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Abstract

All atom molecular dynamics simulations have become a standard method for mapping equilibrium protein dynamics and non-

equilibrium events like folding and unfolding. Here, we present detailed methods for performing such simulations. Generic protocols

for minimization, solvation, simulation, and analysis derived from previous studies are also presented. As a measure of validation,

our water model is compared with experiment. An example of current applications of these methods, simulations of the ultrafast

folding protein Engrailed Homeodomain are presented including the experimental evidence used to verify their results. Ultrafast

folders are an invaluable tool for studying protein behavior as folding and unfolding events measured by experiment occur on

timescales accessible with the high-resolution molecular dynamics methods we describe. Finally, to demonstrate the prospect of

these methods for folding proteins, a temperature quench simulation of a thermal unfolding intermediate of the Engrailed

Homeodomain is described.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Molecular dynamics (MD) is a theoretical physics
technique for the examination of molecular systems at

atomic detail. It has a sound basis in statistical me-

chanics and classical physics [1–3]. MD has been used in

areas as diverse as materials sciences [4], atmospherics

[5], and in the biosciences for systems with lipids [6],

nucleic acids [7–9], and proteins [10–13].

Accurate simulation of biomolecules in solution (i.e.,

the condensed phase) requires as much detail as possible
in the internal representation of the system under study.

For this reason, �all atom� MD, where all of the atoms

(including hydrogens) are treated explicitly during the

calculations, is the most realistic approach, and gener-

ally prevails over �united atom� (e.g., methyl groups

treated as a single unit) [14], implicit solvent (e.g.,

distance dependent dielectric or other approximations to
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account for the lack of water molecules) [15], and other

methods with reduced complexity. Another approach is

to study very small proteins because their small size
decreases the computational requirements [16]. More

recently, increases in computer speed, and the prolifer-

ation of inexpensive multi-processor machines have

enabled all-atom simulations of full proteins access to

long simulation time scales [17].

All atom simulation techniques provide atomic res-

olution of equilibrium protein dynamic behavior and

non-equilibrium events like protein folding and un-
folding. When used in conjunction with experiment,

simulations provide an enhanced view of the system

under study. Recent work has examined aspects of

protein folding and unfolding [18–23], and the

mechanisms of chemical denaturants and co-solvents

[18,24–26].

There are several well-known methods and imple-

mentations for molecular dynamics simulations of
proteins and other biomolecules [14,27–30]. Here, we

present our methods for all atom MD simulation of

mail to: daggett@u.washington.edu
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proteins in solution based on the force field and pro-
tocols described by Levitt et al. [27,28]. The known

implementations of these methods include the ENCAD

program [27] and in lucem Molecular Mechanics

(known as ilmm, our scalable parallel in-house pro-

gram). The protocols presented are generic renditions

of those used in a variety of protein studies from our

laboratory.
2. Molecular dynamics simulation methods

Molecular dynamics is the time dependent integration
of the classical equations of motion for molecular sys-

tems. The equations of motion, for all but the simplest

systems, are of sufficient complexity that the integration

must be done numerically over a large number of very

small discrete timesteps rather than analytically in a

continuous fashion. This treatment of time assumes that

at any given discrete time step the atomic coordinates

are fixed. This assumption holds if the magnitude of the
time step is sufficiently small (e.g., approximately 2 fs, or

less). At any given time step, these �fixed� coordinates are
used to calculate the potential energy and its first de-

rivative, the force, using a molecular mechanics force

field.

Generally, for any atom, evolution in time proceeds

from step n to nþ 1 as described in Eq. (1), where

subscripts denote the time step, Dt is the magnitude of
the integration time step, a is the acceleration, f is the

force on the atom, m is the atomic mass, v is the velocity,
and x refers to the atomic coordinates:

an ¼
fn
m
;

vnþ1 ¼ vn þ anDt;

xnþ1 ¼ xn þ vnDt þ
1

2
anDt2:

ð1Þ

A long series of these steps generates a trajectory

through phase space, the 6N dimensional space (where

N is the number of atoms) defined by the three space

vectors of the atoms� positions, and velocities. In gen-

eral, post-simulation analysis is concerned with the

atomic position (coordinates) subspace of phase space.

2.1. The microcanonical ensemble

The microcanoncial (NVE) ensemble fixes the

number of atoms, the volume of the periodic box, and

the total energy (potential and kinetic) of the system.

