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Co-translational protein folding:
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Proteins are synthesized as linear polymers and have to fold

into their native structure to fulfil various functions in the cell.

Folding can start co-translationally when the emerging peptide

is still attached to the ribosome and is guided by the

environment of the polypeptide exit tunnel and the kinetics of

translation. Major questions are: When does co-translational

folding begin? What is the role of the ribosome in guiding the

nascent peptide towards its native structure? How does

translation elongation kinetics modulate protein folding? Here

we suggest how novel structural and biophysical approaches

can help to probe the interplay between the ribosome and the

emerging peptide and present future challenges in

understanding co-translational folding.
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Introduction
To carry out their various functions in the cell, proteins

must fold into their native three-dimensional structures.

The growing polypeptide chain on the ribosome has to

navigate through a complex energy landscape which is

shaped not only by the sequence of the emerging protein,

but also by the ribosome itself and by proteins that interact

with the newly synthesized protein. Rapid and accurate

protein folding is essential for cell function, as misfolding

leads to the loss or alteration of protein function, proteome

disbalance and increased energetic costs of protein re-

folding and degradation. Misfolding of proteins is the

source of many diseases such as Alzheimer’s, Parkinson’s

and other neurodegenerative diseases, as well as of cancer

and aging. The aim of this review is to summarize what is

known about co-translational protein folding and discuss

experimental approaches that will be important in future

research. We will concentrate on four major questions:

When does the protein emerging from the ribosome

start to fold? How does the ribosome affect the folding
www.sciencedirect.com
trajectory? What is the link between the kinetics of

translation elongation and protein folding? What are the

emerging technologies to probe co-translational folding?

Other aspects of co-translational and post-translational

protein folding in the cell, including the effects of chaper-

ons, can be found in recent reviews [1–3].

When does a nascent peptide begin to fold?
During protein synthesis, the emerging (nascent) peptide

travels through the polypeptide exit tunnel of the ribo-

some (Figure 1), which has a length of about 100 Å and

covers about 30–40 amino acids of the nascent peptide in

an unfolded, fully-extended conformation. The width of

the tunnel does not permit formation of large tertiary

structure elements due to space limitations which pre-

clude long-range interactions that are necessary for the

cooperative folding of larger domains. Nevertheless,

smaller structures can form within the tunnel, for exam-

ple, compacted non-native states, a-helices, hairpins or

even small a-helical domains. Formation of larger tertiary

structure elements, such as domain folding, can take

place when the protein emerges from the peptide exit

tunnel of the ribosome ([4] and references therein). One

general observation coming from these experiments is

that the fundamental principles of co-translational folding

appear similar in the cell and in reconstituted in vitro
systems. In particular, this pertains to the propensity of

nascent peptides to fold within the tunnel and the steer-

ing effect of the ribosome on folding. This certainly does

not exclude the possibility that folding of some proteins is

altered by the presence of cellular components that are

absent in the in vitro assays used so far. However, the

very good agreement between the results of in vivo and in
vitro experiments suggests that the propensity for co-

translational folding is a robust inherent property of the

translation machinery.

How does the ribosome affect nascent
peptide folding?
Contrary to the folding of isolated proteins, co-transla-

tional folding is guided by the ribosome. The ribosome

may contribute to folding in a number of ways. Because

co-translational folding is vectorial, that is, it involves

elements that emerge successively from the N-terminus

to the C-terminus, and is often limited by the rate of

translation, the landscape of co-translational folding may

differ from that in solution [5,6]. The ribosome may

stabilize folding intermediates or conformations that

are not prevalent in solution [7,8��]. Retention of these

non-native folding states may represent a fundamental

feature of co-translational folding that prevents the chain

from falling into kinetic traps, such as stably misfolded
Current Opinion in Structural Biology 2017, 42:83–89
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Co-translational folding of peptides on the ribosome. Left panel: Structural model of the ribosome (gray) with mRNA (blue) and a tRNA (green)

carrying a nascent polypeptide chain (red) that folds co-translationally. The polypeptide chain was modeled into the polypeptide exit tunnel using

the structure of the E. coli 50S subunit with a nascent chain, PDB 3J7Z32. The structures of authentic folding intermediates are largely unknown.

