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Equilibrium molecular dynamics simulations, in which proteins
spontaneously and repeatedly fold and unfold, have recently been
used to help elucidate the mechanistic principles that underlie the
folding of fast-folding proteins. The extent to which the conclu-
sions drawn from the analysis of such proteins, which fold on the
microsecond timescale, apply to the millisecond or slower folding
of naturally occurring proteins is, however, unclear. As a first at-
tempt to address this outstanding issue, we examine here the
folding of ubiquitin, a 76-residue-long protein found in all eukar-
yotes that is known experimentally to fold on a millisecond time-
scale. Ubiquitin folding has been the subject of many experimental
studies, but its slow folding rate has made it difficult to observe and
characterize the folding process through all-atom molecular dynam-
ics simulations. Here we determine the mechanism, thermodynam-
ics, and kinetics of ubiquitin folding through equilibrium atomistic
simulations. The picture emerging from the simulations is in agree-
ment with a view of ubiquitin folding suggested from previous
experiments. Ourfindings related to the folding of ubiquitin are also
consistent, for the most part, with the folding principles derived
from the simulation of fast-folding proteins, suggesting that these
principles may be applicable to a wider range of proteins.
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Understanding the principles that govern protein folding, the
self-assembly process that leads from an unstructured poly-

peptide chain to a fully functional protein, has been one of the
major challenges in the area of physical biochemistry over the last
50 years. Naturally occurring proteins typically fold on timescales
ranging frommilliseconds to minutes, but as our understanding of
the principles of protein folding has improved, a number of fast-
folding proteins that fold on the microsecond timescale have been
engineered and characterized (1–12). The design of such fast-
folding proteins was in part intended to narrow the gap between
the timescales of protein folding and the timescale accessible to
physics-based atomistic molecular dynamics (MD) simulations,
thus enabling fruitful combinations of experiments and simu-
lations to study the mechanisms of folding (13–18). We recently
studied 12 fast-folding proteins using equilibrium MD simu-
lations, for example, with the aim of elucidating general principles
underlying the folding of these proteins (19). The folding of these
proteins was found to be a relatively sequential process that fol-
lows a few paths, in which the order of formation of native
structure is correlated with relative structural stability in the un-
folded state. The extent to which these observations pertained to
fast-folding proteins only or to protein folding more generally,
however, was unclear. Here we address this question by applying
the same methodology and physics-based force field used in our
previous investigation of fast-folding proteins to the study of
ubiquitin, a naturally occurring protein known to fold on a milli-
second timescale.
Ubiquitin is a 76-amino-acid-residue long, highly conserved

(20) protein that is found in all eukaryotic organisms (21) and
plays a fundamental role in the process of proteasome-mediated
protein degradation (22–25). The so-called “ubiquitin fold” is
characterized by a complex topology consisting of a five-stranded
β sheet, an α helix, and a short 310 helix (26). Ubiquitin has no
prosthetic groups or disulfide bonds, is highly soluble, and is
thermostable (TM > 360 K) (27–28), making it an ideal target for

experimental folding studies. The N and C termini form con-
secutive strands in the β sheet and are in close contact, a com-
mon feature in two-state folders (29); indeed, early investigations
established that ubiquitin folds on the millisecond timescale with
an apparent two-state behavior (30–33), but later studies sug-
gested that additional on- or off-pathway intermediates may be
populated depending on the experimental conditions (34–42). A
protein engineering Φ-value analysis of ubiquitin folding is con-
sistent with a transition state ensemble (TSE) characterized by
a well-defined folding nucleus localized in the N-terminal region
of the protein and encompassing the helix and first two β strands
(43, 44). The third, fourth, and fifth β strands, which are in the
C-terminal region of the protein, have low Φ-values. This origi-
nally prompted the suggestion that they are unstructured in the
TSE, although a subsequent computational analysis of the ex-
perimental Φ-values suggested that strands β3 and β4 may be
partially formed, and may adopt a native-like topology in the TSE
(45). An extensive Ψ-value analysis of ubiquitin folding is also
consistent with a more diffuse TSE, as indicated, for example, by
high Ψ-values between strands β3 and β4 (43, 46).
To date, ubiquitin’s relatively slow folding rate has impeded