Energy conservation is naturally satisfied for NVE

when the classical equations of motion are used [1].
There are several other advantages to performing

simulations in the NVE ensemble: there is no need

to couple the microscopic system to macroscopic

thermodynamic properties such as pressure and tem-
perature on a step-to-step basis. As a result, the im-
plementation is computationally efficient. An efficient

computational approach implies fewer numerical op-

erations, reducing the drift (from round-off errors) in

the conserved property (energy), thereby maximizing

the integrity of the simulation. In addition, attempting

to control the properties of macroscopic variables, such

as temperature and pressure, for distinctly microscopic

systems is fundamentally flawed, and difficult to
achieve.

2.2. Numerical integration

Stepwise numerical integration of the equations of

motion can be performed in a variety of ways [1,2,14,27–

31]; we use the Beeman algorithm as modified by Brooks

(Eq. (2) [27,31]). Energy conservation with the Brooks–
Beeman algorithm is better than that of the commonly

used Verlet method. A range of integration timesteps

was tested for stability (i.e., conservation of energy). For

all but the most extreme cases, a Dt of 2 fs was found to

be appropriate [28]. Larger values of Dt disrupt the

continuity of the simulation and conservation of energy,

while smaller values do not make efficient use of the

computational resources

xiðt þ DtÞ ¼ xiðtÞ þ viðtÞDt þ ½5aiðtÞ � aiðt � DtÞ�Dt
2

8
;

viðt þ DtÞ ¼ viðtÞ þ ½3aiðt þ DtÞ þ 6aiðtÞ � aiðt � DtÞ�Dt
8
:

ð2Þ
2.3. Molecular mechanics force field

An all atom molecular mechanics force field analyt-

ically describes the potential energy of a system in terms

of the geometries of atomic centers. The energy calcu-

lation and dynamics (ENCAD) force field was origi-

nally described by Levitt [31] and was subsequently

updated [27] and augmented to include the flexible

three-center (F3C) water model [28]. As with other

biomolecular force fields such as those in CHARMM
[14,30] and AMBER [29], the potential energy param-

eters (e.g., ideal bond length, bond vibration energies)

in the ENCAD force field are derived empirically from

ab initio quantum mechanics, spectroscopy, and crys-

tallography. Curious readers are directed to the history

of the ENCAD force field and its genealogy [32] which

includes a description of the original work from Lifson�s
group; the ECEPP force field; and protocols from
Scheraga�s lab [33–35]; the Kollman group force fields

implemented within AMBER [36,37]; the GROMOS

force field from van Gunsteren [38]; the hydrocarbon

force fields (MM2-4) of Allinger et al. [39]; and a his-

torical account of molecular dynamics and CHARMM

by Karplus [40].
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Eq. (3) contains the ENCAD potential function, V . It
describes the potential energy as a function of internal

coordinates which are calculated from the Cartesian

coordinates. It enters from f in Eq. (1). V is expressed in

two, three, and four body interaction terms. The first

three terms represent the intramolecular interactions

due to bond lengths, bond angles, and dihedral/torsion

angles. The fourth term accounts for the �non-bonded�
energies attributed to the van der Waals and electro-
static interactions of atom pairs. Idealized plots of the

constituent terms of the potential energy function are

provided in Fig. 1
Fig. 1. Idealized plots of constituent terms of the ENCAD potential

function, U . The potential energy of each term is the y-axis. (A) The

harmonic term that describes the interaction energy of two bonded

atoms as a function of the distance of their atomic centers with ideal

distance b0. (B) The harmonic term, similar in form to (A), but of

lower energy, that describes the interaction of two atoms bonded to a

third atom as a function of the angle between them with the ideal angle

h0. (C) A typical periodic (n ¼ 2) cosine term with a minimum at u0

used to describe both in- and out-of-plane (i.e., proper and improper)

dihedral angle energies. Plots (A–C) share the same range for energy.

