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Neocortex–Cerebellum Circuits for Cognitive
Processing
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Highlights
Classic studies have mainly focused

on sensorimotor information trans-

mitted through the two cerebellar

input pathways, granule cells and

climbing fibers. Recent in-

vestigations indicate that the cere-

bellum receives diverse reward

expectation-related information via

granule cells, and reward predic-

tion error signals via climbing fi-

bers. The cerebellum may in turn

reciprocally influence brain-wide

reward circuitry via output path-

ways from the cerebellar nuclei.

Prevailing theories of cerebellar

function posit that the granule cell

layer generates a dimensionally

expanded representation of its

mossy fiber inputs. Recent obser-

vations in multiple contexts and

species indicate that granule cells

may perform a richer set of func-

tions, including the faithful trans-

mission of neocortical neuronal

dynamics to the cerebellar circuit.

Similarly, classical views of climbing

fibers as reporting movement er-

rors have broadened to incorpo-

rate instructive signals that might

drivemore flexible and varied types

of reinforcement learning.

Recent experiments also identified

a critical role for cerebellar output

in sustaining cortical preparative
Although classically thought of as a motor circuit, the cerebellum is now understood to

contribute to a wide variety of cognitive functions through its dense interconnections with the

neocortex, the center of brain cognition. Recent investigations have shed light on the nature

of cerebellar cognitive processing and information exchange with the neocortex. We review

findings that demonstrate widespread reward-related cognitive input to the cerebellum, as

well as new studies that have characterized the codependence of processing in the neocortex

and cerebellum. Together, these data support a view of the neocortex–cerebellum circuit as a

joint dynamic system both in classical sensorimotor contexts and reward-related, cognitive pro-

cessing. These studies have also expanded classical theory on the computations performed by

the cerebellar circuit.

Cerebellum and Cognitive Function

The cerebellum was traditionally thought to contribute mainly to motor coordination [1–4]. However,

more precise behavioral assays and a finer-grained parcellation of cerebellar functional domains have

suggested that a large part of the cerebellum likely contributes to primarily cognitive functions [5,6].

Evidence has implicated the cerebellum in cognitive abilities ranging from spatial reasoning to lan-

guage and working memory [7–10], and in cognitive disorders as varied as autism and schizophrenia

[11–14]. However, the neural representations of cognitive information within the cerebellum, and the

exchange of that information with the rest of the brain, have remained little understood.

The most likely route for cerebellar contribution to cognition is via interactions with the neocortex.

The cerebellum and cerebral cortex have jointly expanded over mammalian evolution, and together

account for �99% of neurons in the human brain [15–19]. Moreover, dense reciprocal pathways con-

nect most regions of the cerebellum and nearly all the neocortex through recurrent communication

loops [20–24]. Fully discerning the role of the cerebellum in brain function requires understanding

both the types of cognitive signals that are processed in the cerebellum, as well as how the cere-

bellum and neocortex exchange such information.

Recent technical advances that allow collection of new classes of cerebellar physiology data have

shed new light on both of these topics. Here, we review recent in vivo cerebellar physiology studies

demonstrating that a widespread cognitive signal that is processed in the cerebellum is information

related to the expectation of reward. We then discuss new investigations of the codependence of

neural dynamics in the neocortex and the cerebellum. Finally, we outline several potential implica-

tions of these findings for theories of cerebellar contributions to brain function.
activity that underlies cognitive and

working memory processes. Thus,

the neocortex–cerebellum circuit

can be conceptualized as a joint

dynamic system performing both

sensorimotor functions, as tradi-

tionally assigned to the cere-

bellum, and reward-related,

cognitive processing.
Cerebellar Signaling of Reward Expectation

The cerebellum receives input from two pathways. Cerebellar granule cells, which comprise most of

the neurons in the mammalian brain [18], receive mossy fiber inputs that arise from throughout the

brain and spinal cord via several brainstem and pontine nuclei [25–27]. Cerebellar Purkinje cells –

the principal neurons of the cerebellar cortex and postsynaptic targets of granule cells – directly

receive the other primary input to the cerebellum, the climbing fibers, which are axons of neurons

in the inferior olive [26] (Figure 1A,B). Each Purkinje cell receives �100 000 granule cell inputs but

only a single climbing fiber input [28], which is thought to instruct the Purkinje cell as to which granule

cell inputs are most important in a given behavioral context [29]. Purkinje cell axons innervate the

cerebellar nuclei, which in turn transmit cerebellar output to diverse brain regions (Figure 1B). In addi-

tion, the cerebellum exhibits gross functional organization, with some cerebellar regions (notably
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Figure 1. Cerebellar Circuits and Reward Signals.

