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From protein folding to protein function and biomolecular
binding by energy landscape theory
Alexander Schug1,2 and José N Onuchic2
Protein folding and function are inherently linked sharing a

joined funneled energy landscape. In this theoretical

framework, the integration of simulations, structural

information, and sequence data has led to quantitatively

explore, understand, and predict biomolecular binding and

recognition, key processes in pharmacology, as a natural

extension of the selective self-binding found in protein folding.

Computer simulations based on these principles have made

valuable contributions to understanding protein and RNA

folding, protein–protein interactions, and protein-metabolite/

RNA-metabolite interactions.
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Introduction
During folding a protein performs a biased exploration of

its free-energy landscape until it reaches a thermodyna-

mically stable conformation — the native state. Each of

the many conformational transitions during this explora-

tion is by itself a complex event, as many intraprotein and

protein–solvent interactions need to be formed, broken,

and eventually reformed. A biased energy landscape is

necessary since an energy landscape of random sequences

of amino acids would be too large and rugged to be

searched by a simple random walk [1,2,3�].

Nature has found a remarkable simple solution to deal

with this challenge. To allow folding in the regime of ms
to s, that is, the times found in biomolecular structure

formation, evolution has funneled the energy landscape to

facilitate efficient folding into the native state [2,3�,4]:

unlike in chemical reactions with well-defined discrete

intermediate states, proteins fold through an ensemble of

converging pathways which taken together define the

transition state ensemble. In long evolutionary processes,
www.sciencedirect.com
energetic frustration was removed from a protein’s energy

landscape ( principle of minimal frustration) [1,5], smooth-

ening it sufficiently to prevent entrapment in local

minima as such local roughness would deter efficient

folding and intervene with function.

These concepts discovered in protein folding can be

directly carried over to binding of two biomolecules, be

they proteins, DNA/RNA or small metabolites [6,7��].
Additionally, one finds a competition between affinity

and specificity. In the crowded cellular environment such

biomolecular interactions need to be stable/affine enough

to provide a degree of robustness toward local environ-

mental distortions and changes like those induced by

other nearby biomolecules or slight changes in environ-

mental conditions. At the same time, interactions need to

make sure that they carry cellular information between

the correct partners, that is, they need to be specific. In

pharmacology one typically wants to suppress specific

interactions by presenting a new binding partner, the

drug. The same principles should apply here. If we

properly target the right interactions, designed com-

pounds should be at least competitive or even fully block

the natural interaction.

Protein/RNA folding and simulations based on
energy landscape theory
Evolution smoothened the shape of the energy landscape

by ensuring a dominance of interactions present in the

native state during the entire folding process. This guid-

ing bias prevents entrapment in local minima represent-

ing nonnative folds. It also provides a degree of

robustness, permitting protein folding and function

despite moderate environmental changes or mutations.

Energy landscape theory stipulates that a fully unfru-

strated protein, that is, an ideal folder, could be described

by only taking interactions present in the native state into

account (see Figure 1) [1,3�,4].

It can be shown analytically, that a good folder has a large

gap between the two defining temperatures TF (the

folding temperature) and TG (the glass-transition

temperature). TF is the temperature at which folded

and unfolded conformations are equally likely to be

adopted and consequently the protein is unfolded for

T > TF and folded for T < TF. Similarly, TG is the

temperature above which a protein efficiently folds into

its native state and below which a protein yields to

frustrated interactions and becomes entrapped in non-

native minima.
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Figure 1

Energy landscape of protein folding. Three-dimensional (a) and two-dimensional (b) cartoons of a funneled energy landscape for protein folding

illustrate the principle of minimal frustration. The ensemble of unfolded configurations occupies the top of the energy funnel. As the protein becomes

more native-like and folded its accessible configurational entropy, that is the width of the funnel, decreases which is offset by the gain of energy from

increasingly formed native interactions. There is not, however, a unique and single pathway for folding but the whole process functions via an

ensemble of converging pathways. Evolution smoothened the surface of the energy landscape sufficiently to prevent entrapment in local minima and

ensure the robustness of this molecular self-assembly in a crowded cellular environment. Some local roughness remains due to the limited 20 amino

acid code and competing evolutionary constraints introduced by, for example, protein function which often requires binding specificity to other

biomolecular partners. (c) A typical free-energy landscape for a two-state folding close to folding temperature. Two basins, one for the folded and

another for the unfolded state, are separated by a barrier forming the transition state ensemble.
These principles can be molded into native structure-

based models,a which possess a simplistic Hamiltonian

and are based entirely on the structure of the protein.

