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a b s t r a c t

In reported microcanonical molecular dynamics simulations, fast-folding proteins CLN025 and Trp-cage
autonomously folded to experimentally determined native conformations. However, the folding times of
these proteins derived from the simulations were more than 4e10 times longer than their experimental
values. This article reports autonomous folding of CLN025 and Trp-cage in isobariceisothermal molec-
ular dynamics simulations with agreements within factors of 0.69e1.75 between simulated and exper-
imental folding times at different temperatures. These results show that CLN025 and Trp-cage can now
autonomously fold in silico as fast as in experiments, and suggest that the accuracy of folding simulations
for fast-folding proteins begins to overlap with the accuracy of folding experiments. This opens new
prospects of developing computer algorithms that can predict both ensembles of conformations and
their interconversion rates for a protein from its sequence for artificial intelligence on how and when a
protein acts as a receiver, switch, and relay to facilitate various subcellular-to-tissue communications.
Then the genetic information that encodes proteins can be better read in the context of intricate bio-
logical functions.

© 2017 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

How fast can fast-folding proteins autonomously fold in silico?
This question is important because experimental folding times (ts)
[1e3] are rigorous benchmarks for evaluating the accuracy of
protein folding simulations. If accurate, such simulations offer not
only insight into protein folding pathways and mechanisms [4e7]
but also a means to determine ensembles of conformations and
their interconversion rates for a protein, which are responsible for
“proteins to act as receivers, switches, and relays and facilitate
communication from the subcellular level through to the cell and
tissue levels” [8]. Due to approximations in the empirical potential
energy functions for the folding simulations, most simulated ts
reported to date have been much longer than the corresponding
experimental ts. For example, early molecular dynamics (MD)
simulations of fast-folding proteins using a distributed computing
implementation with implicit solvation yielded ts that were
consistent with the corresponding experimental values if Ca root
mean square deviation (CaRMSD) cutoffs of 2.5e3.0 Å or 3.622 Å (in
mics; CaRMSD, Ca root mean
RMSD, Ca and Cb root mean
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combinationwith a set of secondary structure criteria) were used to
identify conformations that constitute the native structural en-
sembles [9,10]. However, according to the reported sensitivities of
the simulated ts to CaRMSD cutoffs [9,10], the ts would be
considerably longer than the experimental values, if typical
CaRMSD cutoffs of <2.0 Å were used. For another example,
advanced microcanonical MD simulations predicted ts of fast-
folding proteins CLN025 [11] and Trp-cage [12] to be 600 ns at
343 K and 14 ms at 335 K, respectively [13]. These ts are of high
quality as the ts were derived from the microcanonical MD simu-
lations that resulted in the most populated conformations of
CLN025 and Trp-cage with CaRMSDs of 1.0 and 1.4 Å from the
experimental native conformations, respectively [13]. However,
because the experimental ts of the two proteins reportedly in-
crease as temperature decreases [1,2], the simulated ts at 300 K are
conceivably more than 4e10 times longer than the experimental ts.
Therefore, how fast fast-folding proteins fold in silico equates to
how accurate protein folding simulations can be. Most reported ts
to date suggest that fast-folding proteins cannot autonomously fold
in silico as fast as in experiments. This implies an accuracy gap
between simulation and experiment for protein folding rate (1/t)
that is determined by folding mechanism or pathways [14].

To narrow the accuracy gap, a new protein simulation method
was developed. This method uses uniformly scaled atomic masses
to compress or expand MD simulation time for improving
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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configurational sampling efficiency or temporal resolution [15e17].
Uniformly reducing all atomic masses of a simulation system by
tenfold can compress the simulation time by a factor of

ffiffiffiffiffiffi

10
p

and
hence improve the configurational sampling efficiency of the low-
mass simulations at temperatures of �340 K [16]. As detailed in
Refs. [15,16], this method facilitates protein folding simulations on
personal computers (such as Apple Mac Pros) under iso-
bariceisothermal conditions at which most experimental folding
studies are performed. As explained in Ref. [16], the kinetics of the
low-mass simulation system can be converted to the kinetics of the
standard-mass simulation system by simply scaling the low-mass
time with a factor of

ffiffiffiffiffiffi

10
p

. Subsequently, this low-mass simula-
tion method led to the development of a revised AMBER forcefield
that has shown improvements in (i) autonomously folding fast-
folding proteins, (ii) simulating genuine localized disorders of fol-
ded globular proteins, and (iii) refining comparative models of
monomeric globular proteins [18e20]. Hereafter the combination
of the revised AMBER forcefield with the low-mass simulation
method is termed FF12MC [18].