(A) Cerebellar cortex microcircuit. Input arrives via the mossy fiber pathway from nuclei in the pons, medulla, and

spinal cord, as well as via the climbing fiber pathway from the inferior olive. Each mossy fiber synapses onto �50

granule cells, and each granule cell receives input from about four mossy fibers. Approximately 100,000 granule

cell axons (parallel fibers) synapse onto each Purkinje cell, while each Purkinje cell receives input from only one

climbing fiber. For simplicity, GABAergic interneurons in the cerebellar cortex are omitted from this schematic.

Purkinje cells project axons to the cerebellar nuclei (CN), which also receive collaterals from both mossy fibers

and climbing fibers (not shown). (B) Connections between the cerebellum and other brain regions. Nearly all

subcortically-projecting layer 5 pyramidal neurons throughout the neocortex send an axon collateral to the

pontine nuclei. The cerebellum receives mossy fibers from all pontine nuclei neurons (yellow), and climbing

fibers from inferior olive neurons (green). The CN, targets of Purkinje cell axons, project to numerous targets

including the cortex via the thalamus, the ventral tegmental area (VTA), and brainstem nuclei including the

inferior olive. Broken line represents indirect input from the cortex to the inferior olive. (C) Reward expectation

signaling in cerebellar granule cells. Top, mice executed a forelimb operant task for water reward during two-

photon Ca2+ imaging [38]. Bottom, three example granule cell activity profiles. Traces show fluorescence

aligned to reward delivery (broken vertical line) and averaged across either rewarded trials or trials on which

reward was unexpectedly omitted. From top to bottom, these three cells were active preferentially during

reward delivery, reward omission, or the delay while the mouse waited for the reward. Note that the reward

anticipation cell remained active longer while the mouse continued waiting following unexpected reward

omission, until the mouse gave up and ceased licking (licking not shown). SD, standard deviation used as unit

for these z-scored traces. (D) Reward expectation signaling in cerebellar climbing fibers. Top, water-restricted

mice executed a press-and-hold forelimb lever task for water reward during two-photon Ca2+ imaging of

Purkinje cell dendrites [52], whose fluorescence reports climbing fiber activity, in lobule simplex of the
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lobules VI–VIII and the adjacent hemispheres) more closely linked both to the neocortex generally

[30,31] and to more limbic neocortical regions in particular [32–34]. Thus, a key step toward

understanding cerebellar contributions to the brain’s cognitive processes is to decipher the types

of cognitive information transmitted through both granule cells and climbing fibers. Furthermore,

the differences between granule cell and climbing fiber cognitive representations are expected to

affect subsequent computation, due to the differing roles of these inputs in the cerebellar circuit.

We discuss several recent studies, focused mainly near lobules VI, simplex, and crus 1, which indicate

that a major class of cognitive information transmitted by both granule cells and climbing fibers re-

lates to the expectation of reward. We then review findings that outline one pathway through which

cerebellar output may impact reward processing in other brain circuits. As many forms of learning are

reward-dependent, and as the cerebellum is believed to be an important learning center, these re-

sults bear critically on models of cerebellum-dependent learning.

Granule Cell Reward Signaling

Due to longstanding technical limitations, little has been known about granule cell activity in animals

executing motivated behaviors. Thus, the nature of granule cell cognitive encoding had remained

obscure. Two-photon Ca2+ imaging of granule cells [35–38], which likely primarily reports the occur-

rence of bursts of several action potentials in vivo [36], has recently provided a means to clear

this technical hurdle. Via two-photon Ca2+ imaging of granule cells in mice performing operant

and classical conditioning tasks, our group has found several common classes of reward-related

granule cell activity profiles [38]. Some neurons responded preferentially following reward delivery,

while others were activated after unexpected omission of an expected reward. A class of cells termed

reward anticipation neurons became active selectively when the animal was awaiting an expected

reward, but not following delivery of an unexpected reward (Figure 1C).

The prominence of these rich reward-related granule cell signals likely reflects the diverse, nonmotor

mossy fiber input to lobules VI, simplex, and crus I of the cerebellum [32–34], and suggests that this

information might be important for cerebellar cognitive processing. Classical cerebellar theory posits

that Purkinje cells use the contextual information represented in their granule cell inputs to compute pre-

dictions of the future state of both the brain and the external world [39,40]. In this framework, granule cells

might signal reward expectations because they carry salient predictive information about the future.