(D) The van der Waals interaction energy of two atoms with e and r0
the geometric mean of their respective e and r0. (E) Three typical

electrostatic interactions. The top line idealizes the interaction of

charges with like signs while the bottom line idealizes the interaction of

two charges with different signs. The sum of (D–E) constitutes the non-

bonded interaction energy of two atomic centers.
f ¼� oV
ox

� �

V ¼
Xbonds
i

Kb;iðbi�b0;iÞ2þ
Xbondangles

i

Kh;iðhi�h0;iÞ2

þ
Xtorsionangles

i

Ku;if1�cos½niðui�u0;iÞ�gþUnb
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X
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eij
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rij

� �12
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#
þ332
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� �
:

ð3Þ
The energy of a covalent bond is treated as a har-

monic oscillator with an energy minimum at b0 (Fig. 1)

and force constant of Kb. Bond angles are treated sim-

ilarly with ideal angle h0 and force constant Kh. The

third term, used for dihedral and out-of-plane torsion

angles, is represented by a cosine with n periods with a
minimum energy at u0, and barrier to rotation force

constant of Ku.
The van der Waals interaction energy of the atomic

pair i and j is treated with a 12/6 Lennard-Jones func-

tion. When the pair distance rij is less than r0, the geo-

metric mean of ri and rj, the function is highly repulsive

(Fig. 1). At rij greater than r0, the interaction is attrac-

tive with a minimum value of e0, the geometric mean of
ei, and ej. The interatomic attraction decreases as the

separation distance approaches infinity. Pairs of atoms

within the same molecule separated by fewer than four

bonds are not included in this term.

The electrostatic interaction energy of the atomic pair

i and j, with partial charges qi and qj, respectively,

separated by distance rij is expressed with a Coulomb

style potential. In this model the energy of interaction is
favorable when the signs of the partial charges are dif-

ferent and unfavorable when they are the same. As with

the Lennard-Jones potential, the energy of interaction

gradually decreases to zero as rij approaches infinity.
The set of parameters for protein atoms including

force constants, equilibrium values, ri, ei, and partial

charges qi is available elsewhere [27]. The parameters for

the flexible three-center (F3C) water model, an explicit
solvent model designed for the ENCAD potential, are

also available [28]. Additions for chemical denaturants

[24–26] and other co-solvents and ions can be found in

the references that describe their applications [18,19,25].

2.4. Non-bonded interaction cutoff

To mimic the solution state of a system, the simula-
tion volume is treated as an infinitely repeating cell or

�periodic box.� Conceptually, this is similar to an or-

thorhombic unit cell in crystallography. The result is an

infinite solution with a protein concentration ap-

proaching (but usually below) those in vivo. In practice,

it is neither necessary nor computationally possible to
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consider all of the non-bonded interactions arising from
an infinite solution, as in Eq. (3). In fact, the dielectric

constant becomes large at fairly short distances: e�50 at

10�A separation of the charges and �70 at 15�A [41].

Therefore, it is common practice to use a non-bonded

pair distance cutoff, rc. Pairs separated by distances

greater than rc (e.g., 8, 10�A, etc.) are not considered;

that is, the energy of interaction beyond rc is zero.
The NVE ensemble relies on the continuity of po-

tential terms to conserve energy. Without further mod-

ification, such a scheme would be discontinuous at rc.
To maintain the integrity of the NVE ensemble and to

preserve the energies and forces of interaction, the

ENCAD force field uses a force-shifting cutoff, Vfs. This
method smoothly and continuously shifts the energies

and forces by subtracting from the original potential

term, Vnb, its first order Taylor expansion about rc, as in
Eq. (4). The non-bonded potential terms and a more

complete discussion can be found elsewhere [27]:

VfsðrÞ ¼ VnbðrÞ � VnbðrcÞ
�

þ ðr � rcÞ
dVnbðrcÞ

dr

� ��
: ð4Þ

The choice of cutoff is not arbitrary. Clearly a very
short cutoff (�4�A) does not adequately model the

electrostatic screening properties of systems. However,

slightly longer cutoff ranges such as 8 and 10�A have

been shown in model peptide systems to behave very

similarly to much longer cutoffs such as 12, 14, and 16�A
([27,28] and [D.A.C. Beck, R.S. Armen, V. Daggett,

2003, manuscript in preparation]). In general, very long

cutoffs (�20�A) do not improve the fidelity of the cal-

culations and take significantly more computational

time (as rc increases the number of pairs grows expo-
nentially). Additional problems with very long cutoffs

arise when they exceed half the periodic box dimensions.

