justify the fine-tuning, we believe that
a more straightforward answer can be given by rejecting fine-tuning as an inevitable
feature of retrocausal models and no-signalling as a fundamental feature of Nature.
Then the task ahead would be two-fold. First, to give an explanation why the quantum
systems accessible to us have the equilibrium no-signalling distribution of hidden vari-
ables instead of an arbitrary signalling distribution. Such an explanation can be either
dynamical, in which case the emergence over time of the no-signalling equilibrium
distribution from an arbitrary signalling distribution will have to be shown, or it can be
all-at-once [25], in which case the emergence of no-signalling equilibrium distribution
will have to be shown as a consequence of boundary conditions both in the past and
the future. Second, to address the apparent paradoxes involving retrocausal signalling
possible for a non-equilibrium distribution.

Our model has a connection to the modal class of interpretations of QM [26]. These
describe a quantum system by two states, a dynamical state and a value state. The
dynamical state determines which physical properties the quantum system may pos-
sess, while the value state determines which physical properties the system actually
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possesses, at a certain instant. The dynamical state is identified as the usual quantum
state in Hilbert space, but the definition of the value state depends on the particular
modal interpretation. The dynamical state evolves via the Schrodinger equation, while
the value state usually has amore complicated evolution law.We see that ourmodel fits
into the category of a ‘modal interpretation of Bell correlations’ butwith retrocausality.
The state |ψe(t)〉 is the dynamical state as in other modal interpretations. We identify(�r1(t), �r2(t), |ψo(t)〉

)
as the value state for our model. Analogous to modal interpreta-

tions, our value state determines which physical properties are actually possessed by
the quantum system of two spin-1/2 particles subjected to Bell measurements. These
are the positions of particles in 3-space �r1(t) and �r2(t), the 3-space ontic wavepack-
ets χ1(�r1, t) and χ2(�r2, t), and the ontic spin eigenstates of the future measurement
settings |i1〉â and |i2〉b̂. The positions evolve via Eq. 8, whereas the joint ontic quan-
tum state evolves via the Schrodinger equation. The dynamical state determines the
probability of a particular value state via Eqs. 9 and 10 (in equilibrium). It can be
asked if, like modal interpretations, our model treats the measurement process as an
ordinary physical interaction. This can be answered only if the retrocausal mechanism
alluded to in Sect. 3, by which information about future measurement settings is made
available retrocausally at the preparation source, is defined in physical terms rather
than assumed in an ad hoc manner as done presently.

The present work can be compared to some previous attempts in the literature
to introduce wavefunctions in physical space. Sutherland [27] developed a local
retrocausal de Broglie–Bohm type model which, under some conditions on the con-
figuration space wavefunction at a future time, assigns a 3-space wavefunction to each
particle in the past. However, the probability density for position is not non-negative
in that model. Norsen et al. [28,29] use conditional de Broglie–Bohm wavefunctions,
which can be argued to represent wavefunctions in physical space, to develop two
models for spinless particles. One of these requires a highly redundant ontic space
in order to reproduce QM predictions. The other has a reduced ontological complex-
ity at the cost of reproducing QM predictions only approximately. Both models have
nonlocal interactions between the particles. Gondran et al. [30] develop a nonlocal
model for Bell correlations which attributes a 3-space wavefunction to each particle,
but the full quantum state is part of the hidden-variable description (hence the model
is ψ-ontic). In contrast, the model we have presented does not suffer from negative
probabilities, exactly reproduces the QM predictions without a high ontological com-
plexity, is local as regards ontology and interactions between particles, and has a clean
ontological separation between the single particle ontic quantum states with 3-space
wavepackets and the epistemic preparation-determined quantum state with configu-
ration space wavepackets.8 However, the model as currently presented is restricted to
Bell correlations, and the retrocausality is assumed in an ad hoc manner.
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