Climbing Fiber Reward Signaling

Granule cells are thought to convey internal and external contextual information to the cerebellum,

whereas climbing fibers are thought to play a key role in cerebellar learning by instructing a Purkinje

cell as to which of its granule cell inputs are most informative [41–43]. Climbing fiber spike bursts reli-

ably elicit Purkinje cell complex spikes that can affect Purkinje cell plasticity processes [44]. Neigh-

boring groups of Purkinje cells called microzones furthermore receive similarly coded climbing fibers

that often spike synchronously due to gap junctional coupling in the inferior olive [45–48]. For regions

of the cerebellum that contribute to brain cognitive functions, therefore, it is important to determine

the nature of climbing fiber cognitive instructive signals. Anatomically, climbing fibers that carry

cognitive information are likely driven in part by indirect input from the neocortex via several midbrain

nuclei [49–51]. Several recent in vivo physiological studies duringmotivated behavior have shown that

climbing fibers may carry prominent reward prediction error signals.

Heffley et al. studied mice executing an operant behavior while imaging Ca2+ activity in Purkinje cell

dendrites of lobule simplex [52]. Ca2+ transients in Purkinje cell dendrites are known to reliably occur
cerebellum. Bottom, example climbing fiber activity. Climbing fibers became active preferentially at the time of the

lever release on correctly-timed trials, which predicted subsequent reward, but not on error trials, which did not

yield subsequent reward. On correctly timed trials on which the subsequent reward was unexpectedly omitted,

a second climbing fiber response was elicited. DF/F, percent change in fluorescence. (C) Reproduced ,with

permission, from [38], (D) reproduced, with permission, from [52].
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during climbing-fiber-evoked complex spikes [53,54] (although Ca2+ transient magnitude is graded

by both the climbing fiber spike burst size as well as other inputs to the Purkinje cell [55–57]). Mice

obtained a water reward by holding a lever while waiting for a timed release cue. Climbing fibers

exhibited enhanced activity during correctly executed movements that subsequently yielded reward

(Figure 1D). This activity was absent in error trials, in which the mouse released the lever early. If

the animal is aware of having made an error, and thus expects not to receive reward, the absence

of a climbing fiber signal could be interpreted as a reward prediction signal. For a reward prediction

signal, a reward-predicting event should also have the same value as an unpredicted reward, which

the authors confirmed by demonstrating that unexpected rewards elicited climbing fiber signals

similar to those during successful, reward-predicting forelimb movements. The same climbing fibers

also responded a second time following omission of expected rewards, potentially signaling violation

of the previous expectation (and in contrast to a signed reward prediction error signal [58]). These

results suggest that climbing fiber activity in this task carries an unsigned reward-prediction error.

Kostadinov et al. also recorded lobule simplex climbing fiber activity in mice performing a cued, timed

forelimb operant behavior, and found widespread activity during reward-predicting movement onset

and to reward delivery itself, along with additional responses to omission of expected reward [59]. In

addition, the authors found that some microzones became activate during reward, while others were

suppressed, with larger changes evoked by unexpected rewards. Chronically monitoring these signals

during training revealed that reward-delivery-evoked climbing fiber activity was gradually suppressed as

animals learned the reward-predicting cue. Thus, along with the work of Heffley et al. [52], these studies

identified climbing fiber activity related to animals’ predictions about upcoming rewards.

Taking advantage of the greater behavioral repertoire of primates, Larry et al. electrophysiologically

recorded climbing fiber activity in macaques executing an eye movement stimulus tracking task, in

which the initial fixation cue signaled the magnitude of reward that would be delivered following

successful trial completion [60]. The cue alone evoked increased climbing fiber activation selectively

for large- but not small-reward trials. Because these responses to cue onset were temporally removed

from both the eye movement itself and from reward delivery and consumption, they provide strong

evidence that climbing fibers encoded the animal’s learned association between cue identity and

upcoming reward magnitude, rather than an extraneous sensorimotor variable. In contrast, climbing

fiber activity did not depend on reward magnitude during reward delivery. This is in line with the

interpretation of Heffley et al. [52] and Kostadinov et al. [59] that, once reward associations have

been learned, climbing fibers report the reward-predictive stimuli rather than the subsequent reward

itself, consistent with a reward prediction error.

