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O U T L I N E

    INTRODUCTION 

   One fundamental goal of behavioral neuroscience 
is to understand the decision-making processes that 
animals and humans use in order to select actions in 
the face of reward and punishment. Recent research 
has pursued this goal from a variety of perspectives. 
In behavioral psychology, this question has been 
investigated through the paradigms of Pavlovian 
(classical) and instrumental (operant) conditioning, 
and much evidence has accumulated regarding the 
learned associations that control simple behaviors. 
Simple conditioning paradigms also form the back-
bone of neurobiological approaches to learning, where 
investigators seek underlying neural mechanisms. 
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From a computational perspective, Pavlovian (pas-
sive) conditioning is modeled as  prediction learning  – 
learning the predictive (and sometimes causal) rela-
tionships between different events in the environ-
ment, such as the fact that the smell of food usually 
predicts that a tasty meal is forthcoming. Instrumental 
conditioning, on the other hand, involves learning to 
select actions that will bring about rewarding events 
and avoid aversive events. Computationally, such 
decision-making is treated as attempting to  optimize  
the consequences of actions. Thus, from an economic 
perspective, the study of instrumental conditioning is 
an inquiry into perhaps the most fundamental form of 
rational decision-making. 

   Computational accounts of conditioned behavior 
have, in recent years, drawn heavily from a class of 
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models called  reinforcement learning  (RL) models. These 
models, now commonly used in neurobiology, psychol-
ogy, and machine learning, all share in common the use 
of a  scalar reinforcement signal  to direct learning. This is 
categorically different from, and lies in between, learn-
ing from an explicit teaching signal (as in  “ supervised 
learning ”  models, common in artificial intelligence 
applications), and learning of input statistics without 
any supervisory signal (as in  “ unsupervised learning ”  
models, for instance of early visual processing;  Lewicki 
and Olshausen, 1999 ). Thus algorithms and theory 
have been developed specifically for the case of RL. 

   Importantly, reinforcement learning provides a  nor-
mative framework  within which conditioning can be 
analyzed. That is, it suggests a means by which opti-
mal prediction and action selection can be achieved, 
and exposes explicitly the computations that must be 
realized in the service of these. In contrast to descrip-
tive models that describe behavior as it is, normative 
models study behavior from the point of view of its 
hypothesized  function  – that is, they study behavior  as 
it should be  if it were to accomplish specific goals in an 
optimal way. The appeal of normative models derives 
from several sources. First, because throughout evolu-
tion animal behavior has been shaped and constrained 
by its influence on fitness, one reasonable starting 
point is to view a particular behavior as an optimal 
or near-optimal adaptation to some set of problems 
( Kacelnik, 1997 ). Treating behavior as optimal allows 
for the generation of computationally explicit hypoth-
eses that are directly testable. Second, discrepancies 
between observed behavior and the predictions of nor-
mative models are often illuminating: these can shed 
light on the neural and/or informational constraints 
under which animals make decisions, or suggest that 
animals are, in fact, optimizing something other than 
what the model has assumed. Such approaches are 
familiar to economists. In economics, it is frequently 
assumed that a decision-maker is rational (even 
though we know people are not), and deviations from 
rationality are used to devise progressively more accu-
rate theories of human decision-making. 

   Finally, as has been recently the case for economic 
constructs as well, the relevance of reinforcement 
learning models to human and animal decision-making 
has been strengthened by measurements of neural 
correlates of some of the major constituents of these 
models. Specifically, extracellular recordings in behav-
ing animals and functional imaging of human deci-
sion-making have revealed in the brain the existence 
of a key reinforcement learning signal, the  temporal 
difference reward-prediction error . 

   In this chapter, we introduce the formal reinforce-
ment learning framework and give a brief background 
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to the origins and history of reinforcement learning 
models of decision-making (for a comprehensive text-
book account of RL methods, see  Sutton and Barto, 
1998 ). In the second section, we review the multiple 
lines of evidence linking reinforcement learning to the 
function of dopaminergic neurons in the mammalian 
midbrain. These data demonstrate the strength of the 
computational model and normative framework for 
interpreting and predicting a wide range of (otherwise 
confusing) neural activity patterns. The third section 
extends these results to more recent data from human 
imaging experiments. In these experiments, the com-
bination of reinforcement learning models of choice 
behavior and online imaging techniques has allowed 
researchers to detect in the brain the existence of spe-
cific  “ hidden variables ”  controlling behavior (such 
as the subjective value of different options). Prior to 
this work such variables could only be postulated, or 
worse, were presumed to have descriptive ( “ as if ” ) 
status alone. Together, the results from the latter-two 
sections put on firmer ground concepts central to neu-
roeconomics – for example, expected utility in units 
of a common currency and temporal discounting. In 
the fourth section, we discuss aspects of learning not 
associated with phasic dopamine signals, such as 
learning about the vigor (or rate) with which actions 
should be performed (which seems to be related 
more to tonic levels of dopamine in the striatum), and 
adapting learning rates to the natural statistics of the 
learning problem (which has been associated with the 
functions of the neuromodulators acetylcholine and 
norepinephrine). The final section discusses some of 
the fundamental limitations of the current theories of 
learning, and highlights questions for future research.  

    REINFORCEMENT LEARNING: 
THEORETICAL AND HISTORICAL 

BACKGROUND 

   Historically, the core ideas in reinforcement learning 
arose from two separate and parallel lines of research. 
One axis is mainly associated with Richard Sutton, 
formerly a psychology major, and his PhD advisor, 
Andrew Barto, a computer scientist. Interested in arti-
ficial intelligence and agent-based learning, Sutton 
and Barto developed algorithms for reinforcement 
learning that were inspired by the psychological lit-
erature on Pavlovian and instrumental condition-
ing ( Sutton, 1978 ;  Barto  et al. , 1983 ;        Sutton and Barto, 
1990, 1998 ). Stemming from a different background, 
the second axis was led by electrical engineers such as 
Dimitri Bertsekas and John Tsitsiklis. Within the fields 
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of operations research and optimal control, Bertsekas 
and Tsitsiklis developed stochastic approximations to 
dynamic programming (which they termed  “ neuro-
dynamic programming ” ) that led to similar reinforce-
ment learning rules (e.g.  Bertsekas and Tsitsiklis, 
1996 ). The fusion of these two lines of research reinter-
preted the behaviorally-inspired and somewhat heu-
ristically-derived reinforcement learning algorithms in 
terms of optimality, and provided tools for analyzing 
their convergence properties in different situations. 

    The Rescorla-Wagner Model 

   The early impetus for the artificial intelligence tra-
jectory can be traced back to the behaviorist move-
ment in psychology in the early twentieth century. 
Behaviorism played an important  “ rigorizing ”  role 
for the kinds of experiments and data that psycholo-
gists would come to find acceptable, but was largely 
a-theoretic. This gave rise to the field of  “ mathemati-
cal psychology ”  in the 1950s, within which statisti-
cal models of learning were considered for the first 
time. In a seminal paper that helped to establish this 
field,  Bush and Mosteller (1951)  developed one of the 
first detailed formal accounts of learning. Together 
with Kamin’s (1969) idea that learning should occur 
only when outcomes are  “ surprising, ”  the Bush and 
Mosteller  “ linear operator ”  model finds its most pop-
ular expression in the now-classic Rescorla-Wagner 
model of Pavlovian conditioning ( Rescorla and 
Wagner, 1972 ). The Rescorla-Wagner model, argu-
ably the most influential model of animal learning to 
date, explained the puzzling behavioral phenomena 
of blocking, overshadowing, and conditioned inhi-
bition by postulating that learning occurs  only when 
events violate expectations . For instance, in a condition-
ing trial in which  conditional stimuli CS  1  and  CS  2  (say, 
a light and a tone) were presented, as well as an affec-
tive stimulus such as food or a tail-pinch (termed the 
 unconditional stimulus ), Rescorla and Wagner postu-
lated that the associative strength of each of the condi-
tional stimuli  V ( CS i  ) will change according to 
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   In this  error-correcting  learning rule, learning is 
driven by the discrepancy between what was pre-
dicted ( Σ   i V ( CS i  ) where  i  indexes all the CSs present in 
the trial) and what actually happened ( λ ( US ), whose 
magnitude is related to the worth of the unconditional 
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stimulus).  λ ( US ) quantifies the maximal associative 
strength that the unconditional stimulus can support 
and  η ( CS i  ,  US ) is a learning rate that can depend on 
the salience properties of both the conditional and the 
unconditional stimuli being associated. 

   From our perspective, the Rescorla-Wagner learn-
ing model was based on two the important (and 
innovative) assumptions or hypotheses: (1) learning 
happens only when events are not predicted, and (2) 
the predictions due to different conditional stimuli are 
summed together to form the total prediction in the 
trial. These assumptions allowed the model to explain 
parsimoniously several anomalous features of animal 
learning: why an already predicted unconditional 
stimulus will not support conditioning of an addi-
tional conditional stimulus (as in blocking;  Kamin, 
1969 ); why differently salient conditional stimuli pre-
sented together might become differentially associated 
with an unconditional stimulus (as in overshadowing; 
 Reynolds, 1961 ); and why a stimulus that predicts the 
 absence  of an expected unconditional stimulus acquires 
a negative associative strength (as in inhibitory con-
ditioning;  Konorski, 1948 ;  Rescorla and Lolordo, 
1968 ). 

