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Protein folding was the first area of molecular biology for

which a systematic statistical–mechanical analysis of

dynamics was developed. As a result, folding is described as

a process by which a disordered protein chain diffuses

across a high-dimensional energy landscape and finally

reaches the folded ensemble. Folding studies have produced

countless theoretical concepts that are generalizable to other

biomolecular processes, such as the functional dynamics of

molecular assemblies. Common themes in folding and

function include the dominant role of excluded volume, that a

balance between energetic roughness and geometrical

effects guides dynamics, and that folding/functional

landscapes are relatively smooth. Here, we discuss how

insights into protein folding have been applied to

investigate the functional dynamics of biomolecular

assemblies.
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A central tenet in the study of folding is that motion is

accurately described as diffusion along an underlying

energy landscape. With knowledge of the energy over

the full range of 3N-dimensional phase space, all ther-

modynamic and kinetic properties may be directly

evaluated. While, in principle, this would provide a

complete quantitative description of the dynamics, such

a complex characterization would be difficult, if not

impossible, to conceptualize. Accordingly, there have

been significant efforts to establish interpretable topo-

graphical metrics that properly account for the range of

dynamic processes that span orders of magnitude in

time and length.
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Two seminal advances in the description of protein

folding landscapes were the Principle of Minimal Frus-

tration [1] and the folding funnel [2]. Building on the

theory of glass-forming liquids, Bryngelson and Wolynes

showed that the most relevant quantities when describing

these landscapes are the energy gap between the folded

and unfolded ensembles dE and the scale of the energetic

roughness DE (Figure 1). That is, for a protein sequence

to fold on physiological timescales, dE/DE should be

sufficiently large. Subsequently, Leopold et al. [2] used

simulations to explore energy functions of varied rough-

ness, which provided the first pseudoatomic description

of the kinetics that result from minimally frustrated land-

scapes. They found that as folding proceeds, the number

of accessible substates gradually decreases, until the low-

configurational entropy folded ensemble is reached. Vi-

sually, the landscape adopted the shape of a funnel

centered about a dominant basin of attraction. For the

sake of clarity, it is important to note that while transitions

between unfolded configurations are fast, the number of

accessible unfolded states is orders of magnitude larger

than the number of folded states. Thus, during each

folding event, only a fraction of the unfolded ensemble

is transited, and the full range of unfolded configurations

is sampled in the long-time limit.

Since the development of the energy landscape theory of

protein folding, these descriptions have been extended to

biomolecular function, which is often associated with

rearrangements between low-energy states (Figure 1).

Below, we discuss how advances in protein folding have

provided insights into functional dynamics.

The dominant role of sterics and native
interactions
It is becoming clear that common physical properties

guide folding and function. The Principle of Minimal

Frustration indicates that a biomolecule’s landscape may

be described as being relatively smooth, where the native

and functional configurations correspond to low-energy

minima (Figure 1). This principle has been instrumental

in the development of a broad range of models for

biomolecular dynamics in complex environments, such

as folding in the presence of membranes [3��]. One

approach to studying minimally frustrated systems is

through the use of ‘structure-based’ models, which span

from coarse-grained [4] to all-atom [5] resolution. Since,

traditionally, only native interactions are stabilizing in

structure-based models, one naturally asks what is left to

limit the kinetics? The answer is simple: The barriers,
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Figure 1
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The theory of protein folding has shown that the energy landscapes of

proteins are relatively smooth, where there is a large energy gap dE

between folded and unfolded ensembles and a small degree of

roughness DE. At the bottom of these funnel-like landscapes are the

native state ensemble and functional states. As we characterize

biomolecular function, many of the concepts and tools developed for

folding are proving to be effective at elucidating the properties of this

subspace of the global landscape.
kinetics and accessible routes are determined by the

connectivity of native contacts and atomic excluded

volume interactions.