Apart from the typical terms found in molecular

dynamics force fields like harmonic terms for bonds,

angles, and dihedrals, which have their minima at the

value found in the native conformation, an additional

attractive contact term is included. This term runs over

all pairs of amino acids that interact in the native con-

formations. This interaction matrix is often called a

contact map. In a typical mathematical description each

amino acid is represented as a single Ca-bead with van-

der-Waals type contact interactions [8,9], although more

recent work incorporated Gaussians as contact potentials

[10], used CaCb [11] or all-atoms [12] description. There

seems to be good agreement between these coarse-

grained and more detailed models [13]. Overall, simu-

lations based on the native structure-based models have

shown to be in good agreement with experimental

measurements like folding rates [14–16] or phi-values

[17] characterizing the transitions state ensemble.

Recently, structure-based Hamiltonians have been

developed to also simulate RNA folding [18–20] and
a These models are often also referred to as Go-models.
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explore the intricate folding of complex topologies found

in knotted proteins [21].

Linking the energy landscape of folding and
function
To connect protein folding and function, significant effort

has been put into accommodating multiple conformations

representing conformational substates on the energy

landscape which are associated with biomolecular func-

tion [22,23�,24–27,28�]. Striking examples investigated

within the framework of energy landscape theory include

motor proteins like kinesin and their 8 nm stepping

motions — so-called power-strokes — along microtu-

bules [29], the conformational motions of the LID and

NMP domains in adenylate kinase [23�], or the competition

of two native states for the ROPb-dimer (see Figure 2)

[22,30].

Technically, the main challenge is the treatment of the

dissimilar contact maps found in alternate conformations.

Without loss of generality, we will consider only two

possible protein conformations for our discussion. In this

case, native contacts can be divided into three different
b Repressor of primer. ROP is also called ROM (RNA-I modulator).
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Figure 2

Configurational competition in protein folding and function. The ROP-homodimer (repressor of primer) possesses an amino acid sequence on the

verge of configurational degeneration, making it an ideal test-case to investigate conformational transitions associated with protein function. (a) The

two wild-type ROP-monomers (left) arrange in an anti way forming an RNA-binding interface (green). The sequentially similar mutant A2I2-6 (right) does

not bind RNA as the RNA-binding interface is disrupted by the syn-arrangement of the two monomers. Simulations and considerations based on

energy landscape theory predicted that the mutant A2L2-6 can, pending on environmental conditions, occupy both anti and syn [22,30]. (b) This

prediction was validated in single-molecule FRET experiments which are sensitive to the distance of dyes placed on the termini of the ROP-monomers

(red) [54�]. Under slight denaturing conditions of 0.6 M GdnHCl the WT and A2I2-6 only have single peaks corresponding to spatially far and close dyes,

respectively. The mutant A2L2-6, however, has a double peak. This mutant can occupy both syn and anti.
groups [10], pending whether they are realized in only

one conformation, shared by two conformations with the

same distance, or found in both conformations but with

dissimilar distances. Other than the first two groups, the

‘degenerated’ contacts in the third group cannot be

treated by single-welled van-der-Waals contact poten-

tials. Solutions for this challenge include simply disre-

garding such contacts, thermodynamic weighting [24], or

multiwelled Gaussians [10]. A remarkable feature of all

these treatments is the relative robustness of the results

independent of technical details of implementation.

Biomolecular binding
Biomolecularbinding isused to regulateand modify protein

function with direct application in ligand screening or drug

design. Significant progress is made by ever more powerful

experimental tools [31] like high-throughput structure-

determination X-ray [32,33] and NMR [34] or indigenous
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enhanced single-molecule techniques like multicolor

smFRET [35]. This increasingly detailed insight from

the experimental side into the coupling of protein folding

and binding is met by a solid theoretical understanding of

the underlying energy landscapes [36,37,38�,39,40].