efforts to characterize its folding process through physics-based
atomistic MD simulations. Previous simulation studies of ubiquitin
folding have for the most part used coarse-grained representa-
tions (47) or “native-centric” topology-based potentials (48). Using
physics-based, atomistic force fields and simulations on the nano-
second timescale, the fast-collapse phase preceding the folding
process has been analyzed by rapid low-temperature quenching
of unfolded-state structures generated in high-temperature simu-
lations (49), while the process of ultrafast unfolding in out-of-
equilibrium conditions has been described by performing simu-
lations at high temperature (50–53) or under tensile load (54–56).
Here we report the results of unbiased, all-atom MD simu-

lations of ubiquitin performed close to its melting temperature,
in which we observe spontaneous and reversible folding to the
native structure. These simulations allow a detailed character-
ization of key elements of the pathway, kinetics, and thermody-
namics of ubiquitin folding.We compare these results with thosewe
previously obtained for fast-folding proteins. We find that the same
general principles appear to govern the folding of both fast-folding
proteins and ubiquitin, suggesting that these principles may be
more generally applicable across a broader range of proteins.

Methods
Eight MD simulations of ubiquitin were performed on a special-purpose
machine, Anton (57), using the CHARMM22* force field (58) modified to
reproduce the correct balance between the cis and trans isomers observed at
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proline residues in extended simulations at high temperatures (SI Text). Six
of these simulations were initiated in the folded state [Protein Data Bank
(PDB) ID code 1UBQ] (26) and two in an extended, unfolded state. Four
systems starting from the folded state were solvated in a 58-Å box con-
taining 5,581 TIP3P (three-point water model) (59) water molecules. To
check for the presence of system size–related artifacts, two additional sim-
ulations starting from the folded state and two simulations starting from the
unfolded state were performed in a larger 66-Å box containing 8,535 water
molecules. The protein interacted with its periodic image in 9% of the
frames in the small-box simulations and in 2% of the frames in the large-box
simulations (an interaction is here defined as any pair of heavy atoms that
are within 5 Å of each other). The simulations performed in the larger and
smaller boxes behaved comparably; in particular, the radius of gyration of
the unfolded state, which is expected to be very sensitive to finite-size
artifacts, has similar probability distributions in the two sets of simulations
(Fig. S1). Nonbonded interactions were truncated to 10.5 Å, and the
Gaussian Split Ewald (GSE) method was used to account for long-range
electrostatic interactions (60). Preliminary tests performed without an Ewald
method and using a simple shifted-force truncation of the electrostatic
interactions (61) gave good results for the folded state (Results and Discus-
sion), but did not accurately describe the unfolded state, which became very
compact (SI Text), with an average radius of gyration similar to that of the
folded protein; this observation is similar to other recent findings (62). To
further increase computational efficiency in the simulations, we modified all
of the hydrogen and water oxygen masses (H, 4 Da; Ow, 10 Da); this allowed
us to integrate the equations of motion using a reference system propagator
algorithm (RESPA) scheme (63) with an inner time step of 5 fs and an outer
time step of 10 fs (64). While this modification slightly alters water prop-
erties (64), we verified that this setup does not have any substantial effect
on the folding kinetics or the thermodynamics of a previously well-charac-
terized protein (SI Text). The ubiquitin systems were first equilibrated in the
NPT (constant pressure) ensemble for 2 ns, and they were subsequently run
in the NVT (constant volume) ensemble at 390 K by coupling to a Nose–
Hoover thermal bath (65, 66) with a relaxation time of 2 ps. To test the
ability of the force field to describe the folded protein, a preliminary 1-ms
simulation of the native state of ubiquitin at 300 K was performed using
standard CHARMM22* (58), normal atomic masses, an integration time step
of 2.5 fs, and a shifted-force treatment of the electrostatics (61).