During folding, the atomic excluded volume and covalent

geometry restrict many motions and give rise to ‘Topo-

logical Frustration’ [6]. In contrast to conventional frus-

tration, where energetic roughness arises from stabilizing

non-native interactions, topological frustration is associ-

ated with the formation of native contacts. If specific

native contacts form early in the folding process, there

can be insufficient space for the chain to reorganize,

leading to large energetic barriers from excluded volume

interactions. These large barriers can slow the kinetics, or

make specific routes kinetically inaccessible. For exam-

ple, in the protein IL-1b, early formation of a functional

loop leads to a large barrier for folding, where part of the

native structure disassembles and reforms before the

protein reaches the folded configuration [6,7]. Perhaps

the most dramatic examples of topological frustration can

be found in knotted proteins, where early formation of a

loop requires that the tail thread through a confined space

[8,9] (Figure 2). While it may appear likely that slow

folding kinetics could then result from the formation of

non-native contacts, all-atom explicit-solvent simulations

indicate minimal roughness is associated with the thread-

ing process [10�], consistent with the recent analysis of

explicit-solvent simulations of folding for knot-free pro-

teins [11]. In contrast to intra-protein excluded volume

effects, which impede folding, steric contributions from

crowding agents can stabilize the folded ensemble by
Current Opinion in Structural Biology 2015, 30:57–62 
reducing the phase space accessible in the unfolded

ensemble [12–14], where the specific shape of the crow-

der affects its precise impact on folding [15��]. Together,

these findings illustrate the critical role of excluded

volume during folding in solution.

The effects of sterics during folding are echoed by

observations in machines. For example, folding-inspired

all-atom structure-based models [5] have shown that

steric hindrance-induced barriers are also common in

the ribosome. In our first application of these models

to the ribosome [16], we found that the atomic excluded

volume leads to at least three distinct barriers during aa-

tRNA accommodation. Recently, these models suggested

a similar sterically related intermediate ensemble during

tRNA hybrid-state formation, as well [17]. From these

simulations, each barrier is unambiguously attributed to a

specific structural feature, similar to the identification of

steric barriers in topologically frustrated proteins.

Folding, disorder, function and machines
Grounded in energy landscape theory, early studies of

adenylate kinase predicted that the protein may undergo

localized unfolded events during functional transitions

[18], a process commonly referred to as ‘cracking’. The

ability of proteins to crack can be rationalized by the fact

that the folded ensemble is composed of a diverse set of

configurations that have varied degrees of native structure

and stability. The diversity of the native ensemble of a

protein is illustrated by simulations with structure-based

models that predict 70–90% of the native contacts are

formed in the native ensemble [4,5]. In addition, simpli-

fied models [5] and explicit-solvent models [19] predict

that folding may be described as two partially separable

processes: backbone collapse and side-chain ordering.

Accordingly, when a protein interconverts between func-

tionally relevant configurations, less-stable residues may

spontaneously enter disordered states, while the mole-

cule remains predominantly folded. Initially controver-

sial, cracking has since been detected in simulations and

experiments for many proteins, including adenylate ki-

nase [20–22], kinesin [23], calmodulin [24], protein kinase

A [25] and EGFR kinase [26�,27]. The ability of proteins

to utilize unfolded phase space to regulate function

indicates that there is a broad range of modes by which

functionality is encoded in a specific sequence.

Cracking may be generalized as any conformational pro-

cess where large changes in configurational entropy are

present. For the ribosome, our early simulations with

simplified models predicted a reduction in the available

phase space as tRNA molecules accommodate (Figure 3b).

More recently, it was demonstrated that this change in

configurational entropy may contribute to a temperature

dependence of the rates [28��]. This concomitant reduc-

tion in effective energy and configurational entropy is

reminiscent of protein folding, where enthalpy stabilizes
www.sciencedirect.com
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Figure 2
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Steric interactions are indispensable contributors to folding and functional dynamics. (a) A prime example of the dominant role of sterics is

provided by knotted proteins, where the rate of knotting through a compact loop (left) is governed by the precise molecular geometry. (b) As tRNA

molecules (yellow) move through the ribosome, significant steric obstacles (H89 and H91) are imposed, which limit interconversion rates and

accessible conformational routes. Structural snapshots taken from Refs [16,43].
the folded ensemble and entropy stabilizes the unfolded

ensemble. While the biological implications of this balance

are not fully understood, it is likely that it serves the

purpose of delaying entry of the amino acid, thereby

enabling the use of ‘proofreading’ mechanisms by the

ribosome. This elegant connection between physical

chemistry and biological function emphasizes the essential

role that entropy has during folding and function.