First examples of structured nascent peptides are a small zinc-finger domain that folds within the exit tunnel of the ribosome [27��], an

immunoglobulin-like domain that folds outside the tunnel [11�], or a-helical peptides within the tunnel observed in the ribosome complexes stalled

at the specialized mRNA arrest sequences that block peptide bond formation [29]. Right panel: Folding zones of the polypeptide exit tunnel of the

ribosome (modified from Refs. [1,55,56]). The upper and central parts of the tunnel are separated by the constriction. Early folding occurs in the

lower part of the tunnel close to the exit port [8��,27��,55].
non-native conformations that may form when only a part

of a protein has been synthesized [7,8��,9]. Because

emerging peptides can interact with the ribosome surface

[7,10,11�,12], the ribosome may have a chaperoning effect

which protects the nascent chain from misfolding, aggre-

gation, and degradation by cellular proteases until the

protein is fully synthesized and extruded from the pep-

tide exit tunnel [7,11�,13]. The spatial proximity of ribo-

somes that synthesize proteins encoded in different

ORFs within one operon may ensure their efficient co-

translational assembly [14��].

Finally, the ribosome provides a platform for ribosome-

associated protein biogenesis factors that interact with the

emerging nascent peptide and ensure its correct proces-

sing, folding, and targeting to its final destination in the

cell. In particular, the chaperone trigger factor (TF) can

affect co-translational folding. TF is the first chaperone

that binds to emerging peptide chains and promotes

correct folding by protecting partially folded states from

forming distant interactions that may produce stably

misfolded states [15].

Translation pauses and protein folding
The rate of translation is not uniform along an mRNA,

with periods of rapid translation interrupted by pauses.

Changes in local translation rates can influence the con-

formation of newly synthesized proteins [16,17]. In prin-

ciple, pauses in translation may be caused by many factors,
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such as codon-specific rates of aminoacyl-tRNA delivery

to the ribosome, the abundance of individual aminoacyl-

tRNAs, codon context, or secondary structure elements in

the mRNA. Bioinformatic analysis suggested that slowly-

translating clusters are predominantly located downstream

of domain boundaries, presumably to fine-tune transla-

tional speed with the folding fidelity of multi-domain

proteins [18] or even switch folding from post-translational

to co-translational [19�]. So far, most examples that link

local translation velocities to protein folding are related to

rare codons or to tRNA abundance [3,17,20]. Although the

exact mechanism is currently debated (reviewed in [4,20]),

the effect of synonymous codons on co-translational fold-

ing is well documented. Naturally occurring synonymous

single-nucleotide polymorphisms (sSNPs) that alter the

codon but not the amino acid specified by the codon can

affect the activity and post-translational modification pat-

tern of a protein, altering its interactions with drugs and

inhibitors, sensitivity to proteases, and aggregation pro-

pensity (reviewed in [3]). In some cases, these changes are

associated with diseases [21].

Our analysis of the structure and folding of g-B crystallin

has shown that synonymous mutations can change the

solubility and stability of a protein in the cell and alter the

conformational ensemble of the mature protein [22��]
(Figure 2). The presence of rare codons in the mRNA

reduces the rate of translation elongation, which results in

a slower extrusion of the N-terminal domain from the exit
www.sciencedirect.com
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Figure 2
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Effect of synonymous codon usage on protein folding. Two variants of mRNA coding for g-B crystallin differ by several synonymous codon

substitutions [22��]. Harmonization of the mRNA sequence (H, blue) makes synonymous codon frequencies along the mRNA almost identical in the

native host (Bos taurus) and in the heterologous expression host (E. coli). Un-optimized mRNA (U, red) comprises the native sequence of bovine

g-B crystalline mRNA, but upon heterologous expression in E. coli the distribution of rare and abundant codons along the mRNA becomes

different than in the native host due to the codon usage disparity between the two organisms. Appearance of distinct folding intermediates is

linked to the speed of translation. Altered codon usage changes kinetics of translation and the folding events on the ribosome and this may lead

to different final conformations of the protein (red and blue, respectively).
tunnel and slower folding of the N-terminal domain.

These observations suggest that altered translation rates

can result in the formation of alternative protein confor-

mations that are retained in solution after the release of

the completed protein from the ribosome. However,

exactly which types of translational pauses affect co-

translational protein folding, what the kinetics regimes

are, and which mechanistic differences determine altered

protein folding remains unclear.