   The Rescorla-Wagner model explains quite ele-
gantly a large collection of behavioral data (and, 
furthermore, predicted previously undetected phe-
nomena such as over-expectation;  Rescorla, 1970 ; 
 Kremer, 1978 ); however, it suffers from two major 
shortcomings. First, by treating the conditional and 
unconditional stimuli as qualitatively different, it does 
not extend to the important phenomenon of second-
order conditioning. Second-order conditioning is a 
behavioral analog to the idea of transitivity: if stimu-
lus B predicts an affective outcome (say, reward) and 
stimulus A comes to predict stimulus B, then stimulus 
A also gains predictive value, i.e.,  a predictor of a predic-
tor is a predictor . To be more concrete, suppose that a 
tone is repeatedly followed by food delivery so that an 
association forms between them (tone predicts food), 
then subsequent pairing of a light with the tone can 
confer predictive value to the light (for instance, the 
animal will approach the light and perhaps salivate 
when it comes on) – this effect is second-order condi-
tioning. This laboratory paradigm is especially impor-
tant given the prevalence of conditioning of humans 
to monetary outcomes, which are second-order pre-
dictors of a wide range of affectively desirable uncon-
ditional stimuli, such as food and shelter. 

   The second shortcoming of the Rescorla-Wagner 
rule is that its basic unit of learning is (the artificial 
contrivance of) a conditioning  trial  as a discrete tem-
poral object. Not only does this impose an experi-
menter-oriented parsing of otherwise continuous 
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events, but it also fails to account for the sensitivity of 
conditioning to the precise temporal relations between 
the conditional and the unconditional stimuli within a 
trial (that is, whether they appeared simultaneously or 
serially, their order of appearance, and whether there 
was a time lag between them).  

    Temporal Difference Learning 

   To overcome these two problems,  Sutton and Barto 
(1990)  suggested the  temporal-difference learning rule  
as a model of Pavlovian conditioning (i.e., prediction 
learning). Temporal-difference (TD) learning is quite 
simply a temporally extended version of the Rescorla-
Wagner model discussed above. However, although 
the distinctions between the Rescorla-Wagner model 
and the TD model will seem subtle, the differences 
allow the TD model to account for higher-order con-
ditioning and make it sensitive to the (potentially) 
important temporal relationships within a learning 
trial ( Sutton and Barto, 1990 ). 

   In TD learning, the goal of the learning system 
(agent) is to estimate the future value of different 
states. For example, from a learning standpoint, the 
TD model assumes that the goal of a rat running 
about in a novel arena containing hidden rewards 
(e.g. food pellets hidden underneath bedding) is to 
learn the value of various positions in the arena. One 
way to evaluate the locations would be to estimate for 
each location the total amount of reward that the rat 
could expect to receive in the distant future. However, 
after a location is visited, there are many paths leading 
away from it, which yield variable amounts of reward. 
According to TD learning, a useful value function is 
the average amount of future reward expected when 
starting from each location. 

   To this end, in TD learning the time within a trial is 
explicitly represented ( t  below), and learning occurs at 
every timepoint within a trial, according to 
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   In this specific variant of TD learning, stimuli cre-
ate long-lasting memory traces (representations), 
and a separate value  V ( S ,  t ) is learned for every time-
point of this trace (for instance, a stimulus can predict 
a reward 5 seconds after its presentation, but not 10 
seconds later). As in the Rescorla-Wagner rule,  η  is 
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a learning rate, and learning is driven by discrepan-
cies between available and expected outcomes; how-
ever, the crux of the difference between the rules is in 
how predictions, or expectations, are construed. In TD 
learning, the associative strength of the stimuli (and 
traces) at time  t  is taken to predict not only the imme-
diately forthcoming reward  r ( t ), but also the future 
predictions due to those stimuli that will still be avail-
able in the next time-step  Σ   Ss   @   t    � 1   V ( S ,  t       �      1), with 
 γ       �      1 discounting these future delayed predictions. 

   It turns out that the TD learning rule can be 
derived as a normative prediction learning rule. The 
formal justification for TD learning as a method for 
optimal reinforcement learning comes from its rela-
tion to dynamic programming methods ( Sutton, 
1988 ; Watkins, 1989;  Barto  et al. , 1990 ). Dynamic pro-
gramming is a collection of computational methods 
for solving stochastic sequential decision problems 
( Bellman, 1957 ). Departing for the moment from 
animal conditioning and human decision-making, 
consider a dynamic process (called a  Markov chain ) 
in which different states  S   �   S  follow one another 
according to some predefined probability distribu-
tion  P ( S t    � 1 | S t  ), and rewards are observed at each state 
with probability  P r  ( S ). A useful quantity to predict 
in such a situation is the expected sum of all future 
rewards, given the current state  S t  , which we will call 
the  value  of state  S  
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(22.3)

    

   where  γ       �      1 is a factor discounting the effect of 
rewards distant in time on the value of the cur-
rent state (this is necessary to ensure that the sum of 
future rewards is bounded). The expectation in equa-
tion (22.3) is with respect to two sources of stochastic-
ity: (1) the probability of transitioning from one state 
to the next, and (2) the probability of reward in each 
state. Note that from this definition of state value it 
follows directly that   

  
V S P S P S S V St r t t t t
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   This recursive relationship or  consistency  between 
state values lies at the heart of both dynamic program-
ming and TD learning, and can be viewed as a kind of 
regularization or smoothing through time inasmuch 
as time indexes transitions from one state to another. 
The key to learning these values is that the recursive 
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relationship holds  only  if the values are correct (i.e., 
they correctly predict the expected discounted sum of 
future values). If the values are incorrect, there will be 
a discrepancy between the two sides of the equation 

  
δ γ( ) ( ) ( | ) ( ) ( )t P S P S S V S V Sr t t t t t

St
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�

1 1
1

∑ .
  

(22.5)
      

   This  temporal-difference prediction error  is a natural 
 “ error signal ”  for improving estimates of the function 
 V ( S t  ) such that the discrepancy will be reduced 

  V S V St new t old t( ) ( )� � η δ⋅   (22.6)      

   Returning to prediction learning in real-world 
scenarios, we note that this dynamic programming 
updating scheme has one problem: it requires knowl-
edge of the dynamics of the environment, that is,  P r  ( S ) 
and  P ( S t    � 1 | S t  ) (the  “ world model ” ) must be known 
in order to compute the prediction error  δ ( t ) in equa-
tion (22.5). This is clearly an unreasonable assumption 
when considering an animal in a Pavlovian condi-
tioning task, or a human predicting the trends of a 
stockmarket.  Werbos (1977) , in his  “ heuristic dynamic 
programming methods, ”  and, later,  Barto  et al.  (1989)  
and  Bertsekas and Tsitsiklis (1996) , suggested that 
in such a  “ model-free ”  case, the environment itself 
can supply this information stochastically and incre-
mentally. An animal can  sample  the reward probabili-
ties in each state, and the probabilities of transitions 
from one state to another, as it experiences the task. 
Updating according to these samples will eventually 
lead to the correct predictive values. Thus the stochas-
tic prediction error 

  δ γ( ) ( ) ( )t r V S V St t t� � ��1   (22.7)    

   (where  r t   is the reward observed at time  t , when in 
state  S t  , and  S t    � 1  is the next observed state of the envi-
ronment) can be used as a Monte Carlo approximation 
to dynamic programming, in order to learn optimal 
predictive state values. The resulting learning rule   

  V S V S r V S V St new t old t t t( ) � � � ��( ) ( ( ) ( ))η γ 1   (22.8)    

   is exactly the same rule as that proposed by  Sutton 
and Barto (1990)  in equation (22.2), if we add the 
Rescorla-Wagner-like assumption that the predictions 
of the different stimuli comprising the state of the 
environment are additive (which is not the only way 
to combine predictions, and is certainly not always 
the sensible option; see  Dayan  et al. , 2000 ). This shows 
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that, using TD learning, animals can learn the optimal 
(true) predictive values of different events in the envi-
ronment, even when this environment is stochastic 
and its dynamics unknown.    

    Optimal Action Selection 

   The discussion above holds whenever the prob-
abilities of transitioning between different states or 
situations in the environment are stationary in time, 
as in Pavlovian conditioning (in which the animal 
cannot influence the events by means of its actions) or 
in situations in which the animal has a fixed behav-
ioral policy ( Sutton, 1988 ). But what about improving 
action selection in order to obtain more rewards – that 
is, what about instrumental conditioning? Since the 
environment rewards us for our actions, not for our 
predictions (be they correct as they will), the ultimate 
goal of prediction learning is to aid in action selection. 