In this case, an atomic pair could have multiple degen-

erate interactions, which if evaluated would overesti-

mate the energy of interaction and lead to perturbations

in the atomic interactions.
3. Molecular dynamics simulation protocols

3.1. System preparation

The initial preparation of the system under study is

vitally important. The molecular dynamics trajectory

that is calculated can be highly dependent on the initial

configuration. An ill-prepared system, e.g., one that

contains atomic clashes, will begin a simulation with

exceptional forces that could quickly disrupt the tertiary

structure of the protein under examination. The result-

ing simulation could on all accounts be a correct bio-
physical interpretation, but one without any relevance to

the intended topic of study. A standard set of proce-

dures have been developed to reduce artifacts from
inadequate preparation. The specific number of steps of
minimization and dynamics may vary between applica-

tions, but the general protocol remains consistent.

For native state and unfolding simulations, an ex-

perimental structure (derived from crystallography or

NMR experiments) is used. The crystal structures re-

quire that hydrogens be added. For refolding simula-

tions, a starting structure can be taken from a thermal, or

chemical unfolding MD trajectory. Pre- and post-tran-
sition state structures, folding intermediates, and struc-

tures from the denatured ensemble have all been used for

this purpose [18–22]. The potential energy of the com-

plete structure is minimized briefly (usually 200–1500

steps) with respect to the atomic coordinates, usually

with a mix of steepest-descent and conjugate-gradient

techniques [42]. The resulting �minimized structure� is
then ready to be solvated for simulation in solution.

The minimized structure is placed in an empty peri-

odic box, the walls of which extend a specified distance

(typically 8–12�A) from the protein. This box is then

filled with solvent. It is necessary to extend the box to or

beyond rc to eliminate any direct interactions between

the protein�s first and second solvation shells. Such in-

teractions might alter the process under study. At dis-

tances past these shells, the water has been shown to
behave as bulk [43].

Water molecules are added from periodic boxes pre-

equilibrated to the appropriate density for the desired

simulation temperature. Waters from the pre-equili-

brated box are not added to the system if they are within

a specified �radius of exclusion� (typically 1.67–2.10�A)

from the protein. The waters (only) are minimized to

smooth the solvent network before a short (typically 1–
5 ps) MD simulation of the water (only) is performed.

The protein is fixed during this process to encourage

water to populate relevant hydration sites on the protein

surface without causing disruption to the protein

structure. In the final steps of preparation, the protein

(only) is minimized followed by a minimization of the

entire system (water and protein).

3.2. Modifications for higher order systems

The preparation of ternary and quaternary systems

involving one or more co-solvents is more complex.

Solvation of the protein with waters is performed as

described above, after which water molecules are

swapped out for randomly placed co-solvent molecules.

Care must be taken to insert the correct number of co-
solvent molecules and to adjust the box volume so as to

match the experimental density at a given mole fraction.

The water only is minimized to reorganize the network

where it was disrupted by the insertion of co-solvent.

Several successive rounds of isolated minimization and

short MD simulations are performed on the water, co-

solvent, and protein independently. When minimization
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readily converges, the process is terminated, and the
solution is ready for simulation.

3.3. Temperature

Studies performed with these methods are more

concerned with behavior at a given temperature (e.g.,

298K) than at a given energy (e.g., )24,532 kcal/mol).
However, in the NVE ensemble, the step-to-step kinetic

energy (and thus the temperature) of the system may

vary. At each step, the temperature T is calculated from

the atomic velocities according to Eq. (5). In this ex-

pression, the sum is over all atoms, each with mass mi,

and instantaneous velocity of vi. N is the number of

atoms and Kb is the Boltzmann constant. Due to the

step-to-step fluctuations, the mean of these instanta-
neous temperature samplings for a time interval (typi-

cally 100–500 steps) is a more appropriate measure of T .

T ¼
P

miv2i
3NKb

: ð5Þ

At the beginning of a simulation, small, equal, and
opposite impulses are applied to randomly selected pairs

of atoms. This process is continued until the Maxwellian

velocity distribution for the system has a mean within a

few Kelvin of the desired simulation temperature. The

system must be brought to temperature slowly enough

such that it is not shocked. Our current protocols heat

the system by 0.05–0.1K per step.