The trajectories of the eight folding simulations were analyzed in com-
bination, as described previously (19). Dual cutoffs of 1.3 and 6.5 Å on the Cα
RMSD of residues 2–45/65–69 were used to assign transition paths (19, 67).
Φ-values from MD simulations are commonly calculated from computational
models of the TSE through an analysis of the fraction of native contacts that
are formed (68). This approach, however, assumes a two-state behavior and
requires an accurate model for the TSE. Here we instead calculate Φ-values
for 26 point mutations from the folding and unfolding rates obtained from
Langevin Dynamics simulations performed along a suitably optimized one-
dimensional reaction coordinate, obtained here through optimization (69)
of a linear combination of the Q-values (70) of the individual residues. This
approach does not require an accurate determination of the TSE and can
account for the effect of point mutations on the stability of metastable in-
termediate states, as long as they are captured by the reaction coordinate. A
control calculation performed using a different P value–based reaction co-
ordinate (71) shows that the calculated values are robust with respect to the
choice of reaction coordinate, as long as it describes the folding transition
reasonably well. The diffusion coefficient along the optimized reaction co-
ordinate was assumed to be independent of the mutation and was estimated
from the wild-type MD simulations using a maximum-likelihood approach
and a lag time of 10 ns (72). The free-energy surface of the mutants was es-
timated using a contact approximation and assuming that the energy of each
native contact was 0.06 kcal·mol−1 (73). The relevant metastable states on the
ubiquitin free-energy landscape were identified with a kinetic-clustering
analysis of the autocorrelation functions of 400 Cα–Cα contacts (71).

Results and Discussion
Native State of Ubiquitin in CHARMM22*. As a first step of the in-
vestigation, we performed a 1-ms simulation of the native state
of ubiquitin at 300 K. The protein turned out to be remarkably
stable during the entire simulation, making several reversible
transitions between a small number of distinct states. The aver-
age structure in the most populated state (population ∼70%) has
a Cα RMSD of only 0.5 Å from the X-ray structure (PDB ID
code 1UBQ, excluding the flexible C-terminal tail). The second-
most populated state (∼20%) is very similar to the dominant
conformation, but differs locally around residues 50–54 (the
Cα RMSD from 1UBQ is 0.9 Å when excluding the tail); a
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Fig. 1. Equilibrium folding simulations of ubiquitin. (A) Traces of the Cα RMSD (for residues 2–71) from the native structure for the two simulations where
reversible folding is observed. (B) Autocorrelation function of the Cα RMSD (red), the number of helical residues (blue), and the number of residues in β sheets
(green). The dashed black lines are biexponential fits to the autocorrelation functions with characteristic times of ∼1.5 μs and ∼120 μs. (C) Kinetic model of the
folding free-energy surface. For each state, 20 random structures are displayed, superimposed using Theseus (91), and scaled according to state population.
Hairpin 1 is colored in red, hairpin 2 in orange, the α helix in blue, and the C-terminal loop containing the 310 helix and the fifth β sheet in purple. The kinetic
model was obtained from an eight-state fit to the time autocorrelation function of 400 random Cα–Cα contacts (71). A higher number of states results in
negligible improvement on the quality of the fit. The transition times, modified to enforce detailed balance (92), are also reported here. Two unstructured
unfolded-state clusters were generated by the fitting procedure and are here merged in a single state (U) to simplify the representation.
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conformational switch in this region of ubiquitin has previously
been observed in experiments (74, 75). In the remaining 10% of
the structures, the α helix is partially frayed at its C terminus;
similar unfolding of the C-terminal end of the helix has been
observed in experiment both at high pressure (76) and in a mu-
tant in which the helix C-cap has been removed (77), suggesting
that ubiquitin may undergo such motion, although the force field
appears to overestimate its population. We conclude that the
force field provides a reasonable description of the folded state
of ubiquitin, although it seems to slightly underestimate the
stability of the α helix in the context of the folded state.

