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Abstract. We examine the time reversal symmetry of quantum measurement sequences by introducing a forward and backward
Janus sequence of measurements. If the forward sequence of measurements creates a sequence of quantum states in time, start-
ing from an initial state and ending in a final state, then the backward sequence begins with the time-reversed final state, exactly
retraces the intermediate states, and ends with the time-reversed initial state. We prove that such a sequence can always be con-
structed, showing that unless the measurements are ideal projections, it is impossible to tell if a given sequence of measurements is
progressing forward or backward in time. A statistical arrow of time emerges only because typically the forward sequence is more
probable than the backward sequence.

INTRODUCTION

The question of the arrow of time is fundamental to many areas of theoretical physics [1, 2, 3]. Any possibility of
retrocausality must first confront the question of the seeming irreversibility of quantum measurement. The collapse
of the wavefunction gives an arrow of time to quantum physics, and an outstanding question is whether this is a
fundamental arrow of time or not. In this conference proceeding, we will show that even with quantum measurements
included in the analysis, the quantum state dynamics may still be time-reversal invariant, provided the measurements
are not ideal projections.

In classical physics, it is well known that the dynamical laws are time-reversal invariant. Any collection of
particles, described with their position and momentum coordinates {xi, pi}, has a dynamics that can be time-reversed
(in the absence of friction) simply by reversing the momentum of each particle. This transformation gives rise to a fully
legitimate forward dynamical evolution that corresponds to the time-reversed dynamics. This is most easily visualized
by considering a movie of - for example - the opening break of a game of pool, where the cue ball disperses the rest of
the pool balls around the table (Fig. 1). By playing the movie backwards (effectively reversing the momentum of each
ball while keeping the position the same), the balls converge together, coming to a stop in their triangular shape, and
jettisoning the cue ball out with high velocity. This example both illustrates the valid time-reversal of the equations of
motion, as well as the “statistical arrow of time”: we can infer the arrow of time because of the statistical likelihood
that the system will progress from ordered to disordered.

It is also the case in quantum mechanics that a closed quantum system is time reversible. By applying an anti-
unitary time reversal operator to the quantum state, further forward propagation results in the time-reversed dynamics
[4]. One exception to this is if there is an external magnetic field - in that case, the sign of the field must also be
reversed as in classical physics. However, the introduction of quantum measurement is generally thought to break the
time-symmetry of the system. Quantum measurement introduces wavefunction collapse that is irreversible, thus giving
a clear time-arrow. However, it was shown that in the case where measurements are generalized to POVMs, that such
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FIGURE 1. In classical physics, the dynamics is time-reversal invariant. The starting break of a game of pool (left-to-right) results
in a disordered arrangement of pool balls. However, if we time reverse the momenta of the balls, then the dynamics (in the absence
of friction) will reverse itself (right-to-left). Therefore the dynamics of the system along cannot distinguish the arrow of time. Only
a likelihood argument (it is more likely that the dynamics is from left-to-right, or greater to lesser order) enables the inference of
the statistical arrow of time. We note that the initial condition is the special one.

a measurement may be stochastically reversed, unless the measurement is a perfect projection operator [5, 6]. This
suggests that for any physical measurement process, a dynamical time symmetry may be restored. Indeed, we will
show in the remainder of this article that is the case. Other approaches to restoring time symmetry rely on imposing
boundary conditions on the quantum state, such as Aharonov, Bergmann, and Lebowitz’s “two-time formalism” [7].
We note that the phenomenon of “wavefunction uncollapse” by a reversing measurement has strong experimental
support [8, 9, 10].

TIME REVERSAL SYMMETRY FOR JANUS MEASUREMENT SEQUENCES

We now show how it is possible to restore time reversal symmetry for a time sequence of generalized measurements.
We begin with a systematic treatment of the time reversal operation. We introduce the anti-unitary time-reversal
operator Θ that operationally reverses the direction of time [11]. The anti-unitary action of the operator gives the
correct time-reversed actions on familiar operators such as position, ΘxΘ−1 = x, momentum ΘpΘ−1 = −p, and spin
ΘSΘ−1 = −S. We consider dynamics whose system Hamiltonian is time-reversal invariant, ΘHΘ−1 = H.1 When
applied to the quantum state |ψ(t)〉, the time-reversal operator Θ, together with forward evolution, will “rewind” the
dynamics back to Θ|ψ(0)〉. In the case of position-space wavefunctions, the time-reversal operator is just the complex
conjugate.