   The problem of optimal action selection is espe-
cially difficult in those (very common) cases in which 
actions can affect long-term outcomes, or in which an 
outcome depends on a series of actions. For example, 
when winning or losing a game of chess, it is not at all 
simple to infer which were the actions responsible for 
this outcome, in order to improve the playing policy. 
This is true in the animal domain as well: when reach-
ing a dead-end in a maze, how will a rat know which 
of its previous actions was the erroneous one? And, 
conversely, when it finds the cheese in the maze, how 
will it know which actions should be credited with the 
success? This is the (in)famous  credit assignment prob-
lem  ( Sutton, 1978 ;  Barto  et al ., 1983 ;  Sutton and Barto, 
1998 ). RL methods solve the credit assignment prob-
lem by basing action selection not only on immediate 
outcomes but also on value predictions, such as those 
we discussed above, which embody long-term predic-
tions of future outcomes. 

   First, note that, given predictive state values such 
as those learned by TD learning, a person could select 
the best long-term action at each state if only he knew 
what state that action would lead to (e.g.,  McClure 
 et al ., 2003a ). That is, given the transitions between 
states, the best action to choose is the one that leads to 
the state with the highest value. In fact, TD learning 
was first used in this way to select actions in Samuel’s 
(1959) checker player. But what if this information is 
not available? For example, imagine deciding whether 
to buy or to sell a stock on the stock market – clearly, if 
you knew whether its price would increase or decrease 
as a result of your (and the rest of the market’s) 
actions, this would be a trivial decision. But what can a 
human or a rat do in the completely model-free 
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case – i.e., when it is not explicitly known how differ-
ent actions will influence the state of the environment? 

    Actor/critic Methods 

   In one of the first RL papers (which was inspired 
by neural network models of learning),  Barto  et al . 
(1983)  showed that the credit assignment problem 
can be solved by a learning system comprised of two 
neuron-like elements. One unit, the  “ adaptive critic 
element (ACE), ”  constructs an evaluation of different 
states of the environment, using a temporal-difference 
like learning rule from which the TD rule above was 
later developed. This evaluation is used to augment 
the external reinforcement signal and train a second 
unit, the  “ associative search element (ASE), ”  to select 
the correct action at each state through a trial-and-
error process. These two elements were the precursors 
of the modern-day actor/critic framework for model-
free action selection. 

   The insight in the ASE-ACE model, first due to 
 Sutton (1978) , is that even when the external reinforce-
ment for a task is delayed (as in the game of chess), 
a temporal-difference prediction error can convey, at 
every time-step, a  “ reinforcement ”  signal to the action 
just chosen. In the absence of external reinforcement 
( r t        �      0), the prediction error  δ ( t ) in equation (21.7) is 
equal to  γ V( S t    � 1 )  �   V ( S t  ); that is, it compares the val-
ues of two consecutive states. If the action has led to a 
state with a higher value than the previous state, this 
prediction error will be positive; if the situation has 
worsened due to the action taken, it will be negative. 
In the former case, the tendency to perform this action 
at this state should be increased (as the action has led 
to higher expected future rewards), while in the lat-
ter it should be decreased. Thus the agent can learn 
an explicit  policy  – a probability distribution over all 
available actions at each state  π ( S ,  a )      �       p ( a | S ), and an 
adequate learning rule for this policy is 

  π π η δπ( , ) ( , ) ( )S a S a tnew old� �   (22.9)    

   where  η   π   is the policy learning rate and  δ ( t ) is the pre-
diction error from equation (22.7).   

   Thus, in actor/critic models, a critic module esti-
mates state values  V ( S ) based TD learning from 
experience with the environment, and the same 
temporal-difference prediction error that is used to 
train the critic’s values is also conveyed to the actor 
module, which maintains and learns a policy  π  
( Figure 22.1   ). This method is closely related to policy 
improvement methods in dynamic programming 
( Sutton, 1988 ), and  Williams (1992)  has shown that 
in some cases the actor/critic can be construed as a 
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gradient-climbing algorithm for learning a parameter-
ized policy, which converges to a local minimum (see 
also  Dayan and Abbott, 2001 ). However, in the gen-
eral case actor/critic methods are not guaranteed to 
converge ( cf .  Baird, 1995 ;  Konda and Tsitsiklis, 2003 ). 
Nevertheless, some of the strongest links between 
reinforcement learning methods and neurobiological 
data regarding animal and human decision-making 
have been through the actor/critic framework. 
Specifically, actor/critic methods have been con-
vincingly linked to action selection and prediction 
learning in the basal ganglia (e.g.,  Barto, 1995 ;  Houk 
 et al. , 1995 ;  Joel  et al. , 2002 ), as will be detailed in the 
next section. (More recent work ( Morris  et al. , 2006 ; 
 Roesch  et al. , 2007 ) suggests that the learned values 
may be more sophisticated and actually represent a 
value function defined over state–action pairs (rather 
than simply over states independent of actions), for 
which the learning algorithm is slightly different – see  
Q -learning or SARSA, below.)  

    State–action Values 

   An alternative to actor/critic methods for model-
free RL is to explicitly learn the predictive value (in 
terms of future expected rewards) of taking a specific 
action at a certain state. Building on dynamic pro-
gramming methods of  “ policy iteration ”  ( Howard, 
1960 ), Watkins (1989) suggested  Q-learning , a modified 
temporal-difference method in which the agent learns 
the value  Q ( S ,  a ) of each state-action pair ( S ,  a ) rather 
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 FIGURE 22.1          Actor/critic architecture. The environment pro-
vides a state  S  and a reinforcement signal  r ( t ) to the critic, who uses 
these to compute a temporal difference prediction error (equation 
21.7). This prediction error is used to train the state value predic-
tions  V ( S ) in the critic as well as the policy  π ( S ,  a ) in the actor. Note 
that the actor does not receive information regarding the actual out-
comes of its actions. Rather, the prediction-error signal is a proxy 
to these, telling the actor whether the outcomes are better or worse 
than expected.    
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than value  V ( S ) of each state  S . The learning rule itself 
is quite similar to the state value learning rule above 

  Q S a Q S a tt t new t t old( ) ( ) ( ), , � � ηδ   (22.10)    

   however, the temporal-difference prediction error 
term which drives Q-learning is slightly different   

  
δ γ( )t r Q S a Q S at

a
t t t� � ��max ( , ) ( , )1

  
(22.11)

    

   where the max  a   operator means that the temporal dif-
ference is computed with respect to what is believed 
to be the best available action at the subsequent state 
 S t    � 1 . This method is considered  “ off-policy, ”  as it takes 
into account the best future action, even if this will 
not be the actual action taken at  S t    � 1 . In an alterna-
tive  “ on-policy ”  variant called SARSA (state–action–
reward–state–action), the prediction error takes into 
account the actual chosen action, which leads to:   

  δ γ( )t r Q S a Q S at t t t t� � �� �( , ) ( , )1 1   (22.12)      

   In both cases, given such  Q -values, action selection 
is easy, as the best action at each state  S  is that which 
has the highest  Q ( S ,  a ) value. Furthermore, dynamic 
programming results regarding the soundness and 
convergence of  “ policy iteration ”  methods (in which 
a policy is iteratively improved through bootstrap-
ping of the values derived given each policy;  Howard, 
1960 ;  Bertsekas and Tsitsiklis, 1996 ) ensure that if the 
proper conditions on the learning rate are met, these 
methods will indeed converge to the true optimal (in 
case of  Q -learning) or policy-dependent (in the case of 
SARSA) state–action values.    

    APPLICATION OF REINFORCEMENT 
LEARNING MODELS TO NEURAL DATA 

   In recent years, RL models like those highlighted 
above have been applied to a wide range of neu-
robiological and behavioral data. In particular, the 
computational functions of neuromodulators such 
as dopamine, acetylcholine, and serotonin have 
been addressed using a growing family of RL mod-
els. Among these neuromodulatory systems, the 
dopamine system has long attracted the most atten-
tion, perhaps due to its well-known connection with 
disease processes like drug addiction, Parkinson’s dis-
ease, and schizophrenia, as well as its role in reward 
learning and working memory. It is in elucidating the 
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role of dopamine signals in the brain that computa-
tional models of learning in general, and TD learning 
in particular, have had their most profound and sus-
tained impact on neuroscience. 

   Continuing in the spirit of a historical narrative, 
let us turn back two decades to the 1980s and early 
1990s of the previous century, when it became clear 
that antipsychotic medication (i.e., dopamine recep-
tor blockers), while mitigating many of the dramati-
cally troubling symptoms of schizophrenia (auditory 
hallucinations, paranoia, etc.), also caused hedonic 
blunting. That is, patients receiving this type of medi-
cation appeared to not derive pleasure from stimuli 
and behavioral acts formerly known to cause pleas-
ure. Dopamine receptor blockers were also shown to 
have detrimental effects on reward learning in labora-
tory animals. In light of these observations, Roy Wise 
proposed the  “ anhedonia hypothesis ”  of dopamine 
function (       Wise  et al ., 1978a, 1978b ). According to 
this proposal, the role of dopamine is to mediate the 
rewarding or primary motivational characteristics of 
natural stimuli such as food, water, and sex, as well 
as those of drugs of abuse ( Wise, 1982 ; for a recent 
review see  Wise, 2004 ). Specifically, this suggested 
that dopamine equals reward; that is, that there is 
an equivalence between the level of dopamine in the 
brain and  “ reward value. ”  Wise’s hypothesis initiated 
a surge of studies into the effects of neuroleptics on 
reward-mediated learning, and the results indicated 
that blocking dopamine is like removing the reward 
contingent on an animal’s actions (i.e., it causes extinc-
tion of responding, as if the reward is absent; see, for 
example,  Franklin and McCoy, 1979 ;  Willner  et al ., 
1987 ). The puzzle of the role of dopamine in the brain 
seemed close to being solved. 