Reaction coordinates for folding and function
To accurately describe the energy landscapes of folding,

it is necessary to use an appropriate reaction coordinate r,
Figure 3
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or set of coordinates {ri}. At the most fundamental level, a

proper coordinate should describe movement along the

lowest-free energy pathway/s connecting the endpoints.

When describing folding, configurations identified as being

in the transition state ensemble (i.e. r = rTSE) will then be

equally likely to continue to the folded and unfolded

ensembles, and the coordinate will be a monotonic func-

tion of the folding process. Strictly speaking, one may also

desire that the projected dynamics is Markovian at all

points along the coordinate [29]. However, for sufficiently

large barriers, the overall kinetics are well described by the

properties of the TSE, and the remaining coordinate space
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often transiently partially unfold, or crack. (a) Adenylate kinase (Adk)

ryl transfer [20]. (b) During accommodation, tRNA molecules enter a

ellinger distance (H) of the dihedral orientation from a random

igure 4 of Ref [16]. (C) Upon ATP binding (pink line) by protein kinase A

tly break and reform [25].
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may be of secondary interest. Since the TSE is defined as

configurations for which the committor probability Pfold is

equal to 0.5, it may be argued that it is necessary to calculate

Pfold for every candidate configuration. Cho et al. showed

that such a calculation is unnecessary for many single-

domain proteins, since geometrical coordinates (e.g. the

number of native contacts, Q) can identify configurations

for which Pfold = 0.5[30]. Alternate approaches to identify-

ing reliable coordinates are to compare the projected

barrier and diffusion coefficient with the global kinetics

[31], or to design collective coordinates that are diffusive by

construction [32]. A relatively straightforward method for

optimizing coordinates was introduced by Best and Hum-

mer, who showed that for coordinates that accurately

capture the barrier, and along which the motion is Mar-

kovian, the probability of being on a transition path

P(TPjr) will reach a value of 0.5 at theTSE [33]. Consistent

with Cho et al., by evaluating P(TPjQ) for explicit-solvent

simulations of protein folding, Best et al. found Q is an

accurate predictor for when the system is on a transition

path [11]. In a clever implementation of Bayesian statistical

analysis, they also demonstrated that formation of specific

non-native interactions is not correlated with the folding

process. Accordingly, these results indicate that native-

centric structure-based models provide an energetic de-

scription for folding that is consistent with explicit-solvent

simulations, as also observed for conformational transitions

[27].

Identifying reaction coordinates that accurately describe

the dynamics is necessary when studying any biomolec-

ular transition. As discussed, it is well established that

low-dimensional projections can accurately describe

folding dynamics, where coordinates may be collective

(e.g. Q), or simple distance metrics. For the ribosome, two

recent studies have attempted to quantitatively identify

appropriate low-dimensional coordinates. For subunit

rotation, explicit-solvent simulations were used to iden-

tify sets of atoms that capture diffusive reorientation

dynamics of large domains [34�]. A more rigorous analysis

was performed for tRNA dynamics [28��], where the

tRNA-ribosome complex was simulated and many barri-

er-crossing transitions were observed (�100), which

allowed the probability of being on a transition path

P(TPjr) to be calculated for over 200 candidate coordi-

nates. To summarize the results, those calculations

showed that changes in specific tRNA–tRNA atomic

distances are highly indicative of when the system is

undergoing a transition, just as Q is an accurate marker for

folding events.