We now consider the possibility of extending this arrangement to include time sequences of generalized mea-
surements in addition to unitary dynamics. To do so, consider two such time sequences, named the forward Janus
sequence and the backward Janus sequence, for reasons that will become clear. The forward Janus sequence is a
series of measurements in time, A, B,C, . . ., with possible measurement results a, b, c, . . ., with unitary evolution in-
cluded in the generalized measurements. Here, the discussion is quite general, so the measurement results may be
discrete or continuous variables. We illustrate the forward and backward Janus sequences in Fig. 2. Let us consider an
initial state |Ψ〉, so each generalized measurement creates an effect on the quantum system, described by a sequence
of measurement operators (or Kraus operators), MA

a ,M
B
b ,M

C
c , . . ., such that the final state |Φ〉 is proportional to

|Φ〉 ∝ . . .MC
c MB

b MA
a |Ψ〉. (1)

We now introduce the backwards Janus sequence, which is another series of (in general) different measurements
. . . ,C′, B′, A′ applied sequentially to the system in “initial” state Θ|Φ〉, but in the reverse order. Let the results of said
measurements be . . . , c′, b′, a′, such that for some possible measurements m = A, B,C, . . . ; m′ = . . . ,C′, B′, A′ with
results j = a, b, c, . . . ; j′ = . . . , c′, b′, a′ of both sequences, the system state rewinds its path, and is restored to its
initial (time-reversed) state:

MA′
a′ MB′

b′ MC′
c′ . . .Θ|Φ〉 ∝ Θ|Ψ〉. (2)
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FIGURE 2. The forward and backward Janus sequences: Starting from an initial state, a forward Janus sequence of generalized
measurements A, B,C, . . . creates a time-sequence of quantum states, ending with a final state. A backward Janus sequence starts
with the final states, and applies a generalized measurement sequence . . . ,C′, B′, A′ to “rewind” the movie. The state now starts in
the previous final state, and a sequence of measurements creates the time-reversed sequence of state disturbances.

We can find the condition for this to happen by inserting 1 = Θ−1Θ between every pair of operators, to find in addition
to the usual time-reversal invariance of the Hamiltonian, the condition

Mm′
j′ ∝ (ΘMm

j Θ
−1)−1. (3)

That is, each measurement operator of the backward Janus sequence must be proportional to the inverse time-reversed
measurement operator of the forward Janus sequence. This condition may be understood as an application of quantum
measurement uncollapse.

We now prove that we can always construct such a measurement operator from another POVM set. If Mm
j is

the forward measurement operator, then Mm′
j′ =

√
cm

j Θ
(
Mm

j

)−1
Θ−1 is a possible backward operator, where cm

j is

an undetermined proportionality constant. Let us decompose the operator into a unitary part and a non-unitary part,

Mm
j = Um

j

√
Em

j . The unitary part can always be time-reversed in the usual way, so we focus on the non-unitary part.

The inverse of the operator
√

Em
j cannot be a physical operation in general because the eigenvalues of Em

j , named λm
j ,

are less than or equal to 1. This must be so to satisfy the POVM relation
∑

j Em
j = 1, where we sum over all possible

results of measurement m, and guarantee that the probability of measuring the particular result j (given by TrρEm
j )

is a true probability. The inverse operation will therefore have eigenvalues (λm
j )−1 ≥ 1, which cannot correspond

to a valid POVM. We can fix this by adjusting the proportionality constant cm
j , so the inverse POVM elements are

given by Fm′
j′ = cm

j (Em
j )−1, where cm

j is chosen so that the new POVM elements satisfy
∑

j′ Fm′
j′ = 1, where we sum

over all possible results of measurement m′, and every eigenvalue of Fm′
j′ lies between 0 and 1. In particular, the last