Together, these results suggest a scenario in which, at least in the vermis and adjacent hemispheres

of lobule VI, granule cells convey diverse information about the animal’s experience and expectations

of rewards, while the climbing fiber instructive signals convey reward prediction errors. Depending on

how these signals interact, recipient Purkinje cells might thereby learn to perform a variety of reward-

predictive computations. The functional impact of such putative computations would depend on the

downstream brain circuits that receive the resulting cerebellar output.
Cerebellar Influence on Brain Reward Circuitry

The brain’s classical reward circuitry consists of a number of prominent nodes, including dopamine neu-

rons in the ventral tegmental area (VTA) [61], as well as two prominent projection targets of VTA dopa-

mine neurons: the ventral striatum [62] and the prefrontal cortex [63]. While the specific origin of reward-

related signals that reach the cerebellar cortex is not definitively known, they likely derive at least partly

from the neocortex. The cerebellum may in turn reciprocally influence brain-wide reward circuitry via a

number of output pathways from the cerebellar nuclei. These include: both the striatum [64] and the pre-

frontal cortex [65] via the thalamus; and via monosynaptic inputs to the VTA dopamine neurons [66,67].

Carta et al. studied the functional properties of the cerebellar nuclei to VTA projection [68]. Optoge-

netic stimulation of the cerebellar nuclei reliably evoked postsynaptic responses in both
Trends in Neurosciences, January 2020, Vol. 43, No. 1 45
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dopaminergic and GABAergic VTA neurons. Moreover, the authors demonstrated that mice were

motivated to self-stimulate their cerebellar nuclei-to-VTA projection, indicating that this pathway

was reinforcing. Likewise, animals preferentially occupied the region of a chamber that was previously

paired with cerebellar nuclei-to-VTA stimulation. In addition, suppressing cerebellar nuclei-to-VTA

activity was sufficient to abolish the natural social preference of mice in a chambered box to explore

the region that contains a conspecific. Finally, fiber photometry Ca2+ signals from cerebellar nuclei

axons in the VTA increased during rewarding social exploration. When considered in combination

with the previously discussed investigations of reward-related inputs to the cerebellum, this study

demonstrates a pathway by which cerebellar reward processing could contribute to reward compu-

tations throughout the brain.
Cerebellar Interactions with the Neocortex

The mounting evidence described above for cerebellar processing of cognitive signals such as

reward raises important questions about cerebellar interactions with the neocortex; the mammalian

brain’s central cognitive center and primary source of cerebellar input. Essentially all parts of the

neocortex reciprocally communicate with the cerebellum via a highly conserved circuit. Specifically,

nearly all subcortically projecting layer 5 pyramidal neurons send an axon collateral to the pontine

nuclei, and the neurons of the pontine nuclei all project mossy fibers to the cerebellum [22,23,69–

71]. Tracing using replication-deficient rabies virus showed that widespread corticocerebellar projec-

tions are disynaptic [72]. The cerebellar nuclei project back to the neocortex via the thalamus [20,65],

although technical limitations have so far prevented definitively determining the extent of disynaptic

cerebellar input to different cortical regions. In one recent study of this circuit, Proville et al. used

optogenetic perturbations, tracing, and electrophysiological recordings to probe the properties

of communication between the cerebellar hemispheres and both the motor and somatosensory

cortices [73]. Cerebellar Purkinje cells and Golgi cells were found to exhibit polysynaptic responses

to stimulation of both upstream primary motor and somatosensory cortices and, reciprocally, Purkinje

cell stimulation triggered rebound excitation in downstream thalamic and motor cortical neurons. To

fully decipher the behavioral role of corticocerebellar circuitry, it is critical to determine the types of

behavioral information exchanged between these two structures, as well as the role of neocortical in-

puts in cerebellar computation and vice versa.

We next discuss several recent studies that have directly probed the interactions and codependence

of neural activity between neocortex and cerebellum in animals executing skilled behaviors, and their

evolution during learning.
Corticocerebellar Communication

Classical ideas concerning neocortex to cerebellum transmission were centered on the transforma-

tion of neuronal representations into sparser and more high-dimensional forms [42]. Wagner et al.

performed simultaneous two-photon Ca2+ imaging of both layer 5 output neurons of the rostral fore-

limb area of the premotor cortex as well as downstream granule cells in the cerebellar cortex, while

animals executed an alternating leftward and rightward forelimb movement sequence planning task