   At that time, the lab of Wolfram Schultz, who pio-
neered single-unit recordings from the midbrain of 
awake and behaving monkeys, began recording the 
activity of dopaminergic neurons while monkeys 
underwent simple instrumental or Pavlovian condi-
tioning ( Romo and Schultz, 1990 ;  Ljungberg  et al ., 1992 ; 
 Schultz  et al ., 1993 ). As expected, these cells showed 
phasic bursts of activity when the monkey was given a 
rewarding sip of juice or a morsel of apple. Surprisingly, 
however, if food delivery was consistently preceded by 
a tone or a light, after a number of trials the dopamin-
ergic response to reward disappeared. Contrary to the 
anhedonia hypothesis, the lack of measurable dopamin-
ergic response to reward delivery did not accompany 
extinction, but rather acquisition – the monkeys began 
showing conditioned responses of anticipatory licking 
and arm movements to the reward-predictive stimulus. 
Indeed, not only the monkeys ’  responses to the tone, 
but also their dopaminergic neurons began responding 
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to the tone, showing distinct phasic bursts of activity 
whenever the tone came on. 

   This pattern of results was also true for the differ-
ence between self-initiated reaching for reward (in 
which case dopamine neurons responded phasically 
to touching the reward) versus cue-initiated move-
ments (in which case the neurons responded to the 
cue and not the reward). Rather than mediating the 
effects of affectively rewarding stimuli, it seemed that 
(quoting the conclusion sentences from papers of the 
time)  “ dopamine neurons exert a predominantly ena-
bling effect on neurons more directly involved in the 
internal generation of movement ”  ( Romo and Schultz, 
1990 : 592);  “ during acquisition of a simple behavioral 
task, dopamine neurons respond to unconditioned 
and conditioned salient stimuli that attract the atten-
tion of the animal, induce behavioral activation, and 
are associated with reward ”  ( Ljungberg  et al ., 1992 : 
145); and  “ dopamine neurons respond phasically to 
alerting external stimuli with behavioral significance 
whose detection is crucial for learning and performing 
delayed response tasks ”  ( Schultz  et al ., 1993 : 900); all 
this  “ while not conveying specific information about 
the physical characteristics of stimuli nor the emergent 
behavioral reaction ”  ( Romo and Schultz, 1990 : 592). 

   A resolution of this conundrum was suggested in 
the mid 1990s, when Read Montague, Peter Dayan, 
Terry Sejnowski, and colleagues noticed that this pat-
tern of dopaminergic responding throughout the 
course of learning conforms exactly to the characteris-
tics of a reward prediction error (           Montague  et al ., 1993, 
1994, 1995, 1996 ). Indeed, the hallmark of temporal-
difference prediction errors is that they occur only 
when events are not predicted. For instance, in a 
simulated Pavlovian conditioning scenario in which 
a tone CS is followed 2 seconds later by a food US, 
prediction errors arise as a result of the unexpected US 
early in training when the relationship between the 
CS and the US is not yet known ( Figure 22.2a   ), but not 
later in training when the CS comes to predict the US 
(Figure 21.2b). Providing that the CSs occur randomly 
and thus can not be predicted, at late stages of training 
they themselves generate a prediction error (similar 
to the one that had previously accompanied the US 
delivery) which can support second-order conditioning. 
Moreover, in trials in which the US is not delivered, 
a negative prediction error occurs at the precise time 
of the expected US delivery (Figure 21.2c; such pre-
cise timing also necessitates a stimulus representation 
that can track elapsed time, as detailed in the figure 
caption). 

   The close correspondence between the findings of 
Schultz and colleagues regarding phasic dopamin-
ergic firing patterns and these characteristics of a 
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temporal-difference prediction error ( Figure 22.2d–f ) 
led  Montague  et al . (1996)  to suggest the  reward-
prediction error theory of dopamine  (see also  Schultz  et al ., 
1997 ). (Interestingly, dopaminergic neurons do not 
seem to be involved in the signaling or prediction of 
aversive stimuli ( Mirenowicz and Schultz, 1996 ;  Tobler 
 et al ., 2003 ;  Ungless  et al ., 2004 ), in which the neuro-
modulator serotonin has been implicated instead 
( Daw  et al ., 2002 ).) Within this theoretical framework, 
it was immediately clear why dopaminergic neurons 
fire to unexpected rewards but not to those that are 
predicted by previous stimuli, and why dopamine is 
necessary for reward-mediated learning in the basal 
ganglia. Indeed, the shift in dopaminergic activity 
from the time of reward to the time of the predictor 
( Takikawa  et al. , 2004 ) resembles the shift of behav-
ioral responses from the time of the US to that of the 
CS in Pavlovian conditioning experiments ( Schultz 
 et al ., 1997 ;  Hollerman and Schultz, 1998 ). Moreover, 
the model explained why, after training, dopamine 
neurons did not fire above baseline in the time period 
between a predictive cue and the reward delivery – in 
the absence of new information, there are no predic-
tion errors at these intermediate times. From the point 
of view of downstream neural structures, continuous 
baseline firing of dopaminergic neurons can be inter-
preted as  “ things are just as expected. ”  

   The basic characteristics of phasic dopaminer-
gic responding have since been replicated in many 
variants ( Hollerman and Schultz, 1998 ;  Schultz, 1998 ; 
 Tobler  et al ., 2003 ;  Takikawa  et al ., 2004 ;  Bayer and 
Glimcher, 2005 ). In fact, recent work aimed at putting 
the prediction-error hypothesis to quantitative test 
has demonstrated that the correspondence between 
phasic dopaminergic firing and temporal-difference 
prediction errors goes far beyond the three basic char-
acteristics depicted in  Figure 21.2 . For instance, using a 
general regression model that does not assume temporal-
difference learning  a priori , Bayer and colleagues ( Bayer 
and Glimcher, 2005 ;  Bayer  et al ., 2007 ) have rigorously 
shown that the contribution of previously experienced 
rewards to the dopaminergic response to the reward in 
the current trial is exactly according to an exponentially 
weighted average of past experience (as is implicit in 
the temporal-difference learning rule; see  Figure 22.3   ). 
Moreover, conditioned stimuli predicting probabilistic 
rewards or rewards of different magnitudes have been 
shown to elicit a phasic dopaminergic response that is 
indeed proportional to the magnitude and/or probabil-
ity of the expected reward ( Fiorillo  et al ., 2003 ;  Morris 
 et al ., 2004 ;  Tobler  et al ., 2005 ;  Figure 22.4a, b   ), and firing 
patterns in tasks involving probabilistic rewards are in 
accord with a constantly back-propagating error signal 
( Niv  et al ., 2005b ;  Figure 22.4b, c ). Even in sophisticated 
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conditioning tasks such as blocking and appetitive 
conditioned inhibition,  Waelti  et al . (2001)  and        Tobler 
 et al . (2003, 2005)  have shown that the dopaminergic 
response is in line with the predictions of temporal-
difference learning. And in the timing domain, recent 
results show that the dopaminergic activity to a cue 
predicting a delayed reward is attenuated in propor-
tion to the delay ( Figure 22.5   ), as is expected from a 
signal predicting the expected sum of  discounted  future 
rewards ( Roesch  et al ., 2007 ). Finally, direct meas-
urements of extracellular dopamine in the nucleus 

