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In this paper we consider some well-known facts in syntax from a physics perspective, which
allows us to establish some remarkable equivalences. Specifically, we observe that the operation
MERGE put forward by N. Chomsky in 1995 can be interpreted as a physical information coarse-
graining. Thus, MERGE in linguistics entails information renormalization in physics, according to
different time scales. We make this point mathematically formal in terms of language models, i.e.,
probability distributions over word sequences, widely used in natural language processing as well as
other ambits. In this setting, MERGE corresponds to a 3-index probability tensor implementing a
coarse-graining, akin to a probabilistic context-free grammar. The probability vectors of meaningful
sentences are naturally given by stochastic tensor networks (TN) that are mostly loop-free, such as
Tree Tensor Networks and Matrix Product States. These structures have short-ranged correlations
in the syntactic distance by construction and, because of the peculiarities of human language,
they are extremely efficient to manipulate computationally. We also propose how to obtain such
language models from probability distributions of certain TN quantum states, which we show to
be efficiently preparable by a quantum computer. Moreover, using tools from quantum information
and entanglement theory, we use these quantum states to prove classical lower bounds on the
perplexity of the probability distribution for a set of words in a sentence. Implications of these
results are discussed in the ambits of theoretical and computational linguistics, artificial intelligence,
programming languages, RNA and protein sequencing, quantum many-body systems, and beyond.
Our work shows how many of the key linguistic ideas from the last century fit perfectly with
know physical concepts linked to renormalization and how, as a consequence, many concepts in
computational linguistics also match perfectly with well-known physical conceptions.

I. INTRODUCTION

Linguistics can be defined as “the scientific study of
language, and its form, meaning, and context” [1]. The
field itself is a broad science, sometimes even a philos-
ophy, embracing interdisciplinary ideas from a wide va-
riety of contexts: syntax, mathematics, computer sci-
ence, neuroscience... all in all, there is no common agree-
ment concerning why human language is as it is, or even
about its basic defining properties. From the point of
view of Artificial Intelligence (AI), for instance, one is
worried about developing accurate algorithms for speech
and text recognition/prediction [2]. Additionally, the
generative approach led by Noam Chomsky tries to un-
derstand the linguistic capacity from a biological per-
spective, as part of human cognition. As Chomsky et
al. observe [3], the point of departure is Descartes’ ob-
servation that, among all animal species, only humans
seem to have a language ability [4]. Work on compar-
ative cognition has endorsed this insight: only humans
appear to possess a mental grammar – an “I-language,”
where the “I” stands for intensional, internal, and indi-
vidual – that allows us to create infinitely many meaning-
ful expressions from a finite stock of discrete units [5, 6]
Within the generative models, the Minimalist Program
[7] tries to attribute the properties of human language
to what Chomsky [8] calls the “third factor”, namely

“to language-independent principles of data processing,
structural architecture, and computational efficiency” [8].
This picture is not different from the general study of
organic systems, and D’Arcy Thompson’s and Alan Tur-
ing’s works on form and morphogenesis can be seen as
an example [9]. In this framework, Chomsky proposed
a basic operation, called MERGE, to build up linguistic
structures [10]. In MERGE, two syntactic objects X and
Y are combined to form a new syntactic unit K, i.e.,

MERGE : X,Y −→ K = {X,Y }, (1)

where the brackets mean that the information in K is
obtained from that in X and Y . The operation can be
applied recursively, thus having the ability to create dif-
ferent generations of units.

In parallel to this, physics aims to understand how the
universe behaves. Some of its subfields search for the
fundamental mathematical laws of the building blocks of
Nature, such as high-energy physics and quantum grav-
ity. However, the knowledge of such fundamental rules
(the so-called reductionism) does not imply a priori the
knowledge of the emergent laws for aggregates of many
fundamental entities (the so-called emergentism [11]).
Typical examples of this are condensed matter and solid-
state physics, where the knowledge of the rules governing
the fundamental entities at a short length scale (such as
atoms and molecules described by Schrödinger’s equa-
tion) does not imply, at least directly, the knowledge of
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the rules governing the collective behavior of aggregates
at a large length scale (such as phase diagrams of mat-
ter). In famous words of P. Anderson, “more is different”
[12].

The key concept in the above discussion is that of
emergence: the collective properties of aggregates of sys-
tems may be, because of different reasons, very different
from the ones of the individual systems themselves. The
mathematical formalization of this paradigm in physics is
achieved by the so-called Renormalization Group (RG),
or simply renormalization [13]. Originally developed
(mainly) by K. Wilson and L. Kadanoff, renormaliza-
tion is a strategy for dealing with problems at different
physical scales. This scale is typically a length, energy
or time scale, and allows for different descriptions of the
problem as it changes. For instance, going from short
to long length scales corresponds intuitively to “zooming
out” the system, effectively going from, e.g., a descrip-
tion of individual atoms (short scale) to a description of
a solid with O(1023) interacting atoms (long scale). At
its root, a renormalization transformation is built in two
steps: first, one keeps the most relevant information de-
grees of freedom to describe the system at a new scale
discarding the ones believed not to be relevant, and sec-
ond, one implements a rescaling of the physical variable
and operators/functions in order to maintain the origi-
nal picture. Physics is full of successful applications of
renormalization in different ambits, from condensed mat-
ter physics [14] to quantum field theory [15] and quantum
information [16] (each one with its own peculiarities), to
the point that it has become one of the basic pillars in
our current understanding of the laws of Nature. Physi-
cal theories that cannot be renormalized, are considered
wrong or incomplete.

Having said all this, our aim with this paper is twofold.
On the one hand, we establish equivalences between
physics and linguistics in the context of the Minimal-
ist Program (for linguistics) and emergence (for physics)
which, once mathematically formalized, turn out to have
important consequences in ambits as diverse as AI, the-
oretical linguistics, computer science, RNA / protein
sequencing, quantum many-body systems, and beyond.
On the other hand, we strengthen the relation between
physics and linguistics, where language is the system to
be understood using the machinery of physics, and of
information theory in particular.

Let us be more specific: here we observe that MERGE
can be understood physically as a type of informa-
tion coarse-graining according to time scales. Roughly
speaking, the linguistic information in sequences of
words (short time scale) gets renormalized by succes-
sive MERGE operations up to meaningful sentences (long
time scale) [57]. This simple observation, somehow trivial
from a physics’ perspective, turns out to have deep con-
sequences. In particular we show that language models
(i.e., probability distributions over word sequences) [17],
widely used in AI applications, admit a natural descrip-
tion in terms of Tensor Networks (TN) [18]. For instance,

α β

α

(a)	 (b)	

α β

FIG. 1: MERGE operation, taking two lexical elements α and
β, and projecting them into a new one, namely K, with label
α. The fact that the label is also α means that the element
resulting from the projection has the syntactic properties of
α (the “head” of the syntactic object). (b) A label-free repre-
sentation of the application of MERGE, compatible with the
recent claim [19] that labels should be dispensed with.

the simplest MERGE corresponds to a 3-index tensor of
components Mαβγ accounting for a probability distribu-
tion of three variables α, β and γ. And this is nothing
but a Probabilistic (or Weighted) Context-Free Grammar
(PCFG), in a way to be made precise later. Probabil-
ities of meaningful sentences with a given syntax tree
are naturally given in this framework by (mostly) loop-
free TNs which, on top, admit a correlated factorization
when it comes to specific calculations. Such mathemat-
ical structures have a number of nice properties which
make them particularly amenable to manipulations of
their information content, as we shall explain. More-
over, the TN structure and the particularities of PCFGs
allow for the description of the probability distributions
in terms of some TN quantum states. Such an exotic
description using quantum mechanics is only to be un-
derstood at the practical level, but it happens to pro-
vide a useful connection between computational linguis-
tics and quantum information and computation, opening
the door to unprecedented results and developments in
language processing algorithms. As examples of this, we
show how such states can be built efficiently on a quan-
tum computer, and prove lower bounds on the perplexity
of the probability distribution of a set of words in a sen-
tence [58] by using mathematical tools borrowed from
from the theory of quantum many-body entanglement
[20]. We envisage important consequences of our results
in machine learning and AI. For instance, one can use
the full machinery of TNs and quantum information to
validate, simulate, assess, and improve current language
models. Moreover, the fact that such probabilistic mod-
els can be fed into a quantum computer means that we
have, in fact, a quantum algorithm that allows perfect
random sampling of language, which is impossible with
classical computing. All in all, and together with other
implications, we propose that our physical picture is in
fact related to the conjectured “perfect design and econ-
omy” of language in Chomsky’s Minimalist Program, as
well as to the (also conjectured) efficient processing of
linguistic information in the human brain [21].

The structure of this paper is as follows. In Sec.II we
introduce our basic equivalence, namely, that MERGE in
linguistics entails information-renormalization in physics.
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FIG. 2: (Color online) Pictorial representation of a renormal-
ization process in real space for a 1d lattice. The horizontal
axis is coordinate x (say, a space coordinate), and the ver-
tical axis is coordinate z, which parametrizes the renormal-
ization scale. Short renormalization scales (small z) amounts
to a microscopic description of the system at small distances
in x, whereas large renormalization scales (large z) amounts
to a coarse-grained, macroscopic description of the relevant
physics of the system at large distances in x. We codify short
scales with “blue” and long scales with “red”, following the
intuition in physics that renormalization may take you from
high energies (ultraviolet) to low energies (infrared). In our
case, though, the colors have no special meaning and are just
a convenient way of indicating the different scales z1, z2, ...,
which are also shown for convenience. Formally, an RG step
amounts to a coarse-graining followed by a rescaling of the lat-
tice and associated operators/functions, which we implicitly
assumed in the picture.

In Sec.III we explain a direct consequence of this: the
quasi-loop-free TN structure of language models. We
show how this applies to PCFGs and beyond, derive
properties of such structures using tools from TNs,
propose how to improve current probabilistic syntax-
oriented language models, and establish the novel con-
nection to TN quantum states. In Sec.IV we discuss some
implications of our observations in different ambits. Fi-
nally, in Sec.V we wrap up our conclusions, include a ta-
ble of the main equivalences discussed in the paper, and
discuss future perspectives. We also include Appendix A
with formalities for the readers with background on the-
oretical linguistics, and which allows us to find even more
equivalences between linguistic and physical concepts, all
of them linked to MERGE and renormalization. Overall,
though, the paper is written assuming that the reader has
mostly a physics & maths background, even though the
style is highly heterogeneous, being this a consequence of
the interdisciplinary nature of our results.