[72] (Figure 2A,B). Surprisingly, premotor layer 5 pyramidal neurons and cerebellar granule cells con-

tained highly similar types, proportions, and diversity of task-encoding neurons. Broadly, these

included neurons whose activity was related to movement planning and execution, and those related

to the delivery of rewards, selectively for either left or right trials. In addition, although only �80 cells

were simultaneously recorded in each brain region, it was common to observe layer 5–granule cell

pairs with highly correlated activity across single trials (Figure 2C). This is unexpected because, ac-

cording to classical theory, individual granule cells integrate and detect coincidences among their

four inputs. By contrast, these results indicate that the activity of some granule cells may be domi-

nated by just a single neocortically driven mossy fiber (see Figure 3A and theory section below). By

leveraging the ability of two-photon imaging to track neuronal identities over weeks, it was further

demonstrated that shared corticocerebellar dynamics emerged only gradually over the weeks-long

learning process. Over time, layer 5–granule cell pairs that were initially dissimilar and only weakly

task encoding converged onto similar and more restricted sets of task-encoding activity patterns.
46 Trends in Neurosciences, January 2020, Vol. 43, No. 1
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Figure 2. Neocortex–Cerebellum Communication.

(A) Schematic of strategy for simultaneous two-photon Ca2+ imaging of both premotor cortical layer 5 pyramidal

neurons of the rostral forelimb area, and cerebellar granule cells, during a forelimb movement planning task. (B)

Mean two-photon brain images of the premotor cortex and cerebellum showing detected layer 5 cells and

granule cells highlighted in grayscale. (C) An example layer 5–granule cell pair that was tracked over several

weeks of task learning. Traces show time-varying fluorescence magnitude. Over learning, this pair develops

strongly correlated activity. SD, standard deviation used as unit for these z-scored traces. (A–C) Reproduced,

with permission, from [72]. (D) Mice discriminated two-whisker stimuli and reported stimulus identity by licking

left or right after an enforced delay period. Top, recordings from the anterior lateral motor area (ALM) during

the task. ALM neurons develop stimulus selectivity during the sample period (between the left and middle

broken lines) that persists through the delay period (between the middle and right broken lines) and into the

response period. Bottom, recordings from the cerebellar output nuclei reveal a similar timeline of stimulus

selectivity. (E, F) Cerebellar nuclei recordings during ALM photoinhibition (E) and ALM recordings during

cerebellar nuclei photoinhibition (F) demonstrated that directional selectivity in either brain region requires

intact signaling in the other region. (D, E) Reproduced, with permission, from [75].
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Thus, rather than extensively transforming their cortical input, the granule cell layer contained a faith-

ful recapitulation of cortical task encoding in expert animals.

These findings highlight the importance of better understanding of the pontine intermediary between

neocortical output and cerebellar input. Guo et al. performed electrophysiological recordings of pontine
Trends in Neurosciences, January 2020, Vol. 43, No. 1 47



Trends in Neurosciences

Th
is

 a
rti

cl
e 

is
 d

is
tri

bu
te

d 
as

 a
n 

in
fo

rm
at

io
n 

se
rv

ic
e 

to
 h

ea
lth

 p
ro

fe
ss

io
na

ls
 b

y 
N

eu
ro

di
em
neurons during a cued reach-to-grasp food pellet task [74]. Pontine neurons – those determined via

photoactivation to receive monosynaptic motor cortical input – encoded all aspects of the task,

which theymust transmit onward to cerebellar granule cells. Somemotor cortical neuronswere also recip-

rocally affected by pontine stimulation, likely via the ponto-cerebello-thalamo-cortical pathway. Such

cortical neurons exhibited more preparatory activity than their untagged counterparts, consistent with

the importance of preparatory corticocerebellar activity observed in other studies discussed here

[72,75,76]. Taken together, these studies indicate that the full diversity of neocortical representations of

behavior can be faithfully transmitted to cerebellar granule cell activity via the pontine nuclei.
Cerebellocortical Communication

In addition to the pathway from the cortex to the cerebellum via the pons, information returns from

the cerebellar nuclei to the cortex via the thalamus. Gao et al. studied the relationship between ac-

tivity of the cerebellar nuclei and that of the anterolateral motor cortex (ALM), while animals discrim-

inated between two whisker stimuli and reported the results via leftward or rightward licking after an

enforced delay [75]. Lesions and optogenetic perturbations of themedial (fastigial) cerebellar nucleus

degraded task performance. Electrophysiological recording of spiking activity in either the ALM or

the cerebellar nuclei demonstrated that neurons of both areas exhibited similar degrees of selectivity

for each trial type, with widespread preparatory activity throughout both regions (Figure 2D). Photo-

inhibition of ALM significantly reduced trial-type selectivity in the cerebellar nuclei and, similarly, op-

togenetic perturbation of the cerebellar nuclei abolished selectivity in ALM neurons (Figure 2E,F).