accumbens (a brain area also referred to as ventral 
striatum; a major target for dopaminergic projections 
from the ventral tegmental area) using fast-scan cyclic 
voltammetry (which has subsecond temporal resolu-
tion) have confirmed that the phasic changes in levels 
of dopamine in target structures indeed conform quan-
titatively to a prediction error signal (Paul Phillips, per-
sonal communication; see also  Day  et al ., 2007 ; Chapter 
24 of this volume), despite the non-linearities between 
dopamine neuron firing and actual synaptic discharge 
of the transmitter ( Montague  et al ., 2004 ). 
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 FIGURE 22.2          (a–c) Temporal-difference prediction errors in a simple Pavlovian conditioning task. A tone CS is presented at random times, 
followed 2 seconds later with a food US. At the beginning of training (a), the affectively significant US is not predicted, resulting in predic-
tion errors. As learning progresses (trials 5 and 10 are plotted as examples), the prediction error propagates back ( Niv  et al ., 2005a ) as values 
of preceding timesteps are updated (equation 21.8). When the predictive relationships are completely learned (b), the now-predicted US no 
longer generates a prediction error, rather, the unpredicted occurrence of the CS is accompanied by a prediction error. If the US is unexpect-
edly omitted (c), a negative prediction error is seen at the time in which the US was expected, signaling that expectations were higher than 
reality. In these simulations, the CS was represented over time with the commonly used serial compound state representation ( Kehoe, 1977 , 
 Sutton and Barto, 1990 ), and there was no discounting ( γ       �      1). (d–f) Firing patterns of dopaminergic neurons in the ventral tegmental areas of 
monkeys performing an analogous instrumental conditioning task. Each raster plot shows action potentials (dots) with each row representing 
a trial, aligned to the time of the cue (or the reward). Bar histograms show the summed activity over the trials plotted below. When a reward is 
given unexpectedly, dopaminergic neurons respond with a phasic burst of firing (d). However, after conditioning with a predictive visual cue 
(which, in this task, predicted a food reward if the animal quickly performed the correct reaching response), the predicted reward no longer 
elicits a burst of activity, and the phasic burst now accompanies the presentation of the predictive cue (e). In  “ catch ”  trials, in which the food 
reward was unexpectedly omitted, dopaminergic neurons showed a precisely-timed pause in firing, below their standard background firing 
rate (f). Subplots 22.2 (d–f) adapted from  Schultz  et al ., (1997) . Note that the discrepancies between the simulation and the dopamine neuron 
firing patterns in terms of the magnitude and spread of the prediction errors at the time of the reward likely result from the temporal noise in 
reward delivery in the instrumental task, and the asymmetric representation of negative and positive prediction errors around the baseline fir-
ing rate of these neursons (Niv  et al ., 2005a).    
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 FIGURE 22.3          Dopaminergic responses depend on past rewards, as is predicted by temporal-difference learning. Here, single-unit record-
ings of dopaminergic neurons were conducted while monkeys performed a rewarded saccade task ( Bayer and Glimcher, 2005 ;  Bayer  et al. , 
2007 ). In this task, a visual cue signaled the start of a trial, after which the monkey could choose when to perform a saccade toward a target. 
The magnitude of the reward (volume of fruit juice) depended on the time of the saccade, such that a longer wait was rewarded with more 
juice, up to an unsignaled deadline, after which saccades earned no juice. This allowed for a range of prediction errors to be sampled. The 
monkey’s task was to learn to optimal time-to-look in order to receive the maximum reward. (a) Prediction errors at the time of the reward 
were regressed against the rewards in the past 10 trials, which should, according to TD learning, determine the amount of reward predicted 
(and thus the magnitude of the prediction error). In solid red is the dependency of the prediction error on past rewards as derived from the 
theoretical model (with a learning rate of  η       �      0.7; see  Bayer and Glimcher, 2005  for details), in black circles are the regression coefficients 
obtained from the data. The data are in close fit with the model prediction. (b) the measured prediction error is linear with the model-derived 
prediction error, at least in the domain of positive prediction errors (see  Bayer  et al ., 2007 , for data indicating that negative prediction errors are 
encoded by the length of the pause in firing, rather than the magnitude of the pause below the baseline firing rate). Figure adapted from  Bayer 
and Glimcher, 2005 .      
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 FIGURE 22.4          Dopaminergic responses comply with the predictions of temporal-difference learning. (a) Phasic prediction errors at the time 
of a cue predicting reward are proportional to the magnitude of the predicted reward (adapted from  Tobler  et al ., 2005 ). (b, c) When different 
cues predict the same reward but with different probabilities, the prediction error at the time of the cue is proportional to the predicted proba-
bility of reward (red rectangles; compare panel (b) (data) to panel (c) (TD simulation)). However, due to the low baseline firing rate of midbrain 
dopaminergic neurons, negative prediction errors cannot be encoded with as deep a  “ dip ”  in firing rate as is the height of the  “ peak ”  by which 
positive prediction errors are encoded. As a result, when rewards are probabilistic, averaging over rewarded and unrewarded trials will cre-
ate an apparent ramp leading up to the time of the reward (green rectangles; compare panel (b) (data) to panel (c) (TD simulation)). Panel (b) 
adapted from  Fiorillo  et al ., 2003 ; Panel (c) adapted from  Niv  et al ., 2005a .        
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do not fully prescribe the form of the reward-prediction 
error in tasks involving action selection. As mentioned 
above, different computational algorithms, namely 
actor/critic,  Q -learning and SARSA, make different 
predictions regarding the nature of the cue-related 
prediction error ( Niv  et al ., 2006b ), making electro-
physiological evidence critical in constraining the 
algorithm actually used by the brain. In a recent study, 
 Morris  et al . (2006)  trained monkeys with cues predict-
ing reward with different probabilities. Interestingly, 
in  “ catch ”  trials, in which the monkeys were given 
a choice between two cues, the cue-elicited predic-
tion errors matched best the errors corresponding 
to the cue that would subsequently be chosen. This 
is contrary to the straightforward predictions of an 
actor/critic mechanism, and more in line with SARSA 
learning. However, data from rats performing a more 
dynamic odor-discrimination task ( Roesch  et al ., 2007 ) 
and from monkeys engaged in a difficult random-dot 
motion discrimination task ( Nomoto  et al ., 2007 ) sug-
gest that predictions (and thus prediction errors) can 
be sensitive to the information available at every time-
point, representing stimuli before a choice is made, 
and representing the chosen cue only later. These dif-
ferent results can be incorporated into one learning 
scheme using appropriate representation of the states 
in the task, an issue that we shall return to in the last 
section of this chapter. 

   To end this section, we should mention that there 
are alternative psychological theories regarding the 
role of dopamine in conditioned behavior (for a 
recent debate-style review, see  Berridge, 2007 ). These 
include Redgrave and colleagues ’   “ incentive sali-
ence ”  (see, for example,  Redgrave  et al ., 1999 ;  Horvitz, 
2000 ;  Redgrave and Gurney, 2006 ), Berridge and 
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   Note that the prediction-error theory of dopamine 
is a  computationally precise  theory of the  generation  of 
phasic dopaminergic firing patterns. It suggests that 
dopaminergic neurons combine their diverse affer-
ents (which include inputs from the medial prefron-
tal cortex, the nucleus accumbens shell, the ventral 
pallidum, the central nucleus of the amygdala, the 
lateral hypothalamus, the habenula, the cholinergic 
pedunculopontine nucleus, the serotoninergic raphe, 
and the noradrenergic locus coeruleus;  Christoph 
 et al ., 1986 ;  Floresco  et al ., 2003 ;  Geisler and Zahm, 
2005 ;  Matsumoto and Hikosaka, 2007 ;  Kobayashi 
and Okada, 2007 ) to compute a temporal-difference 
reward-prediction error. Moreover, it suggests that 
dopamine provides target areas with a neural sig-
nal that is theoretically appropriate for controlling 
learning of both predictions and reward-optimizing 
actions. Following the analogy between the dopamine 
signal and the temporal-difference prediction-error 
signal in actor/critic models ( Joel  et al ., 2002 ), it has 
been suggested that the signal reported by dopamin-
ergic neurons in the ventral tegmental area to ventral 
striatal and frontal target areas, is used to train predic-
tions (as in the critic;  Barto, 1995 ;  Waelti  et al ., 2001 ), 
while a similar signal reported by dopaminergic neu-
rons in the substantia nigra pars compacta to dorsal 
striatal target areas is used to learn an action-selection 
policy (as in the actor;  Miller and Wickens, 1991 ; 
 Wickens and Kötter, 1995 ;  Houk  et al ., 1995 ;  Joel and 
Weiner, 1999 ). 

   Recently, the role of phasic dopamine in action 
selection was assessed by combining non-trivial 
decision-making tasks in rodents or monkeys with 
single-cell recordings of dopaminergic activity. This is 
especially interesting, as temporal-difference methods 
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 Roesch et al. (2007) .    
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Robinson’s  “ wanting ”  versus  “ liking ”  (e.g.,  Berridge 
and Robinson, 1998 ;  Berridge, 2007 ), and ideas about 
dopamine signaling uncertainty ( Fiorillo  et al ., 2003 ). 
A discussion of the merits and pitfalls of the different 
theories is beyond the scope of this chapter, and in 
many cases would involve the less-than-satisfactory 
comparison of qualitative suggestions to quantitative 
predictions of an RL model. Nevertheless, in as far as 
these theories are indeed fundamentally different from 
the prediction-error theory (which is not always clear), 
it is our opinion that, to date, no alternative has mus-
tered as convincing and multidirectional experimental 
support as the prediction-error theory of dopamine.  

    EVIDENCE FROM IMAGING OF HUMAN 
DECISION-MAKING 

   Although animal conditioning can display com-
plex phenomena that are still well beyond our current 
understanding of the brain, ultimately we are interested 
in understanding human decision-making, the com-
putations that underlie it, and the relationship of these 
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computations to neural mechanisms. While the char-
acteristics of human conditioning are similar to those 
of animal conditioning, the possibility of instruct-
ing subjects verbally allows for much more elaborate 
paradigms in human experiments. Of course, there 
are severe limitations on our ability to measure neural 
processes in humans. One technique that has recently 
been brought to the forefront is functional magnetic 
resonance imaging (fMRI), in which metabolic corre-
lates of neural activity can be measured non-invasively, 
albeit at low temporal and spatial resolution (seconds 
and millimeters, respectively), and subject to noisy 
measurements (typically necessitating averaging over 
trials or subjects). 