II. THE BASIC EQUIVALENCE

Our guiding principle is the following equivalence,
which we write in the form of an equation:

eat	 pasta	

V	 N	

VP	

t

z

z1

z2

FIG. 3: (Color online) The linguistic MERGE operation, seen
as a physical coarse-graining process. The horizontal axis is
time t, and the vertical axis is the renormalization scale z. In
this case, the operation takes a verb (eat) and a noun (pasta),
and coarse-grains them into a verb phrase (eat pasta). At the
scale z2, all the relevant syntactic information is that the com-
pound object is a verb phrase (V P ). Unless stated otherwise,
we assume that the basic building blocks are words together
with their label, as shown in the grey boxes, though one could
also interpret them more fundamentally as the result of a
MERGE operation between a word and a set of lexical cate-
gories. For simplicity, we shall also assume here that no other
information is carried by MERGE (such as genre, number,
case, etc). In any case, this extra information can always be
accounted for with minor trivial modifications of the scheme
that we present here. The diagram provides the structure of
linguistic correlations in the physical 〈z, t〉 plane.

MERGE = Coarse-graining

The left hand side of the above expression is a purely lin-
guistic concept. MERGE is a basic operation in syntax,
picking up a set of linguistic elements (such as lexical cat-
egories) and returning a new element describing the main
features of the combination of the original, see Fig.1. On
the other hand, the right hand side of the equation is
a purely physical concept. A coarse-graining of informa-
tion means the removal of superfluous degrees of freedom
in order to describe a given physical system at a different
scale (of, e.g., length, energy or time), see Fig.2. Com-
bined with rescaling, it is the procedure entailing renor-
malization, by which the rules describing the macroscopic
emerge from those describing the microscopic. The above
equation establishes that both concepts are, in fact, the
same basic idea but in different contexts. Chomsky’s
MERGE operation entails then the renormalization of
linguistic information. Moreover, this renormalization
accounts for different time scales.

To understand better why this is the case, see the ex-
ample in Fig.3. In terms of information processing, the
MERGE operation picks up two information units at a
given time scale, namely

[V eat] and [N pasta], (2)

and keeps for the next time scale the most relevant in-
formation of their coarse-grained combination, i.e., that

[V P [V eat] [N pasta]] (3)
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FIG. 4: (Color online) Syntax tree for “The happy cat eats the
fish”, seen as a renormalization process. The flow in z goes
from the individual words, to the sentence, labeled by S. The
different labels correspond to the different types of syntagmas
(Noun Phrase, Verb Phrase, and so on). A rescaling of the
time variable at every scale is also implicitly assumed.

is a verb phrase (i.e., lexical category V P ), where we
used bracketed phrase markers to represent the syntax
tree. The operation MERGE is non-associative, as cor-
responds in general to a coarse-graining. Moreover, as
linguists know very well, grammar rules for individual
words are not the same as those governing more complex
syntagmas such as noun and verb phrases. So, we have
two different descriptions of a system at different scales,
and with different linguistic information units. The phys-
ical variable with different scales must be time, since lan-
guage is spoken and thought as time-ordered sequences of
concepts, being written language just a graphical repre-
sentation of this, see the more complex example in Fig.4.

This observation is ubiquitous in syntax and, when
seen from the perspective of physics, entails the renormal-
ization of linguistic information at different time scales.
Consider for instance syntax trees (or parse trees, as
known in computational linguistics) like the one in Fig.4.
Such analysis are of the kind linguist use to describe how
different elements (words) come together in order to pro-
duce a meaningful (active or passive) sentence, and have
since long been widely used in the study of language. In
practice, such syntax trees are nothing but the concate-
nation of several MERGE operations at different scales
[59]: from words to other sintagmas, from these sintag-
mas to more complex sintagmas... and finally up to a
sentence. According to our basic equivalence, the syn-
tax tree that one obtains from such analysis is nothing
but the graphical representation of the renormalization
of the (linguistic) information of a sentence. This is, how
the information in different words comes together, hy-
erarchically at different time scales, up to an emergent
meaningful sentence that we can interpret semantically.

Moreover, the syntax tree also encodes the structure
of physical correlations at different time scales in the
sentence. More precisely, because of the local nature

of MERGE, correlations in a sentence are (essentially)
built locally at different time scales. Of course, it could
be possible that other potentially-necessary operations in
syntax, different from MERGE, introduce other depen-
dencies (e.g., long-range movement). But still, it should
be possible to codify them pictorically in the syntax tree.
Worst-case scenario, such extra elements would introduce
some loop in the tree. But even in such a case, the renor-
malization picture still holds, as we shall show in explicit
examples.

Importantly, this observation is completely general,
and therefore must hold for any reasonable model of lan-
guage following the Minimlalist Program. In particular,
theoretical linguistic models trying to account for the ob-
served rules of grammar, as well as probabilistic language
models in artificial intelligence accounting for the chances
of finding a given sentence in a corpus, should somehow
encompass the renormalization of linguistic information.
This, in turn, has deep implications in the structure of
correlations in syntax. As we shall see in the next sec-
tion, a direct consequence of our observation is a natu-
ral description of probabilistic language models in terms
of quasi-loop-free TNs [18] accounting for different time
scales.

III. TENSOR NETWORKS AND
PROBABILISTIC LANGUAGE MODELS

We now consider the implications of our basic equiva-
lence for language models, i.e., probability distributions
over sequences of words [17]. Such models produce proba-
bilities pw1,...,wn

for a sequence of n words, represented by
the random variables w1, . . . , wn, and are widely used in
several technological ambits such as speech recognition,
machine translation, text prediction, and so forth. In
practice, such probabilities are obtained by training the
model (i.e., computing the frequencies of sequences) with
very large corpuses of text. Here we focus on the general
constraints that renormalization imposes on the struc-
ture of these probability distributions. As we shall see, a
very natural description in terms of TNs just pops out,
linking directly to Probabilistic Context-Free Grammars
(PCFG), but not necessarily restricted to them only.

A. The MERGE tensor

To begin with, let us consider the probability distribu-
tion that two given linguistic elements α and β (e.g., two
words) merge into a new element γ (e.g., some other syn-
tagma). This probability distribution M([α, β] → γ) =
M(α ∩ β ∩ γ) can in fact be described by a probability
map M ,

M : Vin1 ⊗ Vin2 −→ Vout, (4)

with Vin1
, Vin2

and Vout the input and output vector
spaces. The coefficients of this map are given by a 3-index
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γ α β
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(a)	 (b)	 (c)	

FIG. 5: (Color online) (a) Two concatenated MERGE opera-
tions, where we write different greek letters for all the possible
lexical variables. For language models, this structure can be
represented by the tensor network in (b), where M [1] and M [2]

are two different MERGE probability tensors (see text). The
contraction of the tensor network gives the probability tensor
pµγαβ , see Eq.(7). In this picture we used a diagrammatic
notation for tensors and their contractions, see text.

probability tensor Mαβγ . The entries of this tensor are
the probabilities of merging α and β (the linguistic input
of MERGE) into γ (the linguistic output of MERGE).
Physically, the tensor coarse-grains the variables α and
β, at a given time scale, and retains the fundamental de-
grees of freedom of the common object at a different time
scale. The result of this coarse-graining is variable γ.

The tensor Mαβγ obeys the usual normalization con-
dition for probabilities,∑

α,β,γ

Mαβγ = 1, (5)

i.e., the sum of all the probabilities is equal to 1. One
can also compute residual probability distributions in the
usual way, i.e., by summing up over the variables that are
discarded. For instance, one could have

M ′γ =
∑
α,β

Mαβγ , (6)

withM ′γ the residual probability distribution of obtaining
γ as the output of MERGE, no matter the input.

From a linguistic point of view, the tensor Mαβγ is the
implementation, at a mathematical level, of the MERGE
operation for a probabilistic language model. If the same
tensor is to be used everywhere in a syntactic structure,
then this is nothing but the realization of a PCFG [22],
i.e., a Context-Free Grammar with probabilities assigned
to its merging rules. From the perspective of physics,
though, this tensor coarse-grains degrees of freedom α
and β at a given time scale into a new degree of freedom
γ at a different time scale. From a mathematical perspec-
tive, this tensor describes the probability of obtaining the
information codified in γ from the information in α and β.
Regardless of the interpretation, this object constitutes
the fundamental LEGO R© brick of probabilistic language
models following the Minimalist Program.

B. Syntactic tensor networks

the	

D	

man	

N	

from	

P	

Boston	

N	

drives	

V	
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Adv	

the	

D	

car	

N	

NP	 PP	 VP	 NP	

NP	 VP	

S	

t

z
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FIG. 6: (Color online) Syntactic TN for the sentence “The
man from Boston drives well the car”, where we included
also the t and z axis, as well as the different renormalization
scales. Linguistic information is naturally encoded in the TN
at every possible scale. The contraction of the TN gives the
probability of this sentence. In this particular example, the
TN is a (binary) Tree Tensor Network.

Next, we notice that the structure of a syntax tree
maps directly into a tensor network (TN) [18] for the
probability distribution pw1,...,wn

of the sentence. Specif-

ically, every syntactic MERGE[i] corresponds to a 3-index

tensor M
[i]
αβγ , with i simply a label to identify individual

tensors, which could in principle be different. Now let us
consider the case in which a variable µ is the result of
merging δ and γ, with δ itself being the result of merging
α and β. In such a case, following the usual mathematical
treatment of probabilities, one has that the probability
of obtaining µ from α, β and γ (i.e., no matter the value
of δ) is given by the expression

pµγαβ =
∑
δ

M
[2]
µδγ M

[1]
δαβ , (7)

i.e., we sum over all the possible intermediate events rep-
resented by δ. This admits a very intuitive diagrammatic
representation, see Fig.5. In that figure, every tensor is
a shape and every index is a line. Open indices, i.e.,
those over which there is no sum, are just “free” lines,
whereas sums over all the possible values of a common
index between tensors are represented by lines connect-
ing the tensors. Such sums are called contractions, i.e.,
in this example we just contracted index δ. These type
of structures, where one has a set of tensors whose in-
dices are contracted according to some network pattern,
are called tensor networks (TN) [18], and always admit
a convenient diagrammatic representation as in Fig.5.
With this in mind, we arrive to the conclusion that syn-
tax trees of sentences map into TNs of MERGE tensors

M
[i]
αβγ at the level of probabilistic language models. We

call such structures syntactic TNs.
Let us be more precise: if the syntax tree does not

have long-range dependencies (i.e., it is made only of
MERGEs), then the TN is loop-free and corresponds
generically to a Tree Tensor Network (TTN) [23], see
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Noam	

N	
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N	

NP	
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S	 VP	 NP	

(a)	

(b)	

FIG. 7: (Color online) Syntactic TN for the sentence “Noam
drives the car”. The Tree Tensor Network in (a) can be un-
derstood as a Matrix Product State, as shown in (b).