This study thereby demonstrated a role for cerebellar output in sustaining neocortical preparatory

activity, which is critical for task execution.

Chabrol et al. also recorded spiking activity in either the ALM, the lateral (dentate) cerebellar nucleus,

or upstream Purkinje cells in the lateral cerebellar cortex (crus 1), in mice running on a virtual track to

obtain water reward [76]. Neurons in all three regions primarily modulated their spiking activity near

the time of reward delivery. Neurons in both the ALM and the cerebellar dentate nucleus similarly

increased their activity in the runup to reward delivery. By contrast, Purkinje cell simple spiking was

more likely to exhibit a preparatory decrease in activity, which would be expected to relieve the

monosynaptic inhibition from Purkinje cells to dentate cells that disynaptically excite the ALM. Pur-

kinje cell complex spiking was elevated just after reward, raising the possibility that decreased simple

spiking in the runup to reward delivery was a learned consequence of reward-evoked complex spiking

[77]. By activating Purkinje cells that inhibit the dentate nucleus prior to reward delivery, Chabrol et al.

[76] suppressed most of the preparatory activity in the ALM with short latency.

This pair of studies [75,76] indicates a critical codependence of the neocortex and cerebellum in sus-

taining preparatory activity that is thought to underlie cognitive and working memory processes.

Notably, Gao et al. [75] found that lesions of the fastigial nucleus but not the dentate nucleus

degraded task performance, while some assays of Chabrol et al. [76] suggested that the dentate nu-

cleus more directly drove frontal neocortical activity during their task. Differences between the

studies in both the behavior and the specific neurophysiological assays used make direct compari-

sons difficult, but the discrepancies indicate that more investigation is needed to fully understand

the differential functional contributions of specific corticocerebellar domains in different behavioral

contexts. All three studies of corticocerebellar circuitry discussed here focused on overlapping re-

gions of the premotor cortex [72,75,76]. The finding of abundant reward-related activity in the premo-

tor cortex with parallel representations in granule cells makes it a likely candidate for cerebellar

reward signaling discussed previously. Nevertheless, given the wide array of diverse neocortical re-

gions that contribute to corticocerebellar circuitry, it will be important to investigate other corticocer-

ebellar domains to fully characterize principles of corticocerebellar function.
Implications for Computational Theories of Cerebellar Function

The recent studies discussed above have raised interesting questions about classical theories of cere-

bellar function [41,42,78–80]; these theories have had a lasting influence in the field in the past

decades.
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Granule Cell Signaling beyond Dimensionality Expansion

In classical theory, the granule cell layer is hypothesized to generate a dimensionally expanded rep-

resentation of its mossy fiber inputs (Figure 3A, top). This would be achieved via sparse input sam-

pling, as each granule cell receives only four inputs (on average) that can arise from disparate sources

[81], and a large expansion in cell number, as granule cells compose more than half of all neurons in

the mammalian brain [82]. However, recent observations in multiple contexts and species [36–

38,72,83,84] suggest that granule cells may perform a richer set of functions than only dimensionality

expansion, and these functions may depend on behavioral context [85] and learning. For example,

when animals are actively engaged or are executing learned tasks, substantial fractions of granule

cells densely represent the behavior. Furthermore, Wagner et al. [72] explicitly compared the diversity

and dimensionality of representation in neocortical output cells to those in downstream granule cells,

and found a high degree of similarity. Lower dimensional representations that are consistent with task

dimensionality – as reported in higher-order cortical areas [86,87] – coemerged in both cerebellum

and cortex as mice gained task expertise. (It remains possible that if corticocerebellar dynamics

were evaluated on faster timescales, results might differ from those reported by the slower kinetics

of Ca2+ imaging [88].) These results may be consistent with re-examinations of classical theory that

have suggested that dimensionality expansion is not always optimal, especially if the inputs are noisy

[89,90]. Highly correlated layer 5–granule cell pairs suggest that, contextually, some granule cells may

act as faithful relays of a single neocortically derived input (Figure 3A, bottom). This is because, given

the low odds that four randomly selected inputs of diverse origins will share similar selectivity, preser-

ving the strong selectivity present in the cortex likely requires that downstream granule cells prefer-

entially transmit the activity of a single selective input. This may sacrifice some dimensionality expan-

sion while boosting noise reduction, potentially facilitated by pontine integration mechanisms [74].