Biochemical and structural approaches to
protein folding
Answering outstanding questions in co-translational

folding requires a combination of different experimental

approaches. Early experiments relied on biochemical

assays such as probing of folded state by limited proteol-

ysis, crosslinking, monitoring gain of functional activity,

interactions with antibodies, or detection of covalent

modifications (reviewed in [1,23]). A combination of
www.sciencedirect.com
crosslinking, ligand binding, and immunoprecipitation

with ribosome profiling can provide very detailed infor-

mation as to when peptides start to fold in vivo. For

example, ribosome profiling demonstrated that in mam-

malian cells protein domains acquire their native state

shortly after the emergence of the entire domain from the

exit tunnel [24]. More recently, von Heijne and collea-

gues developed an approach to probe protein folding

using SecM arrest-peptide-mediated force measure-

ments [25,26,27��]. The essence of the method is that

folding of a protein that is still in contact with the

ribosome should exert a pulling force on the nascent

chain which should alleviate SecM-induced stalling. The

method is potentially suitable to study not only large

numbers of different proteins, but also the effect of

chaperons [15,26,27��].

One important, poorly studied aspect of co-translational

folding is the structure of ribosome-bound polypeptides.
Current Opinion in Structural Biology 2017, 42:83–89
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NMR structures of ribosome-nascent chain complexes

support the idea that proteins can fold as they emerge

from the exit tunnel [11�,28], whereas cryo-EM showed

the structures within the exit tunnel of the ribosome

[27��,29]. Both NMR and cryo-EM have the potential to

resolve conformational heterogeneity within the sample,

which is expected if co-translational folding proceeds

through multiple, non-exclusive pathways. The problem

of the structural approaches is the necessity to work

with stalled complexes, which may adopt conformations

that are not sampled or disfavored during ongoing trans-

lation. One very exciting possibility is to use time-re-

solved cryo-EM with time resolution in the subseconds

range [30�]. This could allow to freeze the ensembles of

translating ribosomes with various peptide lengths and

to derive the structures of folding intermediates by

extensive computational sorting. Unfortunately, time-

resolved cryo-EM — despite its great potential for a

large variety of questions — is still in its infancy and

its feasibility for the protein folding problem remains to

be seen.

Probing nascent peptide structure by
fluorescence techniques
The necessity to follow protein folding in real time has

prompted several labs to search for alternative technolo-

gies, such as fluorescence ensemble kinetics and single-

molecule methods. In particular, probing structural rear-

rangements by distance changes between reporter groups

due to Förster resonance energy transfer (FRET) and

photo-induced electron transfer (PET) can provide direct

information about the onset of co-translational folding

[8��,22��,31�]. One formidable challenge of these

approaches is to engineer fluorescence reporters into

the nascent polypeptide. In some cases, intrinsically

fluorescent proteins can be used, in particular for in vivo
studies. Using a designed fluorescent protein consisting of

three half-domains, where the N-terminal and C-terminal

half-domains compete with each other to interact with the

central half-domain and where the outcome of this com-

petition determines the fluorescence properties of the

resulting folded structure, Clark and colleagues have

demonstrated that the co-translational folding pathway

in vivo differs from that of protein refolding in vitro [32].

Sometimes a combination of a fluorescent protein with a

small acceptor dye incorporated site-specifically into the

protein can be used. Such a combination was used by

Skach and colleagues to delineate the pathway of co-

translational folding of the first nucleotide-binding do-

main of the cystic fibrosis transmembrane conductance

regulator [31�]. While these approaches are particularly

valuable as they can be used in vivo, understanding

nascent protein dynamics and identification of folding

events within the polypeptide exit tunnel requires meth-

ods with better spatial resolution. This can be achieved by

co-translational incorporation of two small organic fluor-

ophores into the nascent chain.
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Conceptually, the incorporation of two fluorescence

reporters into the growing polypeptide chain is a straight-

forward technology. Early work showed that derivatiza-

tion of the eN-lysine attached to tRNALys allows for the

incorporation of fluorescent reporter groups into nascent

proteins [33]. The invention of orthogonal approaches for

the incorporation of non-natural amino acids in vivo in

combination with codon reassignment strategies [34,35]

opened new perspectives for the incorporation of useful

fluorophores [36]. However, in practice, it is difficult to

achieve high incorporation yields of fluorescence-labeled

amino acids. Aromatic heterocyclic side chains can be co-

translationally incorporated into peptides, but the incor-

poration efficiency strongly depends on the length and

the chemical structure of the linker between the hetero-

cyclic substituent and the amino acid [37–39]. Among

different available reporters, fluorescent probes with

the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)

core can be efficiently incorporated as FRET pairs into

the nascent chain [8��,22��,38,40–42]. Importantly, BOD-

IPY incorporation does not appear to alter the kinetics of

translation or the folding of the nascent peptide [8��,22��].
Together with high extinction coefficient and quantum

yield, this makes BODIPY dyes ideal for ensemble ki-

netic measurements of co-translational folding. For ex-

ample, rapid kinetic experiments with BODIPY dyes

attached to Met-tRNAfMet, Lys-tRNALys, or Cys-

tRNACys allowed us to monitor translation and co-trans-

lational protein folding in parallel in the time range from

milliseconds to hundreds of seconds [8��,22��].