Equilibrium Reversible-Folding Simulation of Ubiquitin. We per-
formed eight simulations of ubiquitin at 390 K starting from na-
tive or extended conformations. This temperature was chosen as
we expected it to be a reasonable compromise between remaining
close enough to the melting temperature of ubiquitin around
neutral pH (which we estimated to be in the 370-K range; due to
the high stability of ubiquitin, most calorimetric experiments
are performed under highly acidic conditions) (27) and observing
a sufficient number of folding/unfolding events in ∼8 ms of sim-
ulation. Six simulations were started from the native state, and
two were started from extended, unfolded conformations. Unfold-
ing was observed in all simulations that began in the native state
(average unfolding time of 240± 90 μs), and in two cases reversible
folding/unfolding was observed (average folding time 3 ± 2 ms;
Fig. 1A). The unfolded protein repeatedly assumed extended
conformations, with RMSDs of >30 Å from the native structure
and without native secondary structure or long-range native
contacts; this makes clear that the protein indeed transitioned
between the folded and unfolded basins. No folding events were

observed in the two simulations initiated in the unfolded state;
this observation is not unexpected, since the folding time of
ubiquitin that we calculated (3 ms) is more than twice the com-
bined length of these two simulations (1.2 ms). A total of two
folding and eight unfolding events were collected in 8 ms of ag-
gregated simulation time (Table S1). The calculated melting tem-
perature (372 ± 4 K) and heat capacity (1.1 ± 0.5 kcal·mol−1·K−1)
for folding at 390 K are consistent with the experimental estimates
of >360K and 1.3 ± 0.2 kcal·mol−1·K−1 (27), while the calculated
folding enthalpy at the melting temperature (13 ± 9 kcal·mol−1) is
substantially smaller than the experimental value of several tens
of kcal·mol−1 (27), as has already been observed in computational
folding studies of a number of other proteins (19, 58).
Most of the amplitude of the microsecond-timescale relax-

ation of the RMSD from the native structure or the secondary
structure content (a proxy for the IR signal intensity observed
experimentally) (40, 42) can be described as a single exponential
decay with a characteristic timescale of 0.12 ms (Fig. 1B). This
timescale is in agreement with the relaxation time calculated
from the folding and unfolding rates (0.2 ± 0.1 ms) and with the
experimental observation that ubiquitin essentially behaves as
a two-state folder on themillisecond timescale (33). Amore direct
quantitative comparison between simulated and experimental
folding timescales is impractical: ubiquitin’s high thermal stabil-
ity makes it difficult to perform experiments above the folding
transition temperature without lowering it by using destabilizing
conditions (e.g., the presence of a denaturant or low pH). Despite
largely behaving as a two-state system, a cluster analysis (71)
allows the identification of a number of metastable states that
interconvert on the microsecond timescale or slower (Fig. 1C). In
addition to the disordered unfolded state (U), in which the in-
terconversion between different structures is fast, the analysis
reveals a few misfolded states (MF1–3) that persist on the mi-
crosecond timescale. These states typically feature a substantial
amount of nonnative β sheet and have a total population of a few
percent. In state MF3, a near-native conformation is reached with
a Cα RMSD of less than 2 Å from the native structure. This
misfolded state is unstable, unfolding after 10 μs.
To provide a coarse-grained description of the folding mech-

anism of ubiquitin, supplementing the macrostate definitions
above, we optimize a one-dimensional reaction coordinate based
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on a linear combination of the Q-values of individual residues
(69). The folding free-energy landscape projected along this re-
action coordinate reveals a 5 kcal·mol−1 free-energy barrier that
separates the two main folded and unfolded state basins (Fig. 2).
Most of the states identified in the clustering analysis also appear
as separate local minima on the one-dimensional free-energy
surface, which lends additional support to the robustness of both
analyses, although some states appear to be merged with others
in this projection. Overall, the free-energy profile conforms to
a funnel-like landscape in which the configurational entropy
(here roughly approximated by the contact order) decreases as
contacts are formed (78, 79), and there is a strong correlation
between the enthalpy of the system and the number of native
contacts formed (SI Text and Fig. S2).
Two distinct states can be clearly identified in the unfolded