Recent studies have also demonstrated a large and unexpected role for learning in shaping granule

cell representations [36,38,72]. While classical theory does not explicitly address learning-related

changes in granule cell signaling, granule cells have often implicitly been thought to provide a

massive and fixed basis set to uniquely represent all possible contexts (if each granule cell represents

a highly specific and unique event, and the large number of granule cells spans all possible events).

From this fixed basis, Purkinje cells could extract information relevant to a particular behavior via

granule-cell-to-Purkinje cell synaptic plasticity. Instead, it seems that granule cells undergo learned

representational changes that mirror and are likely inherited from those in the neocortex [72]. It is

also possible that this reflects additional plasticity at the corticopontine or pontine–granule cell syn-

apses [91]. One potential implication is that Purkinje cells may need to continually adjust the synaptic

input weights from different granule cells, as the information conveyed by those granule cells

changes during learning.

An important question is what function is served by the learned and relatively lower-dimensional

granule cell representations that mimic those in cortical output. The cerebellocortical communication

studies described above demonstrated the importance of cerebellar output for maintaining neocor-

tical representations that drive behavior [75,76]. This hints at significant incorporation of cerebellar

output neuron activity into the activity of cortical circuits. One possibility, therefore, is that such inte-

gration requires that certain features of cerebellar output neuronal dynamics are matched to those in

neocortex. Recruiting a subset of granule cells primarily as relays (Figure 3A, bottom) [92] of neocor-

tical dynamics might provide a way to shape cerebellar output returning to neocortex [72]. Impor-

tantly, such a scheme would not preclude other granule cells from performing classical sparse combi-

natorial coincidence detection (Figure 3A, top) [93,94]. Indeed, in these data, the majority of granule

cells was apparently silent [72], which might indicate that these cells were subject to a high coinci-

dence detection input threshold. This might hint at a parcellation of the granule cell ensemble, de-

pending on which cells receive mossy fibers whose activity in a particular context is strong enough

to relay through target granule cells (e.g., via gating mechanisms in the pontine nuclei). In such a sce-

nario, global assessments of granule cell dimensionality may fail to capture the likely higher dimen-

sionality of cells performing coincidence detection, while placing disproportionate emphasis on

densely active, relay granule cells, which might serve a distinct function. It would therefore be
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Figure 3. Computational Theories of Cerebellar Function.

(A) Top, in classical theory, granule cells threshold their approximately four inputs (here, granule cells 1, 2, and 3 will

spike only if two inputs are simultaneously active), in order to perform coincidence detection. In this diagram, the

activity of mossy fibers 1, 2, and 3 (left) are mixtures of underlying signals of interest (represented by differently

colored activity events in red, blue, and green). Since the number of granule cells far exceeds the number of

unique mossy fiber inputs, if each granule cell integrates and thresholds the activity of a unique combination of

four randomly chosen mossy fibers, the resulting granule cell ensemble output will be sparse and high

dimensional. This would allow individual granule cells to convey ’unmixed’ forms of the colored signals of

interest (right). This therefore allows Purkinje cells to discriminate between activity that appears very similar at

the level of the mixed mossy fibers. Bottom (purple), during motivated behavior, some granule cells appear to

be densely active in ways that faithfully recapitulate the selectivity and tuning of individual cortical signals,

putatively relayed by a task-critical mossy fiber input. (B) Left, a Purkinje cell’s simple spikes are periodically

interspersed with complex spikes from the climbing fiber input. In classical theory, complex spikes are triggered

by motor errors, which indicate that the previous simple spiking was inappropriate, and thus produce long-term

depression (LTD) at the Purkinje cell’s synaptic inputs from the set of parallel fibers that were active in the

previous several hundred milliseconds (right). New evidence indicates that events that predict upcoming

reward, in addition to a violation of that prediction via a reward omission, both can elicit complex spiking. This

may be consistent with an unsigned reward prediction error signal, while opening the door to a potential range

of other types of cognitive prediction error signals.
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informative to determine how the granule cells that relay low-dimensional cortical representations

affect downstream Purkinje cells, and in turn how these impact cerebellar output neuron dynamics.
Climbing Fiber Signaling beyond Movement Errors

In the Marr–Albus theory [41,42], and as confirmed by classic studies of various oculomotor tasks and

reflexes [56,95–97], climbing fibers have long been proposed to signal mainly the occurrence of

movement errors [98]. Because climbing fiber activity triggers plasticity at recently active parallel fiber

inputs (i.e., during the preceding several hundred milliseconds) onto the same Purkinje neuron, it is

thought that such error signaling helps to drive motor learning (Figure 3B, black). Studies recording

duringmore complex volitional tasks, however, especially from cerebellar regions that receive denser

neocortically derived input, have hinted at more complex and varied roles for climbing fiber input [99–