Fig.6. If the MERGEs are sequential in time, then the
TN is in fact a special case of TTN called Matrix Prod-
uct State (MPS), see Fig.7 [24]. These two types of
structures appear quite often in the study of strongly
correlated classical and quantum lattice systems in one
spatial dimension [18, 23, 24] as well as in tensor cal-
culus [25], and their properties are very well known by
physicists and mathematicians. Moreover, if the syntax
tree has some long-range dependency (e.g., movement,
agree, c-command...), then this introduces some extra
index in the network, correlating variables at different
positions, and therefore introducing some loop in the di-
agram. To be precise, such extra index correlates the
(perhaps distant) probability distributions for such vari-
ables, and can normally be casted into redefined tensors
in order to keep the overall tree structure, as shown in
the figure. As an example, this is in fact the case of
the so-called CHAINS, which we mentioned in the intro-
duction (Sec.I), and where a lexical object is intrinsically
interpreted in different contexts of a sentence but only
externalized in one of them, see Fig.8 for an example.
More intricate cases, such as those involving a concate-
nation of chains (the so-called successive cyclicity), can
also be accounted for similarly, see Fig.9 for an example.
At any rate, though, the number of loops in the TN is al-
ways quite small, as long as the syntax tree is based on a
Phrase-Structure (Constituency) Grammar [26], such as
PCFGs. For the sake of clarity we restrict our explana-
tion to these grammars. Other plausible situations, such
as those arising in Dependency Grammars [27], will be
briefly discussed in Sec.III F.

The syntactic structure of a sentence implies, there-
fore, that correlations in its probability distribution are
orchestrated according to a (mostly loop-free) TN of
MERGE tensors, which organize the degrees of freedom
according to different time scales.

Einstein	

N	
tk	
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V	

violin?	

N	

Should	

Tk	

S	 TP	 T´	 VP	

Einstein	

N	
tk	

play	

V	

violin?	

N	

VP	

T´	

S	

Should	

Tk	

TP	

≈

(a)	

(b)	

t

z

FIG. 8: (Color online) Syntactic TN for the sentence “Should
Einstein play violin?”, as an example of syntactic movement.
The element “Should” is created at the position of tk but
externalized at the position of Tk (hence it “moved”). At
the level of the TN, this can easily be accounted for by an
extra correlation between these two positions, i.e., an extra
link between them (and perhaps two new tensors, as shown
in the figure). This introduces a loop in the TN. However, as
shown in (b), it is possible to redefine the overall structure as
a loop-free TN with tensors as those shown in the dotted red
boxes, and reshaped (or fused) tensor indices (i.e., whenever
there are two indices together, fuse them into a single big
index).

C. Properties

Let us now enumerate some important properties of the
probability structures that we just found, which come out
naturally from their TN description. Some of them were
already mentioned briefly, but we revisit them again for
clarity:

1. Locally-built syntactic correlations at every scale

Correlations in the probability distribution are built
locally at every renormalization time scale by MERGE.
Distant parts of the sentence become correlated at long
time scales (i.e., up in the syntax tree), whereas those
that are close become correlated at short time scales (i.e.,
down in the syntax tree). This locality implies a nice
feature of loop-free syntax trees: for a sentence with n
words, there are always exactly n − 1 merged objects.
Translated into syntactic TNs, this means that if the TN
has n indices at the first renormalization scale z1 (i.e.,
those corresponding to the words in the sentence), then
there will be exactly n− 1 indices on the whole at higher
renormalization scales zm,m > 1. This can be easily
checked by inspection in all the figures with loop-free
syntax trees and syntactic TNs of this paper. The con-
sequence is that to specify the full syntax of a typical
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V	
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V	
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Tk	
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t
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to	come		

V	

today	

Adv	

T´´	

VP	
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FIG. 9: (Color online) Syntactic TN for the sentence “Ángel
seems to be likely to come today”, as an example of con-
catenation of chains, or successive cyclicity. The syntactic
information of the element “Ángel” is at different places leav-
ing traces tk, t

′
k, ..., but externalized at only one position Tk.

At the level of the TN this can be easily accounted for by an
extra index correlating different sites, similarly as in Fig.8.

sentence of n words, one requires on the whole 2n − 1
units of syntactic information. In the case of having TNs
with loops, as in the case of long-range movement in Fig.8
and Fig.9, the index creating the loop establishes a cor-
relation between distant positions in the sentence, some
of them with only syntactic information and no word
present (the so called traces). In such cases it is clear
that the number of required syntactic information units
is larger than 2n− 1, though not much larger.

2. Very efficient computations via correlated factorization

The TN, when contracted from up towards down, re-
produces the different probability distributions of the lin-
guistic variables at every renormalization time scale. In
other words, the TN encodes the probabilities of the rele-
vant degrees of freedom at all possible time scales. More-
over, it is possible to obtain the residual probability of
any of the variables just by contracting all the rest. Quite
importantly, in syntactic TNs one does not even need to
perform any tensor contraction since, once the sentence
is fixed or partially fixed, there is a correlated factoriza-
tion of the whole TN because of the way human language
turns out to be, which we explain in what follows.

A well-known fact in grammar is that the output of a
MERGE operation is always uniquely determined by its
input. This is, given two objects being merged, there is
only one possible output, no matter the context. This is
a simple observation about how human language seems
to work: the human brain does not merge an adjective

Román	

N	

plays	

V	

his	

D	

...	

?	

NP	

VP	

S	

t

z

M 3[ ]

M 2[ ]

M 1[ ]

FIG. 10: (Color online) Syntactic TN for the sentence
“Román plays his ...”, where the last word is unspecified.
The syntactic environment inside the dashed area forces the
upper index of tensor M [1] to be NP . The first index of M [1]

is forced to be the determiner “his”. This constraints the
probability of finding a given word at the last place of the
sentence: whatever it is, it needs to merge with a determiner
to become a noun phrase. There are not too many options:
the word needs to be a noun. Notice that this is fully deter-
mined by the immediate neighbourhood in the sentence (the
determiner), as well as the syntactic environment (the dashed
region).

A and a noun N into an object that sometimes behaves
like a noun phrase NP , and sometimes like an adjectival
phrase AP . Instead the combined object behaves always
like a noun phrase NP . So, given the input of MERGE,
its output becomes fixed uniquely [60].

This turns out to have an important consequence for
us: it means that once the sentence is given, or partially
given, then the TN factorizes in a correlated way. To
see why this is so, notice that if the output of MERGE
is always uniquely determined by its input, then all the
indices in the syntactic TN become fixed once the indices
at the shortest time scale are fixed, i.e., once a specific
sentence is given. Because of this, the probability of a
specific sentence actually factors out in terms of corre-
lated probabilities and no TN contraction is needed at
all. The overall correct syntactic structure of the sentence
is the global, non-local property that correlates all the
probabilities amongst themselves. Moreover, the residual
probability of, say, finding a specific word in a sentence
that is partially given, can be easily computed using one
MERGE tensor only, which contains information about
both the immediate neighborhood of the word, as well
as about the overall syntactic neighborhood, see Fig.10.
This is a very remarkable property that has its roots in
the peculiarities of human language. In particular, it
implies that the calculation of probabilities is extremely
efficient, and that if the correct syntactic structure of a
sentence is fully or partially known, then the statistical
perplexities of reduced probability distributions are re-
markably low, as we shall discuss in more detail in the
forthcoming sections.

For a given sentence, therefore, the formalism produces
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a correlated structure of 3-index tensors linking all possi-
ble renormalization scales, see Fig.10. For example, the
overall probability of, e.g., the 4-word sentence “Román
plays his guitar” (an actual possibility in Fig.10) reads

pw∗1 ,w∗2w∗3 ,w∗4 = M
[3]
w∗1 ,V P,S

M
[2]
w∗2 ,NP,V P

M
[1]
w∗3 ,w

∗
4 ,NP

, (8)

where w∗1 , ..., w
∗
4 are the fixed words of the sentence, and

no tensor contraction is needed at all. The above equa-
tion is a correlated product of coefficients from 3-index
probability distributions, which encode all the syntactic
information of the sentence at all time scales. The ef-
fect of this is more dramatic when it comes to residual
probabilities: consider for instance predicting the word
“drank” in the sentence “The man John met yesterday
drank japanese whisky”. A 3-gram model [28] (a rather
common option in speech recognition) would give a prob-
ability distribution such as

pw∗4 ,w∗5 ,w6 3− gram model, (9)

i.e., correlating the word w6 only to “met” and “yester-
day”. The predictive power of this distribution is thus
not very good, because there is no use whatsoever of
the syntactic information from the rest of the sentence.
However, in our TN description, the residual probability
distribution, as shown in Fig.11, is given by

M
[6]
w6,NP,V P

Syntactic TN model, (10)

which includes all the relevant syntactic information of
the environment needed to predict w6 in the sentence.
In other words, having [NP [A japanese] [N whisky]], the
rest of the sentence imposes that whatever goes in w6

needs to combine together with this NP necessarily into
a verb phrase V P . To put it simply, the marginal prob-
ability distribution is governed by this question: with
whom do I merge to form what, as constrained by the
rest of the sentence? In hindsight, this description in-
cludes all the relevant syntactic information required to
predict the word exactly at that point.

From the above derivations, it is clear that all probabil-
ities can be computed very efficiently, and exactly, from
the TN. To be more specific, the fact that the structures
are mostly loop-free implies that the calculation of prob-
abilities, which amounts to the contraction of the tensors
in the TN, can be done in polynomial time in the number
of words, i.e., O(poly(n)) [18, 23, 24]. From the perspec-
tive of complexity theory, this is a consequence of the fact
that the contraction of a loop-free TN is a problem in the
complexity class P [29] [61]. But in the case of syntactic
TNs like the ones described here, the situation is even
better because of the correlated factorization explained
above, which implies that no contraction of tensors needs
to be done at all. The calculation of the probability of a
given sentence amounts, simply, to determining the rele-
vant syntax tree for a sentence and then multipliying the
corresponding MERGE coefficients. For a sentence with
n words, it is easy to see that both steps have a computa-
tional cost of O(n), and therefore the overall cost is also

man	

N	

met	

V	

yesterday	

Adv	

NP	

S	

The	

D	

Japanese	

Adj	

whisky	

N	

VP	

VP	

John	 drank	

N	 V	

T´	

NP	

t

z

NP	

FIG. 11: (Color online) Syntactic TN for the sentence “The
man John met yesterday drank Japanese whisky”. The full
syntactic environment of the word “drank” is highlighted in
the dashed region, and determines the probability distribution
of finding a specific lexical element at that place.

O(n). Therefore, the renormalization structure imposed
by MERGE implies a very economical manipulation of
the linguistic information in terms of computational re-
sources such as time, memory, and energy.