constraint demands that cm
j /min j λ

m
j ≤ 1, which bounds cm

j . The bound on cm
j also bounds the probability of reversing

the measurement [6]. This proves that it is always possible to construct another POVM element which corresponds
to the inverse of the first POVM element. While there are an infinite number of choices for the inverse operation, we
give here a 2-outcome POVM example, defined by the elements {Fm′

a , F
m′
b } at sequence step m′. The first element, Fa,

optimally satisfies our requirements above, Fm′
a = (min j λ

m
j )(Em

j )−1, while the second element, Fm′
b , completes the set,

Fm′
b = 1− (min j λ

m
j )(Em

j )−1. The measurement operators Mm′
j′ are given by the square root of the two POVM elements,

times the appropriate adjoint unitaries to reverse Um
j .

As alluded to above, there is no guarantee that such sequences will happen; however, what is important for our
argument, is that such a pair of sequences is possible. For such pairs of sequences, the time reversal symmetry is
restored for the system’s quantum state. Now consider a game, where a given sequence of measurements with their
results is presented to us, together with a movie of the dynamics of the quantum state. We are not told if the sequence of
measurements is (A, B,C, . . .), corresponding to the forward movie, or is instead (. . . ,C′, B′, A′), corresponding to the
backward movie. We must then guess whether the movie is running backward or forward in time, based on the results
of the measurements. There is no way to tell for certain, since either sequence of forward or backward measurement
results is very unlikely for a long sequence of measurements, and each step in the quantum state movie, in either
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direction, corresponds to a possible forward evolution. In absence of special constraints (such as postselection), we
can still statistically discern an arrow of time, by finding which sequence is more probable, relative to the other
sequence, in close analogy to arguments in statistical mechanics. Define the collective forward Janus measurement
operator as MF = · · ·MC

c MB
b MA

a , and the collective backward Janus measurement operator as MB = MA′
a′ MB′

b′ MC′
c′ · · ·,

where the product is reversed in time. The probability of all of the measurement results, given (known) forward or
reverse Janus sequences is PF(a, b, c, . . .) = ‖MF |Ψ〉‖2, or PB(. . . , c′, b′, a′) = ‖MBΘ|Φ〉‖2. We can now use these as
likelihood functions to test the two hypotheses (forward or backward), given only the measurement results. The ratio
of the likelihood functions, R = PF/PB for a given sequence will serve as our arrow of time estimator. We note that
if the number of outcomes of the forward and backward measurements is the same (the same type of measurement),
then on average, the forward sequence will be more probable than the backward sequence. However, if the forward
sequence is composed of many-outcome measurements, then we can construct (for example) a two-outcome backward
sequence that will be more probable on average.

CONTINUOUS TIME SYMMETRY

For the special case of observables with only two eigenvalues, we can readily construct such a Janus sequence for
the diffusive continuous measurement case. To see why this is so, we consider the combination of unitary dynamics
followed by partial measurement collapse, such that a density operator ρ changes after a time-step δt (up to nor-

malization) as ρ → MrUρU†M†r , where U is a unitary operator, and Mr is a measurement operator indexed by a
suitably normalized result r that we take to be a continuous variable. For a diffusive measurement to have a sensible

continuum limit, it must come from a valid Gaussian POVM Er = M†r Mr ∝ exp(−δt(r − Ah)2/2τ), where Ah is the
Hermitian observable being monitored, and τ is a characteristic measurement timescale (inverse strength). In this limit
as δt → 0, a succession of independent Gaussian timesteps then produces a readout r(t) that is a stochastic process
r(t) = Āh(t) +

√
τ ξ(t), where Āh = Tr[ρAh] is the moving average of Ah.

In the same continuum limit, the unitary dynamics may be written to first order as U ≈ 1 − iδtH/�, where H
is the Hamiltonian. The Gaussian POVM Er = M†r Mr naturally factors as Mr ∝ exp(iδt rAah/2τ − δt(r − Ah)2/4τ),
where iAah is an anti-Hermitian operator that describes additional phase backaction. To first order this yields Mr ∝
1 + δt(r/2τ)A + δtA2

h/4τ, where A ≡ Ah + iAah contains both Hermitian and anti-Hermitian parts. The r-independent

term with A2
h is not simply reversible while retaining the record r; however, this term may be easily reversed by a