102]. In addition, it has been observed that climbing fibers in one region signal errors correlated with

changes in Purkinje cell simple spiking, while climbing fibers in another region during the same task
50 Trends in Neurosciences, January 2020, Vol. 43, No. 1



Outstanding Questions

The neocortical regions that

interact with the cerebellum span

the full diversity of cortical circuits,

yet cerebellar circuitry is strikingly

stereotyped. What is the basic,

conserved computational contribu-

tion of cerebellar output to all

neocortical function?

A massive reduction in cell number

occurs between cerebellar granule

cells and the final cerebellar

output nuclei. How do the small

number of cerebellar output nuclei

cells contribute to processing

throughout the neocortex?

What are the primary specific sour-

ces of reward-related input to

granule-cell and climbing-fiber

pathways? How do reward-related

cerebellar computations affect

downstream brain reward circuitry?

What kinds of learning-related

plasticity are driven by climbing-fi-

ber reward-related signals, and

how do these affect Purkinje cell

processing of granule-cell reward-

related inputs?
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tonically signaled events through synchronized activity [102], potentially to directly affect ongoing

motor output. Taken with the recent demonstrations of reward-expectation-related climbing

fiber signaling described above [52,59,60], these data suggest more diverse functions than move-

ment error signaling alone. Proposed extensions of classical climbing fiber theory suggest that

climbing fibers may mediate more flexible and varied types of reinforcement learning [101].

For example, climbing fibers might signal reward prediction errors that are unsigned: that is,

they can predictively signal unpredicted positive events such as upcoming reward magnitude, and

reactively signal unpredicted negative events such as reward omission. In this case, they might drive

more general learning of predictive internal models. Such a general learning mechanism might

benefit from the recently demonstrated flexibility of the climbing-fiber-driven plasticity rules, both

in timing [103], and potentially even in themagnitude or direction of plasticity that could vary depend-

ing on context [104].

Studies of climbing fiber activity over longer learning timescales raise a key distinction between

adaptation and novel task acquisition. In adaptation, either a reflex or a previously trained volitional

behavior is disrupted by a perturbation that requires altering a specific parameter of movement in

order to bring the behavior back to its basal state [105–108]. During learning of novel volitional

tasks, animals that are motivated to seek reward must simultaneously learn the task contingencies

and update motor plans to produce more appropriate motor output. As a result, the variables

signaled by climbing fibers gradually change or emerge over time [59] as upstream input sources

in the forebrain undergo synaptic plasticity during task learning. In such contexts, the relevant error

signals may not even be known a priori, nor indeed immediately available via preexisting climbing

fiber inputs, without plastic circuit changes. One general strategy might involve monitoring reward

outcomes, and the contexts, events, and behaviors that predict and yield reward (Figure 3B,

magenta). These observations suggest that there is much to be discovered about how climbing fi-

ber dynamics evolve with and depend on the learning of novel behavior-reward task contingencies,

which may shed further light on the algorithms implemented by this remarkable learning machine

[77,109].

Concluding Remarks and Future Perspectives

While recent research sheds new light on the physiology underlying cerebellar cognitive processing

and interactions with the neocortex, major questions remain (see Outstanding Questions). Although

studies indicate that reward signals are processed in the cerebellum, it is incompletely understood

what the cerebellum computes using these signals, and little is known about what specific contribu-

tions these cerebellar computations make to processing in the rest of the brain. The relationship and

interactions between granule cell and climbing fiber reward signals is another key open question.

Moreover, how reward signals in the cerebellum are derived from the brain’s canonical reward pro-

cessing centers, and how in turn the cerebellum feeds back reward signals to these centers remain to

be elucidated.

A close association has now been demonstrated between neocortical dynamics and those of cere-

bellar granule cells and output from the cerebellar nuclei. However, to decipher corticocerebellar

functions, it will be critical to identify general and conserved principles of cerebellar contributions

to processing throughout the neocortex. In motor contexts, the cerebellum seems to generate sen-

sory predictions to guide movement [8,110]. In corticocerebellar circuits, therefore, the cerebellum

may use present neocortical dynamics to predict future neocortical dynamics, and to make fine cor-

rections as needed. For now, these ideas remain untested, and gaining this type of algorithmic un-

derstanding will require substantial technical and theoretical advancements.
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