3. Short syntactic correlations

The two-point correlations in the probability distri-
butions depend on the sentence (specifically, the syntax
tree) and the renormalization time scale chosen to com-
pute the correlations. This is also a well-known property
of loop-free TNs, and in our case it means that the cor-
relation between two words in the sentence decays expo-
nentially fast with their separation distance in the syntax
tree, which may be equal to the actual separation dis-
tance in the sentence or not.

Mathematically, this means the following: consider the
two-point correlation function

C(i, j) ≡ 〈f(wi)f
′(wj)〉 − 〈f(wi)〉〈f ′(wj)〉, (11)

with

〈f(wi)f
′(wj)〉 =

∑
w1,··· ,wn

f(wi)f
′(wj) pw1,...,wn

〈f(wi)〉 =
∑

w1,··· ,wn

f(wi) pw1,...,wn

〈f ′(wj)〉 =
∑

w1,··· ,wn

f ′(wj) pw1,...,wn
, (12)

and f(wi), f
′(wj) some functions of the variables wi, wj .

We could think of these variables as those representing
words at times i and j, but they could also be the vari-
ables for other (renormalized) syntagmas at a longer time
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scale (i.e., somewhere up in the tree). It is possible to
prove mathematically [18, 23, 24] that this correlation
function decays asymptotically as

C(i, j) ≈ e−d(i,j)/τ for d(i, j)� τ, (13)

with d(i, j) the size of the path between wi and wj in the
syntax tree, and τ a sentence-dependent (finite) correla-
tion time, see Fig.12 and Fig.13. As is well known from
the theory of TNs, parameter τ does not depend on the
choice of functions f(wi) and f ′(wj), so it depends only
on the type of sentence and the MERGE probabilities.
This conclusion also holds if the TN has a small number
of loops. Importantly, the quantity d(i, j) can depend a
lot on the type of syntax tree that one has. Consider for
instance the two examples “Noam drives the car”, and
“The man from Boston drives well the car”, with syntax
trees as in Fig.12 and Fig.13. In the first case, Fig.12,
the syntax tree is purely sequential, and therefore the
TN for the probability distribution is a Matrix Product
State [24]. In such a case it is clear that the distance
d(i, j) between two words is the actual separation dis-
tance in the sentence, i.e., d(i, j) = |j − i|. However,
in the second case, Fig.13, the syntax tree is a binary
tree, and therefore the corresponding TN is a Tree Ten-
sor Network [23]. In such a case, the path along the tree
between two words in the sentence necessarily goes also
along the vertical axis, and one can prove that it is given
by d(i, j) ≈ log2 |j−i|, again with |j−i| the separation in
the sentence, and where ≈ means that it is correct up to
some possible additive constant term [62]. Therefore, in
cases such as the one in Fig.12 (“Noam drives the car”),
the correlation function between two words will behave
like

C(i, j) ≈ e−|j−i|/τ for |j − i| � τ, (14)

whereas in cases such as Fig.13 (“The man from Boston
drives well the car”) it will behave like

C(i, j) ≈ e−(log2 |j−i|)/τ ≈ 1

|j − i|1/τ
for |j − i| � τ.

(15)
In both cases the correlation falls down towards zero

with the separation distance |j − i| in the sentence, but
in the first case it decreases exponetially fast, whereas
in the second it is polynomially fast, and therefore much
slower than in the first case. Notice, however, that at
the level of renormalized objects up in the syntax tree,
the two situations are completely equivalent, see Fig.13.
This means that the correlation functions for the second
sentence (Fig.13), but at some longer time scales (i.e., at
the level of renormalized syntagmas up in the tree), decay
exactly in the same way as those in the first sentence (see
Fig.12).

Three remarks are in order. First, in intermediate sit-
uations between those described by the two examples
above we expect also an intermediate regime between the
two limiting cases from Eq.(14) and Eq.(15), but always

Noam	

N	

drives	

V	

the	

D	

car	

N	

S	 VP	 NP	

d(i, j) = j − i

i j
j − i

FIG. 12: (Color online) For a TN structure such as the one
for “Noam drives the car”, the syntactic distance d(i, j) is the
same as the time separation distance, i.e., d(i, j) = |j − i|.
This is because the structure of correlations can be written
as a Matrix Product State. Two-point correlation functions
in this type of sentences decay exponentially fast in the time
separation |j−i|, as explained in the text. The syntactic path
between i and j is shown with a red thick line.

the	

D	

man	

N	

from	

P	

Boston	

N	

drives	

V	

well	

Adv	

the	

D	

car	

N	

NP	 PP	 VP	 NP	

NP	 VP	

S	

i j
j − i

d(i, j) ≈  log2 j − i

FIG. 13: (Color online) For a TN structure such as the one
for “The man from Boston drives well the car”, the syntac-
tic distance d(i, j) is not the time distance, but rather its
logarithm, i.e., d(i, j) ≈ log2 |j − i|. This is so because the
syntactic path between positions i and j goes also through the
renormalization scale. Consequently, there are two-point cor-
relation functions for these types of sentences which can decay
polynomially fast towards zero in the time separation |j − i|,
hence much slower than in the case of Fig.12 (see text). The
path between i and j is shown with a red thick line. Notice,
however, that at the level of the renormalized syntagmas in
the red dotted boxes, the structure is exactly the same as the
one in Fig.12.

obeying Eq.(13) asymptotically. Second, notice that the
correlation time τ measures roughly how fast these cor-
relations decay: the shorter τ is, the faster they decay
towards zero. And third, notice that Eqs.(13), (14) and
(15) essentially imply that language, at least within this
description, has always very short correlations within the
syntax tree, which does not necessarily imply short cor-
relations in the separation distance within a sentence, as
shown in Eq.(15). Similar conclusions apply as well in
the case of having a small number of loops in the net-
work, e.g. in linguistic chains, or in situations such as
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the German language, where a word correlated with the
beginning of the sentence is actually sent to the end.

4. Positivity

By construction, the syntactic TNs presented here are
such that all the tensors are non-negative, i.e., they are
made entirely of non-negative coefficients. This is be-
cause of the stochastic nature of the MERGE tensor,
which has been defined in terms of probabilities. These
are sometimes called stochastic tensor networks. It is well
known that such positivity restriction on the coefficients
of the tensors is in fact very stringent [31] and usually im-
plies a very large dimension for the vector spaces of the
coarse-grained variables in the TN. We may therefore ex-
pect that a TN description of the overall probability dis-
tribution in terms of non-negative tensors lowers down
this dimension, thus making the representation compu-
tationally more efficient. The price to pay, however, is
that we loose the interpretation of the MERGE tensor as
a tensor of probabilities. Still, a non-positive TN may be
computationally more convenient in some situations.

D. Refinement levels in practice

The TN structure of MERGE tensors that we just
described admits different levels of refinement, when it
comes to determining the actual probability of a sentence
in a given language model. A practical evaluation of such
probabilities, once a parsed corpus (a Penn TreeBank) is
given, proceeds as follows:

(i) First, one does a frequency count of all the words,
and computes the probability of being some lexical cat-
egory (N , V , etc) conditioned to being a certain word.
This probability distribution corresponds, formally, to a
MERGE operation at an initial time scale z0 between a
set of words and a set of lexical categories, as mentioned
briefly in the caption of Fig.3. In practice, though, it can

be accounted for by a 2-index probability matrix M̃αβ ,
with the first index referring to a particular word, and
the second to its lexical category.

(ii) Second, one considers every sentence in the corpus
and the respective syntax tree, and computes the proba-
bilities corresponding to the coefficients of the MERGE
tensors. This is done by counting the frequency of how
many times two given lexical elements merge into a given
object. Quite importantly, there are (at least) four differ-
ent levels of refinement of the computed tensors, depend-
ing on their position in the 〈z, t〉 plane and the structure
of the syntax tree. In increasing order of refinement,
these are:

1. One single MERGE tensor M for all possible posi-
tions in the 〈z, t〉 plane.

2. One MERGE tensor M [z] for each possible renor-
malization scale, each one for all possible positions
in t at the corresponding scale.

3. One MERGE tensor M [z,t] for each possible posi-
tion in the 〈z, t〉 plane.

4. One MERGE tensor M [T,z,t] for each possible posi-
tion in the 〈z, t〉 plane, and for each possible syntax
tree T .

The more refined the information included in the com-
puted MERGE tensors, the more accurate is the prob-
ability distribution, and therefore the better is the lan-
guage model. The first of the refinement levels described
above corresponds to the probabilistic language models
provided by PCFGs [22]. These models are known to
work reasonably in some circumstances, although on av-
erage not as good as, say, N -gram models [28]. But this is
understandable, because one does not expect a priori the
same MERGE tensor at all the possible positions in the
〈z, t〉 plane. Importantly there are still three more lev-
els of refinement, which should account for better mod-
els. The second level drops the assumption of “ancestor-
free” (akin “scale invariance” in physical jargon), so that
the tensors may depend on the scale z. The third level
drops, additionally, also the assumption of “place invari-
ance” (akin “translation invariance” in physical jargon),
so that the tensors may also depend on the variable t.
Finally, the fourth level of refinement drops the assump-
tion of the MERGE tensors being tree-independent. In
principle, the four refinement levels are computable from
a TreeBank, implying increasing level of precision for the
language model. As for the computational cost of retriev-
ing the MERGE tensors, in the first three levels it should
be O(Mn̄) both for time and memory, with n̄ the average
number of words per sentence in a corpus containing M
sentences. In the fourth case, however, the time cost is
also the same but the memory cost may be larger since,
for a large text, we expect to find roughly all possible
syntax trees for every sentence length, which for n words
is in turn given by the (n− 1)th Catalan number,

C(n−1) =
(2(n− 1))!

n!(n− 1)!
≈ 4n√

πn3/2

(
1 +O

(
1

n

))
, (16)

where the approximation is in the limit n� 1, and there-
fore scales exponentially. However, typical sentences in
human language do not usually imply a dramatically-
large number of words (we elaborate more on this in
Sec.IV), and therefore the number of different syntax
trees to be stored in memory may not be as large in
practice as the above number.

Once the MERGE tensors have been computed from
the TreeBank, the numerical probability for a sentence
of n given words can be obtained in a two-step process:

(i) First, compute the possible syntax trees of the sen-
tence (there may more than one valid tree in ambiguous
cases).
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(ii) Second, evaluate the probability for each tree fol-
lowing the correlated factorization procedure explained
in the previous section, according to the four refinement
levels mentioned above. The overall probability is the
sum of probabilities for each valid syntax tree.