Simulation of protein native states frequently occurs
at 298K. For simulations of thermal unfolding, any

temperature above the protein of interest�s melting

temperature, Tm, can be used. Our past studies have

shown, however, that thermal unfolding is an activated

process obeying the rules of Arrhenius behavior [21–

23,44]. That is, increasing temperature does not alter the

pathway of unfolding, only the rate. As a result, it is

possible to simulate unfolding at temperatures signifi-
cantly above a protein�s Tm. The increased rate of un-

folding allows short unfolding simulations to sample not

only the transition state and early intermediates of un-

folding but large regions of the denatured ensemble.

With the Maxwellian temperature distribution, a 200K

increase in temperature corresponds to only a 30% in-

crease in the mean atomic velocities.

In addition to the increased rate of unfolding, high
temperature simulations benefit from reduced system

density. As stated previously, the density of a system

during preparation is set to the value obtained from

experiment. At 498K, the density of liquid water from

experiment is 0.829 gm/ml [45]. Contrast this with

0.997 gm/ml for 298K [45] and it is readily apparent that

there will be significantly fewer non-bonded interaction

partners at 498K. The reduced number of partners
translates into yet faster simulation run-times without

disrupting the integrity of the study.
The energy drift arising with this method is primarily
kinetic and due to numerical round-off. As a result, the

mean system temperature over a large number of steps

can be used to monitor energy conservation; when the

mean temperature drifts, the velocities are rescaled.

Using double precision (64 bit) operations, systems of

modest complexity simulated at 298K rescale once per

5.0� 106 steps or every 10 ns.
4. Validation and results

As mentioned above, poorly prepared starting struc-

tures can introduce fictitious behavior into what is

otherwise a correct biophysical simulation. Similarly,

incorrect parameterization can cause improper dynamics.

For these reasons, it is critical that rigorous comparisons
with experiment be conducted to validate the simulation

methodology. Here, we present a minimal set of experi-

mental comparisons as means of validation, a brief syn-

opsis of themost commonly usedMDsimulation analysis

methods, and a glance at some current results.

4.1. Water

Explicit water models have a number of experimental

observations against which they can be validated. The

F3C model has been thoroughly tested and documented

[28,43,46]. Here, we have chosen two of the most im-

portant bulk properties known from experiment: water

self-diffusion and the radial distribution function; which

reflect the dynamic behavior; and structure of the sol-

vent, respectively. These properties are well reproduced
with the methods described above and a commonly used

non-bonded cutoff of 8�A. The simulation used for these

comparisons had 502 F3C water molecules at the

experimental density of 0.997 gm/ml and was run for

11 ns. The first nanosecond was allocated to system

equilibration.

The self-diffusion of water as a function of simulation

time is presented in Fig. 2. The mean diffusion over the
last nanosecond is 0.23�A2/ps, in agreement with exper-

iment (0.23–0.25�A2/ps) [47]. The diffusion calculation

converges with simulation time [2]. This convergence is

common with much of MD analysis and reflects the

need for averaging over long time scales to approximate

sampling from ensembles. Another approach to long

time scale sampling is to use numerous short simulations

performed in parallel. Each simulation has a slight
perturbation to its starting structure or a different ran-

dom number seed during the heating stage. By the

ergodic principle, the sampling of these multiple short

simulations is equivalent to the sampling of a single long

simulation [1].

Another commonly used property for validation of

water models is the radial distribution function (RDF),



Fig. 2. Water self-diffusion from the F3C water model and experiment

[47]. The F3C self-diffusion (black) converges to 0.23�A2/ps as the

sampling interval increases. This value is in agreement with that from

experiment, 0.23–0.25�A2/ps (shaded region).
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also known as the pair distribution function, or GðrÞ
[1,43]. The RDF of oxygens in water, or GOOðrÞ, rep-
resents the ensemble averaged number of oxygen–oxy-

gen pairs found at a distance r. These two-dimensional

functions can describe much of the three-dimensional

structural quantities of homogeneous systems. Fig. 3
shows water RDFs (GOO, GOH, and GHH) for the F3C

water model and two calculated from Soper�s neutron

diffraction data (Soper A and B) [48]. The F3C model

almost completely reproduces the height (number of

pairs) and distance of peaks in the experimental RDFs.