region: one in which hairpin 1 is formed (state U1 in Figs. 1 and
2, 60% occupancy) and one in which it is not (state U in Figs. 1
and 2, 40% occupancy). Experimental studies of the urea-
denatured state of ubiquitin have shown that although the pro-
tein mostly behaves as a fully random chain overall, hairpin 1
forms a substantial amount of residual structure (80). Another
low-population folding intermediate is also present near the top
of the barrier (state I in Fig. 2), where most of the sheet and part
of the helix are formed, but the packing of the secondary-struc-
ture elements is still not completely native. This state was not
identified in the clustering analysis because its population is too
low and its relaxation rate too fast to provide a sizable contribu-
tion to the microsecond-timescale autocorrelation functions. At
least three states can also be identified in the folded basin: one
corresponding to the native structure (state F in Figs. 1 and 2),
one in which the C-terminal loop is unstructured (state F1 in Figs.
1 and 2), and one in which the C-terminal part of the helix is
melted (state F′ in Fig. 2). State F′ corresponds to the state that is
also observed in the native-state simulation at 300 K, while state
F1 is consistent with the folding intermediate postulated on
the basis of T-jump IR experiments (40). Folding and unfolding
events invariably involve transitions between state F1 and the
unfolded state (Fig. 2) and have an average duration of 1.7 μs.
Analysis of the transition paths (Fig. S3) reveals that, at a

coarse level of resolution, all transitions essentially follow the
same sequence of events (81), with hairpin 1 templating the
formation of the β sheet and of part of the helix, followed by
consolidation of the C-terminal loop, which includes the 310 helix
and the fifth strand of the β sheet. We find some variability in the
amount of helix that is formed at the transition state: while
a substantial amount of helix is invariably present, the full helix
may form both before and after the transition state. In this re-
spect, state F′ does not appear to be necessarily on the folding
pathway, since in the cases where the full helix is formed early in

the folding pathway, the native state F can be reached directly
from state U1′. The last folding step, involving formation of the
310 helix and of the fifth β strand, occurs (at least at the tem-
perature of the simulations) on the folded side of the barrier,
while the rest of the β sheet and most of the α helix are essen-
tially formed at the transition state. In this respect, the transition
state in simulation could be described as “late,” as most of the
native-state topology is already consolidated at this stage. In-
deed, we estimate the contact order in the TSE to be roughly
60% of the native state and the number of native contacts to be
roughly 70% (Fig. 2), values that are consistent with those typ-
ically observed experimentally for a number of proteins (82, 83).
Overall, our observations are in good agreement with experi-
ments, which also suggest a rather homogeneous folding pathway
for ubiquitin (84), with an order of events similar to that observed
in our simulations (80, 85–87). This pathway is rather different
from the pathway observed in simulations in which ubiquitin is
unfolded by applying tensile stress to its N and C termini. In such
simulations, the first event on the unfolding pathway is the rup-
ture of the hydrogen bonds connecting hairpins 1 and 2 (54)
followed by the melting of hairpin 1 (55).
We used a contact-based approximation to estimate the

changes in the free-energy surface upon mutation of individual
residues. Assuming that a small point mutation has no influence
on the diffusion coefficient along the optimized reaction coor-
dinate, we can then estimate the change in the folding and
unfolding rates upon mutation and thereby calculateΦ-values the
same way we would experimentally. The calculation was repeated
for two different reaction coordinates, and the results were found
to be robust with respect to the choice of reaction coordinate. The
Φ-values calculated in this way (Fig. 3) are in good agreement
with those measured experimentally, with high Φ-values in the
first three β strands and in the C-terminal part of the α helix,
which are part of the initial folding nucleus (88), and lowΦ-values
for the C-terminal part of the protein. The most notable excep-
tions are the Φ-values calculated for residue 23, located at the
beginning of the α helix, which are lower than those observed
experimentally, and the Φ-values calculated for residues 13 and
67, located in strands β1 and β3, which are higher. The exception
in the helix is consistent with our observations that, in some of the
folding transitions, part of the helix is unstructured in the tran-
sition state and that, in the native simulation, the C-terminal part
of the helix appears to be slightly less stable than observed in
experiments. The slightly higher Φ-value measured for residues
13 and 67 may reflect the presence of a larger amount of β
structure in the simulation TSE to compensate for the reduced
helix stability. We suggest that this effect might be observed ex-
perimentally by measuring Φ-values for these residues in the
presence of mutations that destabilize the C-terminal part of
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reported at the bottom of the graph for comparison.
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the helix. Only a few of the Φ-values are close to either 0 or 1,
with the majority being fractional, both in simulation and in ex-
periment. Fractional Φ-values can be ascribed to the presence of
multiple folding routes with distinctly different transition states or
to partial formation of native structure in a more well-defined
transition state. The TSE identified in our reaction-coordinate
analysis appears to be structurally rather homogeneous (Fig. 2).
On the other hand, we note that several residues form only a
fraction of their native contacts at the transition state, despite
achieving a fairly native conformation; one example is the fourth β
strand, which in both simulation and experiment has relatively low
Φ-values despite being well structured in the TSE (Fig. 2).
A central motivation for this work was to compare the folding