As the probabilities are computed, it is possible to cal-
culate standard benchmark measures of language models,
such as the so-called perplexity P,

P = 2H(p) = 2−
∑
{w} pw1,··· ,wn log2 pw1,··· ,wn , (17)

with H(p) the Shannon entropy of the probability dis-
tribution. The lower the perplexity, the more peaked is
the distribution and thus the better it predicts the sam-
ple. So, the better the language model, the lower its
perplexity, at least a priori. In our case we also expect
the perplexity to decrease substantially as the refinement
of the coefficients of the MERGE tensors increases, ac-
cording to the four refinement levels mentioned above.
Moreover, the perplexity also goes down with the pre-
cission of the probabilities in our MERGE tensors. We
prove these points in the following section, using at some
steps a novel reformulation of language models in terms
of quantum states.

E. Language model quantum states

Let us now define the following quantum state:

|Ψ(Tn)〉 =
1

Z(Tn)
1
2

∑
w1,...,wn

(pw1,··· ,wn
)

1
2 |w1, . . . , wn〉,

(18)
with pw1,··· ,wn

the probability of a sentence with words
w1, · · · , wn and syntax tree Tn, and {|w1, . . . , wn〉} an
orthonormal (tensor product) basis of some Hilbert space
for n parties, each party corresponding to the position of
a word in the sentence. The dividing normalization factor
Z(Tn) is actually the partition function of the probability
distribution, i.e.,

〈Ψ(Tn)|Ψ(Tn)〉 =
1

Z(Tn)

∑
w1,...,wn

pw1,··· ,wn
= 1. (19)

We call the state in Eq.(18) a language model quantum
state.

Because of the correlated factorization of syntactic
TNs explained in previous sections, one can see easily
that these language model quantum states admit a TN
representation of their coefficients, i.e., they are really TN
states in the strict quantum-mechanical sense. The TN

structure of the coefficient (pw1,··· ,wn
)

1
2 is simply given by

the same one as for the probability distribution pw1,··· ,wn

(the syntactic TN), but replacing every coefficient of a
MERGE tensor by its square root. More specifically, it
is the same TN but with 3-index tensors A[i] of coeffi-
cients

A
[i]
αβγ ≡

(
M

[i]
αβγ

) 1
2

, (20)

A i[ ]

A i[ ]( )
* = p i[ ]

FIG. 14: (Color online) TN diagram for Eq.(21). The matrix

on the right hand side is diagonal, and with entries p
[i]
γ δγγ′ .

again with i simply label for the different tensors. This
simple prescription is a direct consequence of the corre-
lated factorization of the syntactic TN. Notice also that
these tensors obey the condition

∑
α,β

A
[i]
αβγ

(
A

[i]
αβγ′

)∗
=

∑
α,β

M
[i]
αβγ

 δγγ′ = p[i]γ δγγ′ ,

(21)

with p
[i]
γ the probability of merging at position i any two

given lexical objects into γ, and δγγ′ the Kronecker delta,
see Fig.14.

The language TN quantum state that we just defined
is interesting for a number of reasons. Some of them are
described in what follows.

1. Truly random sampling

First, notice that if this quantum state becomes (some-
how) experimentally available in an actual quantum sys-
tem, then it can be used to do truly random sampling of
the probability distribution of sentences with that par-
ticular syntax tree. For comparison, all classical sam-
plings are based on pseudo-random number generators,
which are known to induce errors in the long run for, e.g.,
Monte Carlo methods. The state could also be useful, for
instance, to find the most-likely sentences in a language
model, and things alike.

2. Language model quantum circuit

Second, the state can, in fact, be created by a quantum
circuit with as many two-body gates as A-tensors. The
procedure is sketched in Fig.15: starting from the short-
est renormalization scale z1, one reshapes the indices of
the A-tensors as a matrix and performs a QR decompo-
sition [32], as shown in the figure. Since the A-tensors
are real and positive, the matrix Q is orthogonal, i.e.,
QTQ = I. Reshaping back Q as a 3-index tensor provides
an isometric tensor, which we keep at the particular sites
of the network at that renormalization scale. Matrices R,
however, are contracted with the A-tensors at the next
renormalization scale z2, see Fig.15. The resulting ten-
sors, call them B, are then also QR-decomposed, where
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QR	

A i[ ]
A j[ ]

Q i[ ]
R i[ ]

B j[ ]

Q i[ ]
B j[ ]

=	
=	

FIG. 15: (Color online) Iterative procedure to get the quan-
tum circuit producing a language model quantum state for a
given syntax tree (see text). The red dashed lines in the up-
per diagram correspond to QR decompositions. The process
is iterated at every scale, until reaching the top.

the Qs define again isometries, which we keep in the net-
work, and the Rs are contracted with the A-tensors at
the next renormalization scale. By iterating this process
up to the top level, one gets a TN of isommetric 3-index
tensors Q[i], and a quantum state |Ω〉 at the very top
carrying non-local information about the probability of
the whole sentence. In particular, since tensors Q[i] are
isommetries, one has that

〈Ψ(Tn)|Ψ(Tn)〉 =
1

Z(Tn)
〈Ω|Ω〉 = 1, (22)

(where the last equality follows from the normalization
of the state), and therefore

〈Ω|Ω〉 = Z(Tn) =
∑

w1,...,wn

pw1,··· ,wn , (23)

which means that the norm of the quantum state |Ω〉
is the overall probability of having an n-word sentence
(whichever) with syntax tree Tn in the language model.
This global information just moved up to the top level
of the TN and, importantly, we constructed it locally at
every renormalization scale by a sequence of QR decom-
positions, therefore very efficiently (notice that we never
needed to compute each one of the terms pw1,··· ,wn

indi-
vidually!) [63]. Connecting to the usual developments in
quantum-mechanical TN states, this is an example of an

0 0 0 0 0 0 0Ω

FIG. 16: (Color online) Quantum circuit of 2-body gates pro-
ducing a language model quantum state for a given syntax
tree. Ancillary degrees of freedom are fixed to the quantum
state |0〉. The state |Ω〉 at the top may be produced from |0〉
by some extra 1-body gate, and its squared norm codifies the
overall probability of the tree.

isometric TTN state [23]. Finally, in order to promote
this structure to a quantum circuit, we simply notice that
an isometric tensor can be understood as a two-body uni-
tary gate, where one of the indices is fixed to some ancil-
lary state |0〉 [16], see Fig.16. The resulting diagram is
nothing but the picture of the quantum circuit producing
the desired quantum state. The conclusion is that if the
MERGE tensors are given, then one could in principle
produce these quantum states efficiently in a quantum
computer or a quantum simulator. Last but not least:
the description above has been for TNs without loops,
but it can be generalized to other situations. In case of
having a small number of loops in the network (e.g. in
CHAINS), there is also a similar procedure as the one
indicated here by playing with several tensor decompo-
sitions (QR, Singular Value Decomposition, etc), always
sending the non-unitary parts upwards in the syntactic
network.

3. Lower bounds on perplexity from entanglement

Our third property concerns the perplexity P of a lan-
guage model, which was defined in Eq.(17). For a given
sentence, it turns out that we can give lower bounds on
the perplexity of a given subset of words, using tools from
quantum information theory, as we show next.

Let us start by considering a sentence with n words,
and a subset of n′ < n contiguous words within the sen-
tence. These are a block of n′ words. The question we
want to answer now is: how much is the entanglement of
this block of n′ words in a given quantum state |Ψ(Tn)〉
for a syntax tree Tn? Following the usual procedure for
bipartite entanglement, we get first the reduced density
matrix of the block,

ρ(n′) = trn−n′ |Ψ(Tn)〉〈Ψ(Tn)|, (24)

with trn−n′(·) the partial trace over the rest of the system
(the environment). As shown in the diagrams of Fig.17,
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FIG. 17: (Color online) Subset of n′ contiguous words in an
arbitrary sentence, as described by the language quantum
state in Eq.(18). The clouds indicate some arbitrary piece
of an arbitrary syntactic tree.

this can be achieved by “cutting” out the relevant sub-
tree linking the n′ words from the rest of the sentence.
After the appropriate contractions, this reduced density
matrix can always be written as

ρ(n′) =
1

Z(Tn)
WXW † (25)

with W some rectangular matrix amounting for the con-
traction of the sub-tree for the block, and X a square
matrix whose rank is the number of lexical categories Nl
in our grammar, being this also the rank of ρ(n′), see
Fig.18. It is easy to see, moreover, that in fact matrix X
is diagonal,

Xαα′ ∝ p(n− n′)αδαα′ , (26)

with p(n − n′)α the overall probability of the string of
n − n′ words merging into lexical category α, no mat-
ter the words in the string. One can also see that the
(unnormalized) eigenvectors of ρ(n′) are given by

(vα)ω =
(
W †
)
wα

, (27)

with (vα)ω the ω-coefficient of the αth eigenvector, and
eigenvalues λα given by

λα = p(n′)α p(n− n′)α, (28)

with p(n − n′)α as described above, and similarly for
p(n′)α but for the set of n′ words, see Fig.19. Using
Eq.(28), one can get the entanglement entropy S(ρ(n′))
and the single-copy entanglement E1(ρ(n′)) of the block
of n′ words [33], which are given respectively by

S(ρ(n′)) = −
∑
α

λα log2 λα

E1(ρ(n′)) = − log2

(
max
α

λα

)
. (29)

The above entanglement measures obey the chain of in-
equalities

E1(ρ(n′)) ≤ S(ρ(n′)) ≤ log2Nl, (30)

S
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ρ(n ') = 1
Z(Tn )

=
1

Z(Tn )
X

W

W *

FIG. 18: (Color online) Reduced density matrix of a block of
contiguous n′ words in the language state of Eq.(18).

which implies that the entanglement of the block can
never be too large, since the number of lexical categories
Nl in a typical grammar for human language is usually
quite small.

Next, we notice that the probability distribution pω for
the n′ words in the block is actually given by the diagonal
elements of ρ(n′) in the basis of Eq.(18) restricted to the
block, i.e.,

pω = ρ(n′)ωω. (31)

One can check from the derivations above that this prob-
ability distribution and the one of the eigenvalues λα
obey the majorization relation [34]

~p ≺ ~λ, (32)

which implies

H(pw) ≥ S(ρ(n′)), (33)

i.e., the Shannon entropy of the reduced probability dis-
tribution for the block of n′ words is larger than the en-
tanglement entropy of the block. This relation, combined
with Eq.(30), implies directly that

P = 2H(pw) ≥ 2S(ρ(n
′)) ≥ 2E1(ρ(n

′)), (34)

with P the perplexity of the distribution of the n′ words.
Combining this with Eq.(28) and Eq.(29), in the end we
arrive to the following result:

P ≥ min
α

(
1

p(n′)α p(n− n′)α

)
, (35)

which is our main lower-bound for the perplexity of the
probability distribution of the n′ words.