Two crucial factors dominate the process of binding. The

first is the affinity, that is, the thermodynamic stability of

molecular association. The second is the specificity of

interactions in a crowded cellular environment. In

particular high affinity must not satisfy specificity. An

in silico treatment, for example rational drug design, is an

ongoing challenge for more than a decade [41]. Minimal

models and energy landscape theory can be used to

describe biomolecular binding [6,42] or identify kinetic

paths [7��]. In analogy to protein folding theory [3�], one

can identify native binding and unbinding phases, and

glassy trapping phases [6].
Current Opinion in Pharmacology 2010, 10:709–714
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Figure 3

Biomolecular binding by a joined theory approach. (a) Two coevolving interacting proteins (blue and yellow) have well-defined interaction residues (green).

Mutations (red) of residues far from the surface have little impact on interactions, while a mutation at the surface will negatively impact interactions.

Therefore the interaction surface will either be conserved or a second compensating mutation is necessary. Given sufficient sequential information,

statistical analysis like direct coupling analysis [51�] can search for such patterns of coevolving amino acid pairs. The two-component system TM0853/

TM0468 consists of a histidine kinase (yellow) and its partner response regulator (blue, RR) ((b) top and (c) side view) is one example for such coevolving

proteins. Transient binding (interface in green) facilitates the transfer of a phosphoryl group between the two proteins. Despite many similar copies in the

same organism, both proteins achieve high specificity, a requirement in cellular signal transduction. A joined theory approach of direct coupling analysis of

�1000 sequential homologues and simulations based on energy landscape theory could predict the coupled complex [53��] in high agreement (3.5 Å

RMSD, (d) blue theoretical prediction) with a concurrently published crystal structure (yellow) of the complex [55].
In molecular simulations, biomolecular binding has been

shown to modify the folding process. A striking example is

the structure formation upon target binding found in

natively unstructured transcription factors, as found for

the pKID domain of the transcription factor CREB to the

KIX domain of CBP. Though the simulations observed

both on-pathway and off-pathway intermediates, the bind-

ing mechanism was largely dominated by specific native-

like interactions even nonspecific interactions modify the

rate on binding [43]. Similarly, the SAM-1 riboswitch

expresses different folding behavior pending on the pre-

sence or absence of its specific binding partner, the SAMc-

molecule which is binding to an internal binding pocket

[18]. As riboswitches are RNA-based genetic control

elements [44], insight into the interplay of binding and

expression platform promises new antibiotic targets [45].

Inclusion of genomic information
A protein’s biological function is often dominated by

transient interactions with other proteins with the resulting

protein–protein interfaces becoming important targets for
c S-adenosylmethionin.
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drug design [46]. Experimental techniques like NMR or X-

ray crystallography are tremendously successful in provid-

ing structural information but face problems when resol-

ving transiently bound protein complexes. Structure

prediction methods cannot readily close this gap, as data-

base driven methods like homology modeling [47] suffer

from the lack of templates while physics-based [48,49]

approaches still struggle with the accuracy of their force

fields [50] and computationally prohibitive costs.

One can, however, integrate complementary compu-

tational/theoretical techniques to simulate molecular

docking. The recent growth of genomic data allows mean-

ingful statistical analysis of sequential homologues. As

shown for two-component signal transduction systems,

the statistical analysis of roughly 1000 sequences of

coevolving proteins provides sufficient information to

define an intermolecular protein–protein surface [51�]
for molecular docking by native structure-based simu-

lations (see Figure 3) [52,53��]. This inclusion of genomic

information into molecular simulation might prove useful

to deal with insufficient structural information, which is

still crucial for meaningful biomolecular simulations.
www.sciencedirect.com
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Summary
Energy landscape theory has been vastly successful in

explaining the mechanism and different scenarios govern-

ing protein folding as well as how global motions control

protein function. The principle of minimal frustration com-

bined with the concept of a funneled energy landscape has

allowed us to only use the information from the native

structure to predict the mechanism of protein folding,

binding and in many cases of function. These theoretical

results have been used to understand and design new

experiments and have also made several successful pre-

diction later confirmed in the laboratory. New structural

data that include multiple protein structures during the

functional activity have even improved the power of these

methods. Similar approaches have gone beyond proteins to

also include nucleic acids such as RNA. Recent advance-

ments have shown how in cases where structural infor-

mation is limited, additional information coming from

lower resolution structural methods or genomics can be

used for similar studies. For example, studies using only

structural information from the individual proteins com-

bined with genomic information have successfully pre-

dicted transient protein–protein complexes.
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