   One great advantage of fMRI is that it allows imag-
ing of activity throughout the entire brain, rather than 
in only a small population of neurons. Using fMRI as 
the neural probe of choice places a premium on using 
precise computational models of decision-making. 
A model-driven analysis also affords a special insight 
into brain function: the models identify  hidden 
variables  that control behavior, such as state values 
or prediction errors, for which we can search in the 
brain. This is different from the more straightforward 
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 FIGURE 22.6          BOLD correlates of reward-prediction error in a Pavlovian and an instrumental task can be anatomically dissociated. 
(a) Correlates of a reward-prediction error signal are seen in the ventral striatum (specifically, in the ventral putamen) in both an instrumental 
task involving action selection in order to maximize rewards, and a yoked Pavlovian task in which the subject observes choices made by the 
computer. (b) The conjunction of the activations verifies a similar involvement of the ventral striatum in both task variants. (c) However, cor-
relates of reward-prediction errors are seen in the dorsal striatum only in the instrumental task. (d) Coefficient estimates for the prediction 
error at the time of the stimulus (PE_cs) and the reward (PE_ucs) for each task, from the peak voxel for the contrast: instrumental prediction 
error      �      Pavlovian prediction error. Figure adapted from  O’Doherty  et al ., 2004 .          
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identification of the neural correlate of perception or 
motor behavior, and even goes beyond a search for 
the correlates of abstract entities (such as  “ reward ”  or 
 “ preference; ”  e.g.,  O’Doherty  et al ., 2002 ) because the 
computational model can quantitatively specify the 
dynamics of a hidden variable within a non-stationary 
learning and decision-making task. Identifying a 
neural correlate of such a signal advances our under-
standing of the brain in a way that would not be 
possible without the model. Of course, this can also 
lend powerful support for the model that gave rise 
to the specific values of the hidden variable: models 
that suggest different relationships between external 
events (stimuli and rewards) and internal represen-
tations (values and preferences) can be compared by 
testing how well activity in different brain areas cor-
relates to the specific predictions of each model. With 
these general issues in mind, we turn below to the spe-
cific use of RL models in identifying learning signals 
(e.g. reward-prediction errors) and value-dependent 
responses in the human brain. 

   The first fMRI studies to search for prediction errors 
in humans implicated the nucleus accumbens and the 
orbitofrontal cortex ( Berns  et al ., 2001 ;  Knutson,  et al ., 
2001a ;  Pagnoni  et al ., 2002 ), both major dopamin-
ergic targets.  O’Doherty  et al . (2003)  and  McClure 
 et al . (2003b)  then used a hidden-variable analysis 
technique to identify the neural correlates of model-
derived temporal-difference prediction errors. These 
studies again implicated the nucleus accumbens (the 
ventral striatum) and the putamen (part of the dorsal 
striatum). Later, functional imaging was used to dis-
tinguish between potential sites of Pavlovian versus 
instrumental learning:  O’Doherty  et al . (2004)  showed 
that fMRI correlates of prediction-error signals can 
be dissociated in the dorsal and ventral striatum 
according to whether an action is required in order to 
obtain reward. For passive prediction-learning tasks 
the reward-prediction error was evident only in the 
ventral striatum, while in active tasks it was evident 
in both the ventral and the dorsal striatum ( Figure 
22.6   ). These findings and the model-based analysis 
that uncovered them suggest that stimulus–response 
learning typical of actor/critic circuits in humans may 
be associated with activation in the dorsal striatum. 

   Indeed, correlates of prediction errors in the dorsal 
and ventral striatum have now been seen in multiple 
studies (see, for example,  Li  et al ., 2006 ;  Preuschoff 
 et al ., 2006 ;  Schönberg  et al ., 2007 ). Note, however, that 
the fMRI results cannot isolate dopaminergic activ-
ity from other activity in the brain. Furthermore, the 
measured blood oxygen level dependent (BOLD) sig-
nal in a brain area has been suggested to be correlated 
with local field potentials implying a correlation with 
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the afferent inputs to and the local processing in a 
brain region ( Logothetis, 2003 ), rather than the spik-
ing activity of neurons within the region. (Local field 
potentials are electrophysiological signals that are 
related to the sum of all dendritic synaptic activity 
within a volume of tissue, thus they are dominated by 
the arrival of action potential along axons that termi-
nate in the area, rather than the firing of neurons in 
that area. The local field potential is believed to rep-
resent the synchronized input into the observed area, 
as opposed to the spike data, which represent the 
output from the area.) Thus, prediction-error corre-
lates in areas of the striatum and the prefrontal cortex 
are fully in line with the fact that these are the major 
targets for dopaminergic influence. Furthermore, 
dopaminergic manipulations (e.g., administration of 
dopamine enhancers (agonists) or dopamine receptor 
blockers (antagonists)) in such tasks have been shown 
to influence both the BOLD measurement of predic-
tion-error activity and learning and action selection 
( Pessiglione  et al ., 2006 ), and recent results show that 
better learners show a higher correlation of striatal 
BOLD with a reward-prediction error ( Schönberg 
 et al ., 2007 ). Of course, these areas are also targeted by 
other afferents, most notably the neuromodulator  sero-
tonin , which has been suggested as the counterpart to 
dopamine in the domain of punishment ( Daw  et al ., 
2002 ), and might explain why BOLD correlates of posi-
tive prediction errors for pain and punishment have 
also been found in the striatum ( Seymour  et al ., 2004 ; 
 Jensen  et al ., 2007 ;  Menon  et al ., 2007 ). The relative 
contribution of many neural signals to the measured 
BOLD responses in these regions awaits more precise 
pharmacological manipulations and perhaps a serious 
technological advance. 

   Note also that, without temporal specificity and an 
analysis that specifically aims to tease apart different 
components of the reinforcement learning model, it is 
not easy to distinguish between prediction errors and 
state values at the time of a stimulus. This is because 
the prediction error at the time of an unpredicted stim-
ulus is  δ (t)      �       V ( stimulus ) –  V ( baseline ), which, if we 
take  V  ( baseline ) to be 0, is exactly equal to  V ( stimulus ). 
Indeed, many studies have implicated the striatum in 
representing the anticipated value of outcomes (e.g., 
 Knutson  et al ., 2001a ;  Delgado  et al ., 2003 ;  Knutson 
 et al ., 2003 ), and it is not always clear whether the 
measured activation is distinct from that attributable 
to a prediction error. In any case, electrophysiological 
data show that the striatum is definitely a viable can-
didate for representing state values (e.g.,  Schultz  et al ., 
1992 ;  Samejima  et al ., 2005 ). Studies in which outcomes 
involved both gains and losses have further implicated 
the striatum in the anticipation of losses, not only 
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gains, with a decrease in activity correlated with the 
anticipated loss. Moreover, the degree of deactivation 
to losses compared to activation to gains ( “ neural loss 
aversion ” ) in the nucleus accumbens and the prefron-
tal cortex was predictive of individual differences in 
behavioral loss aversion ( Tom  et al ., 2007 ). Finally, 
outcome values themselves (as well as subjective 
preferences) have been associated with activations in 
areas such as the ventromedial prefrontal cortex and 
the orbitofrontal cortex (e.g.,  Knutson  et al ., 2001b ; 
 O’Doherty  et al ., 2002 ;  Knutson  et al ., 2003 ;  McClure 
 et al ., 2004 ). 

   The promise of model-driven analysis of imaging 
data has yet to be fully realized, and the link between 
computational models of learning and the brain does 
not end with the identification of the reward-prediction 
error signal. Recent work has used such a hidden-
variable analysis coupled with a reinforcement learn-
ing model to investigate the neural substrates of 
exploration ( Daw  et al ., 2006 ). In  “ market-like ”  tasks, 
model-based approaches have identified learning sig-
nals related to so-called fictive outcomes (what might 
have happened but didn’t, also called countefactuals; 
 Lohrenz  et al ., 2007 ) and a hierarchical RL model has 
been used to demonstrate that the brain tracks the vol-
atility (or rate of change) of the environment ( Behrens 
 et al ., 2007 ). Furthermore, contrasting model-free tem-
poral-difference learning with model-based learning 
algorithms that exploit the higher order structure of 
the learning task,  Hampton  et al . (2006)  have begun 
to reveal the neural mechanisms of more model-
based forms of human learning. One approach that 
is becoming increasingly common is the use of func-
tional imaging in combination with pharmacological 
challenges (e.g.,  Pessiglione  et al ., 2006 ) or with radio-
ligand-labeled positron emission tomography (e.g., 
 Zald  et al ., 2004 ) to test more directly the  causal predic-
tions  and  pharmacological hypotheses  of reinforcement 
learning models in human subjects ( Knutson and 
Gibbs, 2007 ), respectively.  