Some remarks are in order. First, notice that Eq.(35) is
a fully classical result, even though we used the machin-
ery of quantum information theory to find it. Second,
the inequality is giving us a fundamental lower bound on
how well our language model can predict sentences, just
because of its statistical nature. Third, we can roughly



14

1
Z(Tn )

X

W

W *

W *

ρ(n ')

p(n ')α p(n− n ')αα

= p(n ')α p(n− n ')α W *

α

FIG. 19: (Color online) TN diagram for the eigenvalue equa-
tion of the reduced density matrix ρ(n′).

estimate the scaling of this lower bound: if pmax is the
maximum merging probability over all MERGE tensors
in the network, it is easy to see that

P '

(
1

pmax

)n−1
(36)

which implies, also roughly, that the perplexity gets
worse (increases) exponentially fast with the number of
words n in the sentence, but also that it improves (de-
creases) exponentially fast if the MERGE probabilities
of the language model get more refined and accurate.
This inequality shows clearly the route required in order
to improve the performance of syntax-based probabilistic
language models.

F. Arbitrary grammars and language models

We would like to conclude this section with a couple
of words about other types of grammars, not necessarily
context-free, as well as other language models. Impor-
tantly, the tensor network picture of language is not nec-
essarily restricted to the cases that we presented above,
and in fact can be used to describe the correlation struc-
ture of, essentially, any type of grammar and/or language
model. For instance, the trees of dependency grammars
[27], though not based on the MERGE operation, also ad-
mit a TN representation of their correlations when put
as a probabilistic language model. We could even add
long-range dependencies between the probability distri-
butions in constituency grammars, as was shown for the
case of chains in Fig.8, but which can in fact be gen-
eralized over the whole 〈z, t〉 plane, obtaining what is
known in physics as a MERA-like tensor network [16],
see Fig.20. As a matter of fact, it would be possible to
model with TNs any grammatical correlation structure,
even if not directly linked to human language. An exam-
ple would be a syntactic structure based on an hypothet-
ical MERGE operation with multiple outputs for a given
input. Such structures would not have the property of
“correlated factorization” discussed above, but most of
the key properties that we mentioned would still hold,

t

z

z3

z2

z1

z4

FIG. 20: (Color online) Possible MERA-like TN for some
possible dependency grammar. Probability distributions (ten-
sors) are correlated at every renormalization scale. The struc-
ture is no longer a tree if all possible dependencies are taken
into account at every scale, as shown in the diagram.

...	

w1 w2 w3 wn

p 1[ ] p 2[ ] p 3[ ] p n[ ]

t

FIG. 21: (Color online) TN for a 1-gram language model.
Only the time axis is relevant, and there is no correlation
between the words w1, ..., wn. In physics, this is the analogue
of the so-called mean-field theory approximation.

including those related to computational efficiency and
short-range syntactic correlations.

From a practical perspective, the so-called N -gram
models [28], where the probability of observing a word
is assumed to depend only on the history of the preced-
ing N − 1 words, also admit a similar description. For
instance the case of 1-grams corresponds to the product
probability distribution

pw1,...,wn
= p[1]w1

· · · p[n]wn
, (37)

which can be represented by the TN diagram of Fig.21.
Such a 1-gram TN does not include any correlation be-
tween the words. For comparison, similar separable TNs
are also the ones used in the so-called mean-field approxi-
mation to strongly correlated systems, where correlations
between different sites are discarded [35], and which is
known to fail whenever correlations are important. For
the case of more complicated N -grams, one can actually
define an appropriate language model quantum state, i.e.,

|Ψ(N − gram)〉 =
1

Z
1
2

∑
α∈N−gram

(pα)
1
2 |α〉, (38)

with α an index running over all possible N -grams, pα
their probabilities, |α〉 a set of orthonormal states, one
for every N -gram (which is rather easy to construct), and
Z the partition function of the distribution. Once such
a state is available, one can do similar things as for the
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TN language models discussed previously, such as truly
random sampling, and so forth.

IV. IMPLICATIONS

Our “renormalization picture” of syntax and the re-
sults presented above demand for a necessary and de-
tailed discussion about its implications, which extend
into different ambits. In what follows we elaborate on
some of them, taking a somehow more phylosophical
perspective than in the previous sections, though well-
grounded in our rigorous observations so far.

A. Legitimacy of language models

The first practical implication, as we have already
hinted in the previous sections, is that legitimate lan-
guage models (of any kind) should be compatible with
the coarse-graining picture that we presented. From a
generic perspective, one should expect a language model
to reproduce the way humans seem to organize correla-
tions in sentences, and from our perspective, this is given
by the organization of coarse-grained information at dif-
ferent time scales. Concerning the field of artificial intel-
ligence, we thus believe that a good starting point to ob-
tain better language-processing algorithms, is to include
also this organization of linguistic information according
to time scales. This is in fact partially achieved already
by the so-called “syntactic language models” [36]. The
same applies to theoretical models of language in theo-
retical linguistics [64]. Notice, importantly, that in this
work we never hypothesized about what is the funda-
mental theory of grammar behind the known properties
of MERGE. Questions such as “why a noun and an adjec-
tive merge into a noun phrase?”, or ”why is the output of
MERGE uniquely determined by its input?”, are beyond
the scope of this work. In other words: we observed how
correlations in language get organized, explained this or-
ganization using the tools of physics, and exploited the
consequences. And that is everything we did. We never
discussed where these correlations could come from, or
why they are as they are. In any case, and this is the
point that we wish to make here, models attempting to
explain this, either computational or theoretical, should
encompass the picture presented here to be legitimate,
since our observations are general.

B. Universality of language

Given the renormalization structure and the properties
of TN language models, one can predict universal quan-
tities, i.e., numbers that should be the same, no matter
the language, and which only depend on the correlation

structure of syntax [65]. For instance, consider the “cor-
relation time” τ discussed in the previous section. As a
matter of fact, this property implies that language, as a
system, seems to have “little influence at long syntactic
separations”.

Indeed, for a given lexicon it should be possible to find
these correlation times τ “experimentally” by analizing
the different probability distributions for every type of
sentence. An average over all plausible sentences should
give a number characterizing each language. We conjec-
ture that this number is universal, i.e., it is essentially the
same for all languages. Moreover, we also conjecture it
to be rather small, given the typical short-range syntac-
tic influence of linguistic dependencies. This observation
is clear in the case of language models, which is what
we elaborated in detail in the previous section, but we
expect it to be valid in general, since it is a property in-
herent to the renormalization picture and quasi-loop-free
correlation structures.

We wish to remark that universal properties of lan-
guage, and in particular short correlation distances, had
already been observed by analyzing linguistic informa-
tion with the tools of complex networks [38]. This is the
field of physics and mathematics that analyzes complex
systems and their structure from the network perspective
(examples are ubiquitous: the internet, the power grid of
a country, the synaptic network in the brain...). In this
setting, the so-called linguistic networks allow for a study
of the properties of syntax from a pure network-theory
perspective. In order to avoid confusion, we stress that
our approach here is radically different, since we start
from a very different physical perspective: renormaliza-
tion, and how this orchestrates correlations. This led to a
TN picture of language models, and results on short cor-
relation distances, which are different but complement
those obtained using complex-network theory.

C. Optimality of language

Several of the properties from the previous section
seem to be related to the conjectured “perfection and
economy” of human language in the Minimalist Program,
as well as to the conjectured efficient processing of lin-
guistic information in the brain [7, 21]. Let us take for
concreteness the language models that we analyzed be-
fore. The fact that the TN structures are mostly loop-
free automatically implies that the retrieval of informa-
tion can be done efficiently in all computational resources
(a problem in the complexity class P). Such computa-
tional efficiency strongly depends on the quasi-loop-free
renormalization structure of syntax trees, and is therefore
generically valid, i.e., not just for the case of language
models. In fact, loop-free structures are well-known to
be the cheapest non-trivial class of correlation structures
in terms of the manipulation of their information [23].
The surprising fact, is that human language is even more
efficient than this, because of the properties of MERGE.
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In particular, we saw that the uniqueness of the output
of MERGE once the input is specified, implied a corre-
lated factorization in the TN, which leads to a dramatic
efficiency in the calculation of probabilities for TN lan-
guage models. It looks, therefore, that the human lan-
guage chose the cheapest possible option able to keep
non-trivial correlations between information units. Our
brain could have evolved to use a MERGE where the out-
put is non-unique for a given input and still maintain a
big part of the computational efficiency in the manipula-
tion of information, but this just didn’t happen. This ob-
servation makes precise the common-lore statement that
language is, indeed, the cheapest non-trivial computa-
tional system. This may be one of the reasons why our
brains choose to work with such correlation structures,
instead of a different one. And we manage to externalize
it through a physiological interface pretty well: we com-
municate (on average and most of the time) via sequen-
tial sounds in time produced with one mouth, instead of
producing correlated sounds with, say, each one of our
fingers, which would amount to 20 mutually correlated
outputs, and thus a syntax full of correlation loops in
turn implying computational inefficiency in the process-
ing of its information.

D. Non-Markovian memory environment

A coarse-graining is a process that finds effective de-
grees of freedom to describe an emergent object, and in-
herently involves an information loss when moving from
one scale to the next. It is well known in physics that
renormalization is, usually, irreversible (the so-called “ir-
reversibility of RG flows”) [39]. In language, however, it
is clear that even if syntax manipulates coarse-grained
objects at some long-time scale, we still know about the
information content of the short-time scales. This is, our
brain seems to organize the information according to dif-
ferent time scales, but does not seem to fully erase the
information when going from one scale to the next, at
least for some period of time. For instance, when we
say a sequence of the type [NP [A X] [N Y ]] (an adjec-
tive X followed by a noun Y ), we remember for a while
what it actually refers to: “happy cat”, “hot meal”, “in-
teresting paper”, and so on. This seems to indicate that
the “discarded” information seems not to be immediately
erased, but just put apart for a while in some memory de-
gree of freedom. To put it in physical jargon, one would
say that the “memory environment” is non-Markovian,
in the sense that there seems to be access for some pe-
riod of time to the discarded information, shall this be
needed. Understanding how and why this happens is in-
deed a relevant but different question to the one that we
addressed in this paper.