The height and distance of the first peak in the GOOðrÞ
represent the first solvation shell of water. The height

describes the coordination of the first shell, while the
distance reflects the close tetrahedral arrangement of

water�s hydrogen bond network. The second and third
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Fig. 3. Water radial distribution functions (RDF) from the F3C water

model and neutron diffraction experiments [48]. Data for F3C calcu-

lated over the final 10 ns of an 8.0�A non-bonded cutoff simulation of

502 waters at the experimental density of 0.997mg/ml. GOO refers to

the RDF for oxygen–oxygen pairs, GOH to oxygen–hydrogen, and GHH

to hydrogen–hydrogen. The F3C model (black) reproduces the peak

heights and distances of the neutron diffraction data (grey). The ex-

perimental intra-molecular peaks have been removed for clarity.
peaks correspond to the second shell and bulk water.
These peaks are less well defined from experiment as

they are much more dynamic with respect to the origin

than the first shell.

4.2. Protein folding/unfolding

The study of protein folding and unfolding pathways

by molecular dynamics is aided by the choice of system
under study. Ultrafast folding proteins are of particular

interest because the folding and unfolding events mea-

sured by experiment occur on timescales accessible to

MD. The Engrailed Homeodomain (En-HD) is a three

helix bundle (61 residues) that refolds with a rate con-

stant of 37,500 s�1 at 298K and 51,000 at 315K, as

assessed by temperature jump relaxation experiments

[21]. Fig. 4 presents data from three simulations of En-
HD with an 8�A cutoff range. The 298K native state and

498K thermal unfolding simulations have been de-

scribed and compared in detail with experimental data

from the laboratory of our collaborator Alan Fersht

[21,22]. The folding simulation is a 298K quench of the

5 ns thermal unfolding intermediate.

In its native state, En-HD�s core consists of helices I,
II, and III (colored in red, green, and blue, respectively,
in Fig. 4). Helices I and II are connected by a 5 residue

loop and form an anti-parallel scaffold against which

helix III packs. The 7 residue N-terminal loop is highly

mobile and is seen to come away from and return to the

helical core multiple times in the native state simulation.

During unfolding, the core is weakened, and helix III

begins to pull away from the I, II scaffold. This sequence

of events, seen in multiple simulations at 348, 373, and
498K, leads to the transition state ensemble, which oc-

curs at approximately 0.26 ns in the 498K simulation

shown. The transition state identified from simulation is

in good agreement with experiment [22]. As the un-

folding proceeds, the helices separate, and in the pro-

cess, lose tertiary contacts. The resulting denatured

ensemble has a large amount of secondary structure, but

few high order contacts. This is well described by the
framework model of protein folding, where the slow step

involves the correct tertiary packing of persistent local

secondary structure.

The extent of secondary structure predicted for the

denatured state [21] was recently confirmed with CD

and NMR Ha chemical shift experiments [22]. NMR

experiments, however, yielded no trace of tertiary in-

teractions. These experiments were carried out on the
L16A mutant, which shifts the equilibrium so that the

denatured state (in this case the folding intermediate) is

populated under physiological conditions.

Hydrogen exchange of En-HD (used to monitor

spontaneous un- and refolding at physiological condi-

tions by the exposure and protection of main chain

amides) confirms that most of the residual helix in the



Fig. 4. Ca RMSD to crystal structure as a function of time for three MD simulations of the En-HD. En-HD is a three helix bundle (1enh [50]) with a

fair amount of helical structure in its unfolding intermediate, and denatured ensemble. The native state and thermal unfolding simulations have been

fully characterized and verified against experiment [21,22]. The 298K native state simulation (light grey) is a reference against which to compare the

498K thermal unfolding (dark grey) and 298K folding/quench (black) simulations. The structures are colored according to the native state helices:

helix I in red; helix II in green; and helix III in blue. In the native state simulation, the RMSD ranges from 2.0 to 3.5�A. The fluctuations reflect the

degree of mobility in the loops between helices. The transition state in the thermal unfolding simulation was seen at 0.26 ns. The 5 ns (10.47�A Ca
RMSD to crystal) structure from the unfolding simulation was used to seed the folding/temperature quench simulation. Within the first 5 ns, the

folding system undergoes an initial collapse and refolds by the framework model to a final structure that is 3.58�A from the crystal, and 2.88�A from

the final structure of the native state simulation. These simulations were performed with ENCAD and ilmm, and used an 8�A cutoff range [27]. The

Ca RMSD calculation excludes the highly mobile N- and C-termini.
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intermediate state is native, although transient non-na-

tive helices seen in the unfolding simulation are consis-

tent with NMR chemical shift deviations of the L16A

mutant. The extrapolated temperature dependent rates

of unfolding from temperature jump experiments are in

good agreement with those from simulation at high

temperature, especially when considering the �single
molecule� aspect of simulation [22]. At 373K, for
example, the half-life of folding was �2 ns from simu-

lation, and about 5 ns by extrapolation of the experi-

mental data.