One attractive complement to FRET measurements is

PET between a suitable fluorophore and a quencher;

conveniently, Trp is a strong PET quencher, which

obviates the necessity to introduce two bulky dyes into

the nascent chain. PET quenches fluorescence upon van

der Waals contact between fluorophore and quencher and

is ideally suited to study conformational rearrangements

on short length scales [43,44]. As a proof-of-principle,

PET between BODIPY and Trp has been successfully

used not only to monitor folding [8��], but also to probe

the dynamics of a large macromolecule, such as the

translocon [45]. The approach has a great potential in

both ensemble kinetics and single molecule format.

While very useful for ensemble measurements, BODIPY

dyes are not well suited for single-molecule detection,

especially in terms of photo-stability, compared to the

commonly used single-molecule probes of the rhodamine

and cyanine class [46]. Amino acids modified by rhodamine

dyes are not well accepted by the peptidyl transferase

center of the ribosome and their incorporation appears to

be restricted to positions close to the N-terminus of the

nascent chain [47]. Cyanine fluorophores can be success-

fully incorporated at internal positions of the nascent chain,

but the incorporation efficiency is highly dependent on the

amino acid context at the incorporation site [48]. The
www.sciencedirect.com
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experimental challenges for the incorporation of fluores-

cent probes suitable for single-molecule detection are the

major obstacle on the way to studying co-translational

protein folding by single-molecule approaches. If this

hurdle is crossed, one can envisage co-translational folding

visualized by single-molecule FRET and tracking tech-

niques in vitro or in intact cells [49].

Nascent protein dynamics
Each time an amino acid is incorporated into the growing

peptide, the peptide moves within the tunnel and can

probe different conformations depending on the amino

acid sequence and the local environment of the exit

tunnel. Because translation appears to be slower than most

folding events, folding is a quasi-equilibrium process [50].

At these conditions, the local dynamics of the nascent

chain becomes particularly important. One approach to

monitor chain dynamics is to measure the anisotropy of the

nascent chain at different folding states. Cavagnero and

colleagues studied the dynamics of nascent peptides by

measuring the anisotropy decay of BODIPY FL attached

to the N-terminus of apo-myoglobin (apoMb) [51,52]. The

results suggest that the ribosome restricts the mobility of

the polypeptide chain until it is released from the ribo-

some [52]. These studies pioneered the analysis of co-

translational peptide dynamics; however, such experi-

ments do not monitor intra-chain dynamics directly. Chain

dynamics may be extremely rapid and occur on very short

timescales down to nanoseconds [49], necessitating the

use of biophysical methods with high time resolution.

Moreover, folding ensembles are structurally heteroge-

neous, which calls for the application of single-molecule

techniques. These problems can be potentially solved by a

combination of single-molecule PET and fluorescence

correlation spectroscopy (FCS), which can provide the

tools to monitor the dynamics of individual nascent poly-

peptide chains down to the nanoseconds timescale. So far,

these approaches have been utilizes to monitor the folding

of isolated proteins [43,53,54]. In the future it should be

possible to adapt these methods to monitor the dynamics

of nascent chains during different stages of co-translational

protein folding.

Concluding remarks and future perspectives
Recent studies not only provided insights into the mech-

anism of co-translational folding, but also raised new

questions. For example, it remains unclear which types

of protein structures/motifs/domains can fold within the

ribosome, and which can adopt their native structure only

after emerging from the peptide exit. What are the folding

pathways of proteins with different domain topology (a-

helical domain structures, b-structures, a/b-structures)?

Is protein compaction a ubiquitous early folding event on

the ribosome or are the early steps specific for each

protein? What are the structural characteristics of the

compact states ensemble? What is the link between

the kinetics of translation and folding and do changes
www.sciencedirect.com
in translation velocity shape the landscape of protein

folding? Answering these questions requires develop-

ment of novel structural and biophysical approaches. It

would be exciting to see folding of single polypeptides as

they emerge from the ribosome in real time and this is a

formidable goal to address.
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