mechanism of a naturally occurring protein with those of faster-
folding proteins that have previously been characterized using
the same approaches. Analysis of the transition paths for the
folding and unfolding of ubiquitin indicates that, as is the case
for faster-folding proteins, the native-state topology and sec-
ondary structure tend to form before the majority of long-range
contacts (here defined as contacts between residues that are
more than seven residues apart in sequence) are consolidated
(Fig. 4 A and B). This is also consistent with our observation that
the fraction of native contacts formed in the transition state
region is slightly larger than the relative contact order (Fig. 2),
indicating that the contacts formed after the transition state are
mostly long range. In agreement with our previous observations,
we also find that the sequence of events appears to be largely
dictated by the local “nativeness” of the unfolded state. In par-
ticular, the residues in the β sheet, which have a high propensity
to form β strands in the unfolded state, reach the native con-
formation early on the transition path. The helix residues (25–
35) are a notable exception to this trend; they have a relatively
low propensity to form helices in the unfolded state, yet the
helix is formed quite early on the transition path (Fig. 4C).
Overall, these results suggest that the general principles gov-
erning the folding of fast-folding proteins also apply to ubiquitin,
and potentially to other naturally occurring proteins, although
the correlation between the order of events on the transition

path and the probability of forming native structure in the un-
folded state may be weaker.
Assuming a two-state folding behavior, the prefactor for

folding can be estimated from the average transition path time
(1.7 μs) using Kramers’ theory (89). The calculated value of
3.5 μs, consistent with a folding time of ∼3 ms and an activation
barrier of ∼5 kcal·mol−1 (Fig. 2), is similar to the value obtained
for the 73-amino-acid-residue three-helix bundle, α3D (3 μs)
(19); despite having a similar size and stability, however, this
protein folds two orders of magnitude faster than ubiquitin.
According to current theories based on statistical analysis of
folding rates (90), this difference originates from the more com-
plex topology of ubiquitin, as reflected by its high contact order
(15% compared with 9% for α3D). Indeed, while ubiquitin forms
a slightly larger number of contacts in the transition state and
while, accordingly, the enthalpy of the transition state is slightly
lower (−28 kcal·mol−1 for ubiquitin compared with −23 kcal·mol−1

for α3D), the combined configurational- and solvent-entropic cost
for forming these contacts is higher, and thus ubiquitin has a
higher folding free-energy barrier of ∼5 kcal·mol−1 (Fig. 2)
compared with only ∼1.5 kcal·mol−1 for α3D (19).

Conclusion
We have examined the folding mechanism of human ubiquitin
through extensive MD simulations using a physically realistic
model. Overall, our simulations reveal a mechanism of folding
that is consistent with a large body of experimental data. Al-
though ubiquitin folds much more slowly than a set of 12 fast-
folding proteins that we previously characterized (19), our anal-
ysis reveals that the principles that govern the folding of those 12
proteins also appear to hold for ubiquitin. Experimental and
computational studies of small, engineered fast-folding proteins
thus appear to be able to provide important information about
mechanisms of protein folding in general, including for naturally
occurring proteins.
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