A post-transition state starting structure from the

thermal unfolding run was used for a temperature

quench/refolding simulation. It is 10.47�A Ca root-

mean-square deviation (RMSD) from the crystal struc-

ture. This intermediate is non-native in that very few
tertiary contacts are present, each helix lacks several

turns, and the N-terminus contains a non-native helical
segment. Protein refolding occurs very much as the re-

verse of denaturation: after quenching at 298K, tran-

sient non-native helical segments are lost, and much of

the native helical structure quickly returns (<5 ns).

Subsequently, the I, II scaffold returns (see �helix dock-

ing� in Fig. 4), and the swing arm of helix III begins to

move toward the core (see �refolding final� in Fig. 4).

Although the final structure is similar to structures in
the native state ensemble, the refolding simulation is on-

going in order to capture the complete atomic detail of

the end-stages in helix docking.

For experimental comparisons, there are several

other important computational analyses that must be

performed. For example, one must demonstrate that the

potential function and simulation protocols reproduce

the structure, and dynamic behavior of the native state
under folding conditions. The starting structure, or

crystal structure in this case, is a useful reference against
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which simulation can be compared. The native state
RMSD to the crystal structure in Fig. 4 ranges from 2 to

4�A. These fluctuations reflect the degree of mobility in

the loops between the helices. In the thermal unfolding

simulations, the RMSD rapidly diverges from the range

of values experienced by the native ensemble to a value

of 18.6�A at 60 ns. The refolding simulation starts from

the 5 ns, 10.47�A, unfolding intermediate. The final

structure of the folding simulation after a 55 ns simula-
tion at 298K has an RMSD of 3.58�A. The final struc-

ture of the native state is similar, 3.57�A. These two final

structures are 2.88�A from each other. The similarity in

RMSD to the crystal structure of the final native and

�refolded� structures, in conjunction with their relatively

low RMSD to each other, is an indication that the

protein in the quenched, refolding simulation has be-

come very native-like.
The RMSD alone is not a sufficient description of

protein structure. Other relevant analyses include the

calculation of solvent accessible surface area (SASA)

and the number and persistence of residue–residue

contacts. The mean and standard deviations of the total

SASA (by the NACCESS method [49]) for the final

nanosecond of the native (4753� 127�A2) and the re-

folding simulation (4803� 168�A2) overlap. The statis-
tical similarity of these values further suggests the

refolding run is adopting a very native like conforma-

tion. The SASA for the final nanosecond of the 498K

unfolding simulation (6335� 204�A2), however, is very

different from the values for the native state and the

folding run. Also of interest in studies of this type are

the SASA breakdowns by residue, hydrophobicity, and

side/main-chain (data not shown).
The total number of side-chain to side-chain contacts

for the last nanosecond of these simulations was calcu-

lated. As with the SASA, the refolding simulation mean,

and SD (138.8� 2.9) is within the fluctuations of the

native state (143.6� 2.3), a further indication of re-

folding. In contrast, the unfolding simulation

(83.0� 3.4) has about 60% of the contacts populated in

the native state simulation. The denatured state of En-
HD contains considerable residual helical structure in

both the simulations and as assessed by experiment [22].

The high degree of contacts in the denatured state re-

flects intra-helical contacts, not contacts for docking of

the helices. More detailed analysis of precisely which

native contacts are preserved and which are lost is typ-

ical for such studies (data not shown).
5. Concluding remarks

Molecular dynamics is a useful tool for enhancing the

information obtained from experiment about protein

native states, thermal and chemical unfolding events,

and folding pathways. These methods permit reliable
unfolding of proteins in agreement with experiments
probing both folding and unfolding. The discovery of

ultrafast folding proteins bridge the gap between MD

and experiment and illustrate the synergy between the

two approaches: theorists get validation from experi-

ment and experimentalists get atomic level detail from

theory.
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