    BEYOND PREDICTION ERRORS AND 
PHASIC DOPAMINE 

   The theoretical importance of prediction errors and 
prediction learning is undeniable. However, other 
computationally important signals have been posited 
and associated with neural function. In this section, we 
briefly discuss other components of learning beyond 
those of prediction errors, and how these might be 
related to different aspects of neuromodulation in 
the brain. We begin by applying the reinforcement 
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learning framework to decisions about how fast (or 
with what vigor) to behave. This highlights the role 
played by the passage of time (specifically, the oppor-
tunity cost of time in terms of devoting time to one 
action rather than another) in ongoing decision-making. 
We focus on a recent model that shows that the net 
rate of rewards quantifies the opportunity cost of 
time, and discuss the proposal that this quantity is 
represented by tonic levels of dopamine in the stria-
tum ( Niv  et al ., 2007 ;  Niv, 2007a ). Dopamine has 
been argued to convey (at least) two separate sig-
nals to efferent (downstream) structures (e.g.,  Grace, 
1991 ;  Floresco  et al ., 2003 ): On the one hand, firing of 
dopaminergic neurons induces large but short-lived 
changes in the amount of dopamine in a synapse 
(a  “ phasic ”  signal, predominantly affecting D1-type 
low-affinity dopamine receptors). On the other hand, 
extrasynaptic levels of dopamine change on a much 
slower timescale (a  “ tonic ”  signal which affects high 
affinity D2-type dopamine receptors). The computa-
tional and theoretical differences between phasic and 
tonic aspects of prediction highlight the importance 
of carefully treating different timescales of dopamine 
signaling, and suggest that dopamine can simultane-
ously fulfill several roles in decision-making, without 
contradiction. 

   In the second part of this section, we discuss nor-
mative adaptations of the rate of learning to the 
decision-making task and the statistics of the environ-
ment. Bayesian inference models such as the Kalman 
filter show how different forms of uncertainty about 
the environment should affect the rate of learning, 
and the degree of reliance on previous experience. 
These effects have recently been associated with both 
acetylcholine and norepinephrine and their effects on 
learning and inference (       Yu and Dayan, 2002, 2005 ), 
considerably enhancing our understanding of the 
neural basis of learning. 

    Tonic Dopamine and the Choice of 
Response Vigor 

   It is somewhat of a curiosity that although the tra-
dition in animal experimentation is to investigate the 
determinants of  rates  of responding (as in Skinner’s 
investigations of key-pecking in pigeons or lever-
pressing in rats, so called  “ free-operant ”  experiments 
because the animal is free to choose when to respond 
and no trial structure is imposed on behavior), rein-
forcement learning models of conditioning have con-
centrated exclusively on the choice of discrete actions 
at pre-specified timepoints (as in a discrete trial two-
alternative choice experiment). However, real-life 
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decisions most often take place in continuous time. 
In fact, every choice of action, even that in a discrete 
trial setting, is accompanied by a choice of the  speed  or 
 vigor  with which that action will be performed. This 
decision gives rise to response rates in free operant 
behavior, to running times in mazes, and to reaction-
time data in discrete settings. It also interacts with the 
influences of motivation on behavior – a hungry rat 
running down a maze in search of food will run faster 
than a sated rat. 

   That reinforcement learning has, until recently, 
wholly ignored this aspect of decision making may 
be due to the historical origins of reinforcement learn-
ing theory in computer science. In simulations, or in 
robot decision-making, decisions can only occur in 
synchrony with a discrete CPU clock. However, the-
ory does exist that deals with continuous time: this 
is  average reward  reinforcement learning in a  semi-
 Markov decision process ( Schwartz, 1993 ;  Doya, 2000 ; 
 Daw  and  Touretzky, 2002 ). Building on this theoreti-
cal framework,  Niv  et al.  (2005a)  recently proposed 
a reinforcement learning model of optimal rates of 
responding. In this model of instrumental condition-
ing, every choice of action is accompanied by a choice 
of a  latency  with which to perform that action, such 
that the net overall rate of rewards is maximized. The 
model successfully replicates and explains the funda-
mental characteristics of free operant response rates 
( Niv, 2007b ), and explains how motivational states 
should affect decision-making ( Niv  et al. , 2006a ). 

   Importantly, the average reward framework high-
lights an important factor that determines optimal 
responding: the net rate of rewards, that acts as the 
opportunity cost of time. To illustrate this, imagine a 
rat pressing a lever in order to obtain food. Suppose 
that through previous behavior food had been accrued 
at a rate of four pellets per minute. When contemplat-
ing devoting 5 seconds to executing the next lever-
press, the potential benefit of this action (i.e., the 
probability of its generating reward, and the magni-
tude of this reward) should thus be weighed against 
both the (motor and other) costs of performing the 
action at this speed, and the opportunity cost of time, 
i.e., the potential loss of (on average) one in three 
reward pellets due to devoting time to this action 
rather than continuing to behave according to the 
previous policy. Because of this cost/benefit tradeoff, 
the model predicts that when the net rate of rewards 
is higher all actions should optimally be performed 
faster, as a result of the elevated opportunity cost ( Niv 
 et al ., 2007 ). 

   How does this relate to decision-making in the brain? 
Note that the prediction-error theory of dopamine con-
centrates on only one aspect of dopaminergic activity 
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and influence: the effect of  phasic  dopaminergic signal-
ing on learning and plasticity. However, dopamine neu-
rons operate in both a phasic and a tonic mode ( Grace, 
1991 ;  Weiner and Joel, 2002 ;  Bergstrom and Garris, 
2003 ;  Floresco  et al ., 2003 ;  Goto and Grace, 2005 ), and 
affect not only synaptic plasticity, but also membrane 
potentials and neural excitability, which may be par-
ticularly sensitive to tonic levels of dopamine ( Nicola 
 et al ., 2000 ;  Schultz, 2002 ). Furthermore, the effects of 
dopaminergic manipulations such as lesions, antago-
nism, or agonism, are first and foremost seen in the 
vigor of ongoing behavior, rather than in learning proc-
esses. For instance, a multitude of studies has shown 
that injections of 6-hydroxydopamine into the nucleus 
accumbens, which causes the death of dopaminer-
gic neurons projecting to that area, profoundly reduce 
the rate of instrumental responding (for a review, see 
 Salamone and Correa, 2002 ). As a result, dopamine in 
the striatum has been linked to invigorating Pavlovian 
and instrumental responding ( Ikemoto and Panksepp, 
1999 ;  Salamone and Correa, 2002 ). 

   Combining these lines of evidence, Niv and col-
leagues have suggested that tonic levels of striatal 
dopamine represent the net rate of rewards. (In fact, 
if the tonic level of dopamine reflects spillover from 
phasic prediction error signals averaged over a longer 
time-frame due to slow reuptake, it follows compu-
tationally that it would, by default, equal the net rate 
of obtained rewards.) This hypothesis, dovetailing 
neatly with both computational theories regarding 
phasic dopamine signals and appetitive prediction 
errors, and psychological theories about dopamine’s 
role in energizing responses, provides the first norma-
tive explanation for the critical role that tonic levels of 
dopamine play in determining the vigor of respond-
ing. It also suggests a route by which dopamine 
could mediate the effects of motivation on response 
vigor.  

    Acetylcholine and Norepinephrine and the 
Optimal Rate of Learning 

   One issue that we have not yet discussed relates to 
the assumption, in both the Rescorla-Wagner model 
and the temporal-difference model, that the predictions 
of multiple stimuli are simply added up to form the 
total prediction of reward. At this point, we can treat 
this as but a simplification: even the Rescorla-Wagner 
model allowed for different learning rates for differ-
ent stimuli (for instance, based on their salience, as in 
overshadowing), implying that the prediction error 
should not affect all stimuli equally. A natural exten-
sion of this idea is to allow for stimuli to contribute 

 p0500  p0500 

 s0120  s0120 

 p0510  p0510 

BEYOND PREDICTION ERRORS AND PHASIC DOPAMINE

CH022.indd   343CH022.indd   343 5/14/2008   5:33:08 PM5/14/2008   5:33:08 PM



IV. UNDERSTANDING VALUATION LEARNING VALUATION

22. THEORETICAL AND EMPIRICAL STUDIES OF LEARNING344

GLIMCHER 978-0-12-374176-9 00022

differentially to the overall prediction itself. Here 
again, control theory can inform us regarding the 
optimal combination of predictions and allocation of 
learning to different predictors. Simply put, unreliable 
stimuli, those with which we have had less experi-
ence and thus know less about, should contribute less 
to the prediction. As in the more general statistical 
problem of combining multiple sources of evidence, 
this implies a competitive interaction between predic-
tors, with the most reliable predictor weighted most 
heavily in an overall weighted average. Conversely, 
when a prediction error occurs, more learning should 
be devoted to the stimuli about which there is most 
uncertainty that is, they should take responsibility for 
most of the prediction error ( Dayan and Kakade, 2000 ; 
 Dayan  et al ., 2000 ). 

   These ideas are formally couched in statistically 
optimal Bayesian inference in the Kalman filter model. 
The Kalman filter assumes an underlying generative 
model in which each stimulus gives rise to observa-
tions (rewards) distributed according to a Gaussian 
distribution. Furthermore, it assumes that the proc-
ess by which the rewards are observed (or measured) 
is prone to Gaussian noise. Different from Rescorla-
Wagner or temporal difference learning, the learning 
process in this case must infer the mean reward asso-
ciated with each stimulus while taking into account 
these two sources of variability. Optimal Bayesian 
inference dictates tracking not only the mean pre-
dicted reward, but also the uncertainty in this mean 
as observations accumulate (thus the learning process 
includes two learning or update rules). However, the 
optimal learning rule for the mean is rather similar to 
the Rescorla-Wagner learning rule with an additional 
adjustment of the learning rate based on the different 
sources of variance and on the tracked uncertainty 
( Dayan  et al ., 2000 ). 