Effective diffusion and barrier-crossing events
In addition to elucidating mechanisms, energy landscape

theory provides quantitative tools, such as effective dif-

fusion along low-dimensional projections. That is, one

may average over coordinates that are orthogonal to the

folding process and consider the short-scale averaged free
Current Opinion in Structural Biology 2015, 30:57–62 
energy and diffusion along one dimension. The mean first

passage time hti between endpoint states (i.e. folded and

unfolded ensembles) may then be expressed as [1]:

1

k
¼ hti

¼
Z rfinal

rinitial

dr

Z r

rmin

dr0 exp½ðGðrÞ � Gðr0ÞÞ=kBT �
Deff

r ðrÞ
; (1)

where Deff
r ðrÞ is the effective diffusion along the coor-

dinate, G(r) is the free energy and rinitial and rfinal are

the endpoint values of the coordinate. One may com-

pare the effective (or apparent) diffusion to the free

diffusion, in order to infer the scale of the roughness

from the relation:

Deff
r ¼ Dfree

r e�ðDE=kBT Þ2 : (2)

When Deff and G(r) are not available, it is convenient to

approximate hti as:

hti ¼ CeDGTSE=kBT ; (3)

where the prefactor C is interpreted as the barrier-crossing

attempt frequency and DGTSE is the height of the free-

energy barrier. Together, these three equations provide a

relatively simple quantitative relationship between the

short-scale roughness, large-scale barriers, diffusion and

kinetics, which may be applied to most large-scale con-

formational transitions.

Many experimental and theoretical efforts have aimed to

quantify the effective diffusion, short-scale roughness

and exponential prefactors associated with folding. From

a theoretical perspective, algorithms have been devel-

oped and employed to extract Dr from simulations, rang-

ing from Bayesian analysis of equilibrium trajectories

[31], to fitting dynamics to the short-time solution of

the Fokker–Planck equation [35], to applying quasi-har-

monic approximations [36]. Approaches have also been

developed for extracting the scale of roughness from

pulling experiments [37], and FRET measurements have

implicated a dependence of D on protein compaction

[38]. Overall, these studies have suggested that DE � 1–
5kBT, and that the solvent-averaged folding free-energy

barriers are typically 2–10kBT. With regard to the expo-

nential prefactor, Eaton and co-workers used experimen-

tal observations of the kinetics of secondary and tertiary

rearrangements to argue that C is on the scale of 1 ms�1

[39]. Similarly, Thirumalai and Hyeon used theoretical

arguments to show that C is a comparable value for small

RNA folding [40]. In a purely computational approach,

Shaw et al. performed folding simulations in explicit

solvent and inferred an attempt frequency of �1 ms�1

[19]. These independent and complementary approaches

are consistently indicating that the barrier crossing at-

tempt frequency for folding is on the order of inverse

microseconds.
www.sciencedirect.com
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While at a more nascent stage of development, similar

questions have been posed for the ribosome. We

attempted to describe diffusion of tRNA entry into the

ribosome in explicit-solvent simulations (200–300 ns

each) and estimated Deff � 1 mm2/s [41]. This is similar

to experimental measures of tRNA diffusion in solution,

suggesting DE < 1kBT. When tRNA moves inside of the

ribosome, the Deff decreases [34�], suggesting DE
increases to �2–3kBT. Consistent with a broad range of

studies on protein folding, these calculations suggest

there is a relatively small degree of roughness associated

with functional motions of the ribosome.

The future of function
Over the last ten years there has been a remarkable

expansion in our understanding of biomolecular function.

In contrast to earlier views, where functional rearrange-

ments were largely described as discrete steps between

well-defined endpoints, we now know that biomolecular

stability and disorder are intimately related to kinetics.

This broadened perspective has revealed that order–
disorder transitions are a fundamental feature of many

rearrangements, where some molecular machines tran-

siently enter partially disordered transition states, and

others exploit a delicate balance between order and

disorder to signal for activity. With this plethora of newly

identified disorder phenomena in biology [42], it should

come as no surprise that the theoretical foundation estab-

lished for folding has been instrumental in elucidating

function. In the coming years, it will be exciting to see to

what extent principles from folding can guide the design

of more effective experiments that will ultimately enable

quantitative control of biological machines inside of the

cell.
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