E. Context-free grammars in other ambits

An interesting observation is that probabilistic
context-free grammars (PCFG), though originally devel-
oped in linguistics, have proven recently very powerful
in the probabilistic modelling of RNA and protein struc-
tures. In particular, PCFGs offer a way of determining
the secondary structure of RNA, with a comparable ac-
curacy to that obtained by energy minimization methods
[40]. Concerning proteins, the situation is more complex
but several achievements have already been reported us-
ing PCFG methods [41]. Many of the things that we
mentioned previously in this work for the case of lan-
guage, therefore, apply as well to the study of RNA and
protein sequences. Even if being a very different scenario,
the relevant correlation structures that appear in these
biological problems happen to be similar to the ones that
we described in this work, and therefore the same deriva-
tions could be applied to study those. The same is also
true for the correlation structures present in program-
ming languages, such as C++, Java, and so on. From
a theoretical perspective, programming languages actu-
ally apply the rules of some grammar, i.e., rules by which
words in a computer code are interpreted into meaningful
machine instructions.

Intriguingly, one can also make a turnaround in the
derivation that we presented here, and consider some TN
structures as the natural correlation output of grammars.
To be more precise, one could argue that TTNs and MPS
can, in general, always be regarded as the output of some
set of “generalized” context-free grammar rules where
one allows for several possible outputs of a MERGE op-
eration for a given input, being the outputs associated
to complex “weigths”. As such, this then implies that
ground states of gapped 1d local quantum many-body
Hamiltonians are, roughly speaking, nothing but gener-
alized grammatical structures. Whether this simple ob-
servation has consequences in the (analytical and numer-
ical) study of quantum many-body systems remains as a
provocative open question.

F. On typical human abilities

Intriguingly, similar structures to the ones presented
here for the case of language and grammar have also
been found in different but somehow related scenarios.
For instance, it was recently noticed that the correlation
structure of neural network algorithms (which mimic in
part the behavior of neurons in the brain) is, in fact,
that of a Tree Tensor Network [42]. Renormalization-like
algorithms are also common in the study of image com-
pression, such as those based on wavelets [43], and even
on Matrix Product States [44], where information of a
picture gets organized according to different 2d length
scales. Matrix Product States have also been used in
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the context of machine learning [45]. Moreover, it has
been argued that the harmonic structure of tonal music
may be, in fact, also a result of the MERGE syntactic
operation [46]. As a matter of fact, it is believed that
the faculty of language appeared in evolution almost si-
multaneously to the faculties of mathematics and music,
with some people arguing in favour of the three faculties
being actually three different manifestations of the same
basic ability, which became available to our ancestors due
to some genetic mutation throughout evolution [47]. A
very subtle, somehow missed point, but key in this re-
gard, is that the mathematical faculty looks itself also as
a coarse-graining of (mathematical) information. This
is in fact a consequence of MERGE being the successor
function in mathematics [48]. In order to make this point
more explicit, let us directly cite a rather popular para-
graph (at least in the linguistics’ community) in one of
the recent works of N. Chomsky [49]:

“Suppose that a language has the simplest
possible lexicon: just one lexical item, call it
“one”. Application of MERGE to the lexical
item yields {one}, call it “two”. Application
of MERGE to {one} yields {one, {one}}, call
it “three”. And so on. In efect, MERGE
applied in this manner yields the successor
function. It is straightforward to define addi-
tion in terms of MERGE(X,Y), and in famil-
iar ways, the rest of arithmetic. The emer-
gence of the arithmetical capacity has been
puzzling ever since Alfred Russell Wallace,
the co-founder of modern evolutionary the-
ory, observed that the “gigantic development
of the mathematical capacity is wholly un-
explained by the theory of natural selection,
and must be due to some altogether distinct
cause”, if only because it remained unused. It
may, then, have been a side product of some
other evolved capacity (not Wallace’s conclu-
sion), and it has often been speculated that it
may be abstracted from the faculty of language
by reducing the latter to its bare minimum.
Reduction to a single-membered lexicon is a
simple way to yield this consequence.”

Moreover, and at an experimental level, neuroscientists
have recently discovered what could be the signature of
the MERGE operation in neural activity, by analizing the
neural activation of epileptic patients performing several
language tasks [50].

Given all this, we take the liberty to take off and hy-
pothesize, somehow phylosophically and because every-
thing seems to point in this direction, that the human
abilities of language, mathematics, and probably others,
may actually be different manifestations of a fundamen-
tal single ability of the human brain, namely, the abil-
ity to organize and process information according to dif-
ferent physical scales. To put it simple: one could say
that the human brain looks like some kind of biological

information-renormalization machine. When it comes to
human language, this allows the brain to build a language
system of discrete infinity, i.e., a discrete and recursive
system able to produce infinitely-many outputs.

V. CONCLUSIONS AND PERSPECTIVES

The observations and results in this paper are highly
interdisciplinary. Let us briefly summarize here the main
points. We have argued that the linguistic MERGE oper-
ation entails renormalization in physics: the information
content in, e.g., sequences of words (short time scale)
gets renormalized by MERGEs up to sentences (long
time scale). We have made this observation concrete for
language models, and have found that probabilities of
meaningful sentences are naturally given by quasi-loop-
free TNs, which in turn organize correlations according
to different renormalization time scales. Such language
models are naturally related to probabilistic context-free
grammars, though not restricted only to them. We have
discussed some of the properties of these TN language
models: locally-built syntactic correlations at every scale,
very high efficiency of information processing because of
correlated factorization of the TN, short-range syntactic
correlations, and practical refinement levels. We also pro-
posed how to promote probabilistic language models to
probability distributions of quantum states, argued that
such quantum states may be useful when it comes to
sampling the distribution, showed how they can be built
efficiently in a quantum computer, and used their en-
tanglement properties to provide a classical lower bound
on the statistical perplexity of finding a set of words in
a sentence. We discussed also how this useful formal-
ism may be generalized to other types of grammars, and
discussed a number of implications of our observations in
several ambits. These concern the legitimacy of language
models, universality and optimality of language, some
required properties of the memory environment, the po-
tential application of our formalism for RNA and protein
sequencing as well as programming languages and quan-
tum many-body systems via context-free grammars, and
the overall picture of several human faculties all some-
how boiling down to MERGE. In the end, we have taken
the liberty to hypothesize that the human brain seems
to have a natural fundamental ability to organize infor-
mation according to different physical scales, from which
other faculties may materialize.

Our work opens the possibility to use all the mathe-
matical and physical knowledge about TN states, both
classical and quantum, in the theoretical and computa-
tional study of language and grammar. This includes a
wide variety of applications not just in linguistics, but
also in RNA and protein sequencing [40, 41] and the
design of computer languages, just to name some well-
known examples. In particular, the different ways to
quantify correlations and the information content in the
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network, as well as associated numerical algorithms [18],
should find useful applications in these scenarios. More-
over, the efficient descriptions of probability distributions
of relevant grammars by means of quantum states, opens
the exciting possibility to use possible quantum comput-
ers and quantum simulators to deal with problems in all
these ambits. A prominent example is AI, where our re-
sults show that quantum information tools can be used
to to validate, simulate, assess, and improve state-of-the-
art language models, as well as that quantum computers
can be used to implement perfect random sampling of
language, which is impossible with classical technology.
This is particularly relevant given the recent big advances
in the development of experimental quantum processors.

By digging deeper into linguistic concepts it is indeed
possible to take our equivalences further. We do this in
Appendix A. All in all, our conjecture that MERGE in
linguistics is connected to RG in physics turns our to be
extremely fruitful, since many of the key linguistic ideas
from the last century fit perfectly with know physical
concepts linked to renormalization. We have also seen
that, as a consequence, many concepts in computational
linguistics also match perfectly with well-known physical
conceptions. The main equivalences discussed in this pa-
per, including those in the appendix, are summarized in
Table I.

Linguistics Physics

MERGE Coarse-graining

Relabelling Rescaling

Derivation RG flow

Phase RG scale

Phase impenetrability RG irreversibility

Optimality and efficiency Loop-free structures

Prob. language model 1d tensor network

N -gram models Mean-field theory

Prob. context-free grammar 3-index tensor

& MPS/TTN

Dependency grammar (k > 3)-index tensor

& 1d MERA√
Prob. language model Quantum circuit

Perplexity Quantum entanglement

TABLE I: Main equivalences and connections between lin-
guistics and physics proposed in this paper. The upper part
corresponds to concepts usually discussed in theoretical lin-
guistics, and the lower part to concepts in computational lin-
guistics. 1d means that the “physical” degrees of freedom
span along one dimension, which in the case of language is
time. The “square-root” symbol in the lower-left panel is a
way of saying that the corresponding quantum circuit pro-
duces probability amplitudes that are the square root of the
actual probabilities given by the language model.

Only good things can happen by studying language
from the perspective of physics [51]. The fields of physics
and linguistics have been traditionally very far away from

each other. But indeed, linguistics focuses on the study
of the laws of language, and physics on the study of the
laws of Nature. For a linguist, the human language is
the universe, and it has deep connections with how our
brain processes and manipulates information, as well as
other situations whose correlations are orchestrated by
grammar-like rules. From the perspective of physics, it
feels just natural to think that classical and quantum
information theories should be somehow useful for this
purpose. Being able to formalize mathematically some
of the most relevant aspects of language and grammar in
terms of physical ideas is already an important achieve-
ment. We strongly believe that the cross-fertilization of
physics and linguitics will become increasingly relevant
in the future. Phylosophical questions, such as those en-
countered sometimes in linguistics, usually lead to deep,
profound scientific problems, and our work here is no ex-
ception to this rule.
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Appendix A: More equivalences by digging deeper

Our paper is written having in mind a reader with
background on physics and mathematics. However, the
topic itself is strongly interdisciplinary. Because of this,
in this appendix we would like to add some extra informa-
tion useful for the reader with knowledge about theoreti-
cal linguistics. In particular, we would like to define a few
concepts more precisely in linguistic jargon. Thanks to
this, we will see that by digging deeper into the linguistic
jargon, more equivalences with physics will show up, in
turn strengthening our thesis that MERGE in linguistics
and RG in physics are deeply linked to each other.

To begin with, the term Universal Grammar (UG) is
nothing but a label for the striking difference in cognitive
capacity between “us and them”, i.e., humans versus the
rest of animal species. UG is thus the research topic of
generative grammar in its attempt to understand what it
is and how it evolved in our species. Finding a satisfying
answer to the latter question may be impossible with the
tools we have right now, but any theory of UG seeking
to address the former must meet a criterion of evolv-
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ability: any properties, mechanisms, etc. attributed to
UG should have emerged in what appears to have been
a unique and relatively sudden event on the evolutionary
timescale [52]. This line of thought presupposes that UG
(the genetic encoding of the the human linguistic capac-
ity) manifests bona fide traits of perfect design, in the
sense that contains operations and mechanisms that fol-
low from conceptual necessities, efficiency principles or
interface demands. In this respect, linguistic expressions
(sentences, phrases, words, etc.) are built up by adher-
ing to these principles, therefore in an optimal fashion.
While these notions are intuitively clear, their precise
formulations remain vague and controversial.