    Yu and Dayan (2005)  have further analyzed the 
effects of uncertainty on learning and inference in a 
noisy and constantly changing environment. Their 
model accounts for two types of uncertainty:  expected  
uncertainty that arises from known variability in pre-
dictors in the environment, and  unexpected  uncer-
tainty due to sudden unforeseen changes in the 
environment. Building on physiological, pharmaco-
logical, and behavioral data, they hypothesize that 
the first source of uncertainty is signaled by acetyl-
choline and the second by norepinephrine. Inference 
in their model is considerably more complex than in 
the case of the Kalman filter, and approximations are 
needed to render it feasible for a neural mechanism. 
In terms of neuromodulation, while acetylcholine and 
norepinephrine are synergistic in the learning proc-
ess, their relationship in inference is antagonistic – 
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inconsistencies between prediction and observation must 
be attributed either to expected or to unexpected uncer-
tainty. If the former is low, the inference will be of an 
unexpected change in the environment; conversely, when 
the environment is deemed very stable, prediction errors 
imply higher (expected) variability of the predictors.   

    WHAT’S MISSING? CHALLENGES AND 
FUTURE DIRECTIONS 

   RL models are now used routinely to design and 
interpret a wide range of reward learning and deci-
sion-making experiments; however, we view this suc-
cess only as an important starting point. One of the 
reasons that RL models have been successful is that 
they have been made extremely simple and have been 
tested in very simple experimental settings. In this last 
section, we point out some of the experimental data 
that challenge RL models and separate what we con-
sider to be real challenges from confusion arising from 
a lack of clarity about the nature of the claims made 
by the modeling efforts. 

   The first challenge emerges from a range of 
responses of dopamine neurons to stimuli not clearly 
related to reward prediction. For example, novel 
stimuli have been shown to cause phasic bursts in 
dopamine neurons ( Schultz, 1998 ) including even 
nociceptive stimuli ( Coizet  et al ., 2006 ). By virtue of 
being novel, such stimuli should not be predictive of 
any outcome, aversive or appetitive. However, learn-
ing and perception are not done on the background of 
a blank slate. It is reasonable to think that generaliza-
tion to previously encountered stimuli would play a 
critical role in the initial appraisal of a novel stimulus. 
If the experimental (or the general ecological) scenario 
is such that animals have learned to expect that stim-
uli predict rewards (as is the case in many experimen-
tal situations), it is not surprising that new stimuli will 
be treated optimistically.  Kakade and Dayan (2002)  
directly addressed this possibility, and furthermore 
suggested that the novelty responses can function as 
novelty bonuses that enhance exploration of novel 
stimuli. In this account, novelty itself acts as a reward 
and combines with current reward information  r ( t ) 
to form a reward signal sensitive to novelty, that is, 
 r new  ( t )      �       r ( t )      �       novelty ( S t  ). Kakade and Dayan show 
how this simple maneuver accounts in detail for the 
reported novelty responses of dopamine neurons (for 
instance, for the observation that the novelty burst is 
frequently followed immediately by a dip of the firing 
rate below baseline) yet still explains how they also 
communicate a reward prediction error. 
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   One would hope that this rather innocuous-looking 
change in the model did not change appreciably what 
it learns. In fact, as shown by  Ng  et al . (1999) , it does 
not, and Kakade and Dayan demonstrate clearly how 
to apply these results to the anomalous dopaminergic 
data. One issue brought to the forefront by this work 
is whether the dopamine system responds to aver-
sive stimuli, and whether there should be an oppo-
nent system interacting with the information encoded 
in dopaminergic activity. This possibility is currently 
under development ( Daw and Touretzky, 2000 ;  Daw 
 et al ., 2002 ;  Doya, 2002 ). 

   A second challenge for RL models in explaining 
dopaminergic function has arisen primarily due to 
the complaint that the putative reward-prediction 
error responses are too short-lived to account for the 
kinds of learning that they direct ( Redgrave  et al ., 
1999 ;  Redgrave and Gurney, 2006 ). The basis for this 
challenge appears to relate to the issue of how a short 
burst of dopaminergic activity, and its putative trans-
lation into dopamine release in target areas, could 
account for physiological changes (like no dopamin-
ergic response to a future expected reward) well into 
the future. To our understanding this is not a relevant 
challenge to RL models of dopamine function: in the 
models there is a clear distinction between the carriers 
of state value (which bridge the temporal gaps) and 
the reward-prediction errors (which are phasic). While 
the latter function is ascribed to dopamine, the former 
never was. Rather, it is presumed to be carried by corti-
cal and/or striatal neurons that show sustained firing. 

   A related issue has emerged due to comparisons 
across vastly different experimental methods and 
time-scales. Longer-term changes in dopamine, as 
measured by a technique known as microdialysis, are 
marshaled as evidence for dopamine’s role in what 
has been called  incentive salience . Much has been writ-
ten on this subject, but the argument is well sum-
marized in  Berridge (2007) . Here, we would like to 
clarify what we think is limiting about the nature of 
the debate. In his summary of the issue, Kent Berridge 
states 

 Debate continues over the precise causal contribution made 
by mesolimbic dopamine systems to reward. There are three 
competing explanatory categories:  “ liking ” , learning, and 
 “ wanting ” . Does dopamine mostly mediate the hedonic 
impact of reward ( “ liking ” )? Does it instead mediate learned 
predictions of future reward, prediction error teaching sig-
nals and stamp in associative links (learning)? Or does 
dopamine motivate the pursuit of rewards by attributing 
incentive salience to reward-related stimuli ( “ wanting ” )? 

 ( Berridge, 2007 : 391).   

   In our view, the confusion here derives from at 
least three clear sources: (1) setting up the problem 
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as though these separate questions are mutually 
exclusive; (2) comparing qualitative explanations 
in psychological terms like  “ wanting ”  and  “ liking ”  
to quantitative models that match dopamine spike 
data to differential equations; and (3) a comparison 
of dopamine changes at vastly different time-scales. 
In Berridge’s review, microdialysis measurements 
of dopamine levels under various behavioral chal-
lenges are compared to the reward-prediction error 
models that account for spike data. To be clear about 
the scope of the RL model of dopaminergic function, 
it applies strictly to rapid transients in spike rates in 
the 50–250 millisecond range and does not apply to 
other time-scales of dopaminergic modulation that 
may well carry other information important for cogni-
tive processing and behavioral control. The examples 
above analyzed by  Kakade and Dayan (2002)  illustrate 
this issue. For example, the temporal-difference model 
is agnostic with regard to baseline dopamine levels or 
even fluctuations on slightly slower time-scales (e.g., 
minutes to hours). Consequently, the model would 
not account for microdialysis results whose measure-
ments lie in these temporal regimes. 

   The last challenge is really an area of opportunity. 
Creatures ranging from sea slugs (e.g.,  Aplysia ) to 
humans appear to be equipped with reinforcement 
learning systems – systems that broadcast some kind 
of evaluation signal to widespread regions of the 
nervous system and influence learning and decision-
making. A large body of neurobiological and behav-
ioral data support such a position. In general, RL 
systems can be quite fast and efficient at learning, pro-
vided that the creature is pre-equipped with represen-
tations appropriate to the RL problems that it will face 
(see  Dayan and Abbott, 2001 ). In the absence of appro-
priate representations, RL systems often perform mis-
erably. Not much is known about how RL problems 
are represented in the human brain or how such rep-
resentations should be modified by experience. This 
is an open future challenge for RL models; that is, to 
design experimental probes that reveal the structure 
of underlying representations.  

    CONCLUSION 

   To summarize, computational models of learning 
have done much to advance our understanding of deci-
sion making in the last couple of decades. Temporal-
difference reinforcement learning models have 
provided a framework for optimal online model-free 
learning, which can be used by animals and humans 
interacting with the environment in order to learn to 
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predict events in the future and to choose actions such 
as to bring about those events that are more desirable. 
Investigations into the decision-making behavior of 
both animals and humans support the existence of 
such a mechanism, controlling at least some types 
of rational behavior. The prediction-error hypothesis 
of dopamine has further linked these algorithmic ideas 
to possible underlying neural substrates, specifically, to 
learning and action selection in the basal ganglia mod-
ulated by phasic dopaminergic signals. Converging 
evidence from a wide variety of recording and imag-
ing methods supports this hypothesis. 

   It seems that reinforcement learning has been most 
powerful (unfortunately for neuroscience, almost 
unique) in tying together the three levels – computa-
tion, algorithm, and implementation ( Marr, 1982 ) – 
into one coherent framework that is used not only for 
gleaning understanding, but also for shaping the next 
generation of experimental investigations. Whether 
the theory can be elaborated to account for results of 
future experimentation without losing its simplicity 
and elegance, or whether it is eventually abandoned 
and replaced by a newer generation of computational 
learning theories, reinforcement learning has already 
left its permanent mark on the study of decision-
making in the brain.  
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