Gaussian POVM for any observable whose square is a constant c2 (implying Ah has eigenvalues of only ±c). As such,
in what follows we will assume the form A = α ·σ of an effective qubit with Pauli matrix vector σ, so Ah = Re(α) ·σ
and Aah = Im(α) ·σ. Similarly, we assume a general qubit Hamiltonian H = �Ω ·σ/2. These considerations then lead
to a (Markovian) stochastic differential equation for the normalized qubit state ρ

dρ
dt
=

1

i�
[H, ρ] +

r
τ

[
Aρ + ρA†

2
− Tr

[
A + A†

2
ρ

]
ρ

]
, (4)

expressed in the time-symmetric (Stratonovich) picture [12, 13] where dρ/dt ≡ limδt→0[ρ(t + δt) − ρ(t − δt)]/2δt.
We now examine the requirements for time-reversal symmetry of Eq. (4). The time reversed solution, ρ̃(t) =

Θρ(T − t)Θ−1, must satisfy the same equation of motion (4). Direct calculation indicates that is true, provided we
transform to (time-reversed) operators, H̃ = ΘHΘ−1, and r̃(t)Ã = −r(T − t)ΘAΘ−1. This transformation is a special
case of our general Janus criterion (3). On physical grounds for a spin, we take the Pauli matrix vector to flip sign
under time reversal, ΘσΘ−1 = −σ, but it is straightforward to generalize this to flip the sign of only one of the Pauli
matricies for a general pseudo-spin [15]. The full inversion gives the time-reversed quantities, Ω̃ · σ̃ = −Ω · σ, and
α̃ · σ̃ = −α∗ ·σ. We can define time reversed quantities in one of two ways. The first is an active transformation, which
keeps the reference frame the same (σ̃ = σ), and the second is a passive transformation, which inverts the reference
frame into a left-handed system, (σ̃ = −σ), thus changing the commutator structure. The active transformation (a)
dictates the mappings, r̃a(t) = r(T − t), Ω̃a = −Ω (analogous to inverting an external magnetic field), and α̃a = −α∗
(measuring the negated observable and reversing phase backaction), together with an inversion of the components of
the Bloch coordinates, x̃a(t) = −x(T − t), ỹa(t) = −y(T − t), z̃a(t) = −z(T − t), which actively flips the spin. On the
other hand, the passive transformation (p) inverts the sign of the measurement readout, r̃p(t) = −r(T − t), keeps the
energy definitions the same Ω̃p = Ω, and measures the same observable with reversed phase backaction, α̃p = α

∗,
while preserving the coordinates in this frame, x̃p(t) = x(T − t), ỹp(t) = y(T − t), z̃p(t) = z(T − t). We give an illustration
of the passive time-reversal transformation in Fig. 3, for the case where A = σz, so the observable is Hermitian, and
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FIGURE 3. (After Ref. [14]). Example of time-reversal invariance for continuous qubit measurements: Red corresponds to positive
values of the x Bloch sphere coordinate; blue corresponds to negative values of x. Is the movie being shown forward in time with
continuous measurement result r(t), or backward in time with flipped measurement result r̃(t)? In the quantum measurement
example, it is the final state of (forward) measurement sequence that is the statistically “special” boundary state.

H = �Ωσy/2, which drives Rabi oscillations in the x− z plane of the Bloch sphere. In this case, the Bloch coordinates
are invariant, while the measurement record flips sign under the time-reversal transformation.

CONCLUSIONS

We have demonstrated that it is possible to restore time reversal symmetry to a sequence of quantum operations
that includes unitary operations, as well as generalized measurements. For any given sequence of such measurements,
called the forward Janus sequence, we can construct another sequence of measurements, the backward Janus sequence,
where the quantum state dynamics is time-reversed. It then follows that we cannot know for certain whether a given
temporal sequence of measurements is progressing forward in time, or backward in time. However, based on the
relative likelihood of observing one sequence or the other, we may infer a statistical arrow of time: the sequence
which is the most likely defines our best estimate of the arrow of time. Continuous measurements have been given
as an illustration of this time reversal invariance for the especially simple qubit measurement case, where the time-
reversed measurement has the same form as the forward measurement, but with an inverted measurement result.
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