One of the most important mathematical achievements
of generative grammar is the so-called “Chomsky Hi-
erarchy” [53], a classification of formal grammars ac-
cording to their complexity. As Chomsky showed sixty
years ago, human languages manifests both context-
free and context-sensitive properties, needed to construct
PHRASES and CHAINS respectively, shown in the Sen-
tences A1(a,b):

a. John killed John. (A1)

b. John was killed < John >

In Sen.A1(a) (a PHRASE) we have two tokens of the lex-
ical item “John” that participate in phrasal dependencies
to yield a compositional interpretation whereby the first
John is the agent of a killing event, and the second John
is the patient of such event. What we have in Sen.A1(b)
(a CHAIN) is more complex. This time, we don’t have
two tokens of “John”, but two occurrences of the same
lexical item – as if they were one and the same object
in two positions at the same time, where the notation
< John > means that the word itself is not pronounced
at that position, but it is also interpreted there from the
logical point of view. This is what is called CHAIN in
linguistics. In languages of the English type, the first
(leftmost) occurence is spelled-out, whereas the second
(rightmost) is necessary to keep a syntax-semantics ho-
momorphism (that is, to capture the desideratum that
a specific interpretation is tied to a specific position).
Notice that the same type of object (a CHAIN) is neces-
sary in Sen.A2, where “John” is pronounced to the left
of seem, although it is interpreted as the patient of killed.

John seems to have been killed < John > (A2)

In order to account for these properties, generative
grammar has resorted to phrase structure rules (PSR)
and transformations. The most articulated version of
PSR is known as X-bar Theory, which resorted to differ-
ent devices that have been subject to a revision within
minimalism. In particular, Chomsky [10] argued that the
basic properties of PSR could be understood by means of
a computational operation, dubbed MERGE [10], which
captures two empirical properties of human language
that are non-negotiable: discrete infinity and displace-
ment. To be able to account for those properties, one

must assume an operation that constructs hierarchically
structured expressions with displacement. And that is
what MERGE does. MERGE applies to two objects X
and Y (be these words or bigger units), yielding a new
one, K, which is the set containing X and Y , i.e., {X,Y }.
If X, Y are distinct (taken directly from the lexicon or
independently assembled), K is constructed by what is
called EXTERNAL MERGE (EM); if Y is part of X (if Y
is contained in X), then we have what is called INTER-
NAL MERGE (IM). The latter scenario is that of Sen-
tences A1(b) and A2 above, where MERGE turns “John”
into a discontinuous object (a CHAIN). For complete-
ness, if the operation is at the beginning of a derivation
(e.g., with bare lexical items from a lexicon), it is called
FIRST MERGE, and if it operates with partially-derived
items (phrases), it is called ELSEWHERE MERGE.

Chomsky [10] takes MERGE to be strictly binary, as
it is what is minimally necessary to create hierarchical
structure. Generation by MERGE thus entails a restric-
tive class of recursively defined, binary-branching and
discrete-hierarchical structures.

It is also worth mentioning that in X-bar Theory, the
label identifies the properties of the entire phrase, at the
cost of this being a theory-internal symbol that departs
from inclusiveness demands. An alternative to this is a
label-free representation (see Fig.1), where endocentric-
ity (the assumption that all phrases must be headed) is
not preserved. This entails that syntactic objects can be
exocentric, as seems to be necessary for objects formed
by the combination of two phrases, {XP, Y P}. Syntactic
objects are “endocentric” if they contain an element that
can be determined by Minimal Search – typically, a head.
Given this logic, {X,Y P} is endocentric and {XP, Y P}
exocentric. Consequently, such a system freely generates
objects of different kinds, without stipulating their endo-
centric nature.

Moreover, MERGE is subject to efficiency and econ-
omy conditions. One such condition is inclusiveness,
which precludes the introduction of extraneous objects,
like the ones that X-bar Theory deployed: traces, bar-
levels, projections, etc. Inclusiveness also bars introduc-
tion of features that are not present in lexical items.

To further clarify MERGE, we stress that the combi-
nation of two objects, X and Y , yields a new one, K,
which is the set {X,Y }. Once we have {X,Y }, we may
want to merge K and some object W , which can be ei-
ther internal to K or external to it (see above). In any
event, the merger of W cannot change or tamper with
{X,Y }, which behaves as a unit. More precisely, subse-
quent applications of MERGE must yield Eq.A3(a), not
A3(b):

a. MERGE(K,W ) = {{X,Y },W} (A3)

b. MERGE(K,W ) = {{X,W}, Y }

The driving force of this work is the fact that MERGE
and renormalization seem to play a similar role on var-
ious respects. As noted above, MERGE takes two ob-
jects, X and Y , to yield a new one, K, thus remov-
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ing X and Y from the computational workspace (WS).
In the simplest scenario, MERGE maps WS = [X,Y ]
onto WS′ = [{X,Y }], reducing the complexity of WS.
Notice that MERGE never extends the WS, at least in
terms of cardinality; thus WS = [{X,Y }] and WS′ =
[{W, {X,Y }}] are equally bigger, since they only con-
tain one set. A new element can be added to WS (or
WS′) in only one way: by taking two items W , Z from
the lexicon and introducing {W,Z} into WS as a new
element, yielding WS′′ = [{W,Z}, {X,Y }]. Of course,
cardinality can be reduced if we apply EM (EXTER-
NAL MERGE) and neither of the elements are taken
from the lexicon, as if we map WS′′ = [{W,Z}, {X,Y }]
onto WS′′′ = [{{W,Z}, {X,Y }}]. This idea is indeed
very similar to that of a coarse-graining in physics, in
the sense made precise throughout the paper.

Additionally, the possibility that computational load
is reduced by MERGE is perhaps somewhat new, as this
typically follows from a principle in linguistics that is
called STRICT CYCLICITY. The notion of cycle (and
thus cyclicity) goes back to the fifties, where work in
phonology [55] showed that the application of stress-
assigning rules apply from innermost to outermost units
of a word, putting aside linear order information. More
generally, an object is build under cyclic principles if it
is COMPOSITIONAL, which means that its interpreta-
tion is fixed by the elements it contains and the way in
which they are combined. Consider this with Sentences
A4, where the interpretation is crucially different (Brutus
is an agent in (a), and a patient in (b)), although both
examples contain the same three words:

a. Brutus stabbed Caesar. (A4)

b. Caesar stabbed Brutus.

The concept of STRICT CYCLICITY is a stronger
version of cyclicity. The key intuition behind it is that
for certain linguistic object constructed in a derivation
(say, a V P ), further computation should not modify it.
Let us see this with the example in Eq.A5, where the
verb “leave” is merged with the NP “the room” to yield
the complex V P “leave the room”, which we can call K
for ease of reference.

MERGE(leave, {the, room}) = {leave, {the, room}}
(A5)

What is of interest here is that the interpretation of
K (that is, of “leave the room”) is determined at that
stage of the derivation (at that “cycle”), and cannot be
changed at subsequent stages (“cycles”). Therefore, if
we add “Mary” to obtain “Mary leaves the room” (call
it K ′), as in Eq.A6, the interpretation of K will be the
same in Eq.A5 and in Eq.A6.

MERGE(Mary,K) = {Mary, {leaves, {the, room}}}
(A6)

In a nutshell, the interpretation of complex objects
is constructed stepwise, in a step-by-step fashion, and
whatever has been done at a stage s cannot be undone

at statge s+ 1 (Eqs.A5 and A6 above). This, in turn, is
quite analogue to the idea of irreversibility of RG flows in
physics, which matches perfectly with our interpretation
of MERGE as a coarse-graining of information.

Such stages at a derivation, where a “computation” is
done and cannot be altered afterwards, correspond with
the so-called linguistic PHASES, and the device respon-
sible for ensuring that the interior of a PHASE is no
longer accessible is the PHASE IMPENETRABILITY
CONDITION (PIC for short). What has been called
phase roughly corresponds with the notion of cycle de-
scribed above. Using the physical interpretation that we
introduce in this paper, one would say that a PHASE in
linguistics is the analogous of an RG scale in physics.

To be more precise, a phase is defined in linguistics as
a domain D where uninterpretable features (number and
person features of verbs) are valued. When a phase is
closed off, the complement domain Ω (which can itself
be complex, in the sense of having some inner structure)
of the phase head P cannot be modified from the outside;
this means, for instance, that the case of an NP within
Ω (e.g., “the book” in the V P “read the book”) cannot
be changed once the phase headed by P is complete [56].
Among other things, this entails that “the book”, which
is the Direct Object of “read” Sentence A7 (it receives
accusative case from “read”), cannot also be the Direct
Object of the matrix verb “believe”:

I believe that John read the book. (A7)

That “the book” is the Direct Object of “read” and not
of “believe” is shown in Sentences A8, where we see that
this NP can be passiviced in the embedded clause, but
not in the matrix clause (∗ signals ungrammaticality):

a. I believe that the book was read. (A8)

b. ∗The book was believed that John read.

This “shielding” effect that makes the V P impenetra-
ble is captured by the phase impenetrability condition
mentioned above. Physically, this is the irreversibility of
the RG flow when moving from one RG scale to the next.
There are various approaches to Phase Theory [54], but
all of them share the key intuition that PHASES are do-
mains where complexity is reduced by somehow allowing
the system to “forget” about an amount of structure that
has been created and which will be no longer accessible.
This process of “forgetting” is, in fact, analogous to the
process of “discarding irrelevant degrees of freedom” in
an RG-step in physics.

Moreover, the “rescaling” step in RG has not been dis-
cussed in this paper, but also appears naturally when par-
ticularizing to specific models of language. For instance,
in the Matrix Syntax model [37] this rescaling appears
naturally in order to recover the correct linguistic labels
after a MERGE operation (see Ref.[37] and the discus-
sions therein for more information). We believe that this
is a general feature: the “rescaling” in physics is nothing
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but the “mathematical relabelling” that one needs in or-
der to recover the correct labels (NP , V P , etc) after a

MERGE operation when dealing in practice with models
of language.
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Klümper, A. Schadschneider, J. Zittartz, Europhys. Lett.
24, 293 (1993); U. Schollwöck, Ann. Phys. 326, 96
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371: 20150438 (2016); R. Orús, R. Martin, J. Uriagereka,
to appear soon.

[52] J. Bolhuis, I. Tattersall, N. Chomsky, and R.C. Berwick,
How Could Language Have Evolved? PLoS Biology 12:
e1001934 (2014); R. C. Berwick and N. Chomsky Why
Only Us, Cambridge, MA: MIT Press (2016).

[53] N. Chomsky, Three models for the description of lan-
guage, -IRE Transactions on Information Theory 2: 113-
124 (1956).
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