Further, in performing zebrafish toxicology experiments for a
different project, this author observed that the times-to-death of
the 20 toxin-treated fish varied widely in each experiment,
although all 20 fish with nearly the same body weights received an
intraperitoneal injection of the same dose of the same batch of
botulinum neurotoxin serotype A. Yet, the mean time-to-death and
its 95% confidence interval (95%CI) calculated using the open-
source R survival package [21] varied slightly from one experi-
ment to another. The resemblance of the live and dead states of the
zebrafish to the unfolded and folded states of a protein inspired the
use of the R survival package to predict t of a fast-folding protein
from its sequence as follows [16,18]: Perform (i) �20 distinct and
independent MD simulations to autonomously fold a fast-folding
protein sequence using FF12MC, which results in �20 sets of
instantaneous protein conformations in time, (ii) a cluster analysis
of all instantaneous conformations from the �20 sets to obtain the
average conformation of the largest cluster and use the average
conformation as the predicted native conformation of the protein,
and (iii) a survival analysis using the �20 sets of the instantaneous
conformations in time and the predicted native conformation to
determine the mean t and its 95%CI. As exemplified in Refs. [16,18],
one advantage of this survival analysis method is that the t pre-
diction does assume that the fast-folding protein must follow a
two-state folding mechanism; another advantage is rigorous esti-
mation of mean t and 95%CI from �20 simulations that are rela-
tively short so that a few of these simulations may not capture a
folding event.

As demonstrated below, use of the methods and forcefield
outlined above resulted in accurate prediction of ts for CLN025 and
Trp-cage (TC10b) and an answer to the important question of how
fast fast-folding proteins fold in silico. A total of 160 distinct, in-
dependent, unrestricted, unbiased, isobariceisothermal, micro-
second MD simulations with a total aggregated simulation time of
1011.2 ms were used for the prediction. All simulation times
described hereafter have been converted to standard-mass simu-
lation times.

2. Methods

2.1. Molecular dynamics simulations

A fast-folding protein in a fully extended backbone conforma-
tion was solvated with the TIP3P water [22] with surrounding
counter ions and/or NaCls and then energy-minimized for 100 cy-
cles of steepest-descent minimization followed by 900 cycles of
conjugate-gradient minimization to remove close van der Waals
contacts using SANDER of AMBER 11 (University of California, San
Francisco). The resulting system was heated from 5 K to a tem-
perature of 280e300 K at a rate of 10 K/ps under constant tem-
perature and constant volume, then equilibrated for 106 timesteps
under constant temperature and constant pressure of 1 atm
employing isotropic molecule-based scaling, and finally simulated
in 40 distinct, independent, unrestricted, unbiased, and iso-
bariceisothermal MD simulations using PMEMD of AMBER 11 with
a periodic boundary condition at 280e300 K and 1 atm. The fully
extended backbone conformations (viz., anti-parallel b-strand
conformations) were generated by MacPyMOL Version 1.5.0
(Schr€odinger LLC, Portland, OR). The numbers of TIP3P waters and
surrounding ions, initial solvation box size, and ionizable residues
are provided in Table S1. The 40 unique seed numbers for initial
velocities of Simulations 1e40 are listed in Table S2. All simulations
used (i) a dielectric constant of 1.0, (ii) the Berendsen coupling al-
gorithm [23], (iii) the Particle Mesh Ewald method to calculate
electrostatic interactions of two atoms at a separation of >8 Å [24],
(iv) Dt ¼ 1.00 fs of the standard-mass time [18], (v) the SHAKE-
bond-length constraints applied to all bonds involving hydrogen,
(vi) a protocol to save the image closest to the middle of the “pri-
mary box” to the restart and trajectory files, (vii) a formatted restart
file, (viii) the revised alkali and halide ions parameters [25], (ix) a
cutoff of 8.0 Å for nonbonded interactions, (x) the atomic masses of
the entire simulation system (both solute and solvent) were
reduced uniformly by tenfold, and (xi) default values of all other
inputs of the PMEMDmodule. The forcefield parameters of FF12MC
are available in the Supporting Information of Ref. [16]. All simu-
lations were performed on an in-house cluster of 100 12-core Apple
Mac Pros with Intel Westmere (2.40/2.93 GHz).

2.2. Folding time estimation

The t of a fast-folding protein was estimated from the mean
time-to-folding in 40 distinct, independent, unrestricted, unbiased,
and isobariceisothermal MD simulations using survival analysis
methods [21] implemented in the R survival package Version
2.38e3 (http://cran.r-project.org/package¼survival). A Ca and Cb
root mean square deviation (CabRMSD) cutoff of 0.98 Å was used to
identify conformations that constitute the native structural
ensemble. For each simulation with conformations saved at every
105 timesteps, the first time-instant at which CabRMSD reached
�0.98 Å was recorded as an individual folding time (Table S3).
Using the Kaplan-Meier estimator [26,27] [the Surv() function in
the R survival package], the mean time-to-folding was first calcu-
lated from 40 simulations each of which captured a folding event at
a low temperature of 280 K or 293 K. If a parametric survival
function mostly fell within the 95%CI of the Kaplan-Meier estima-
tion for these low-temperature simulations, the parametric survival
function [the Surreg() function in the R survival package] was then
used to calculate (i) the mean time-to-folding of the 40 low-
temperature simulations and (ii) the mean time-to-folding of 40
new simulations, which were identical to the low-temperature
simulations except that the temperature was increased to 300 K.

2.3. Cluster analysis and data processing

The conformational cluster analyses of CLN025 and TC10b were
performed using CPPTRAJ of AmberTools 16 (University of Califor-
nia, San Francisco) with the average-linkage algorithm [28], epsilon
of 2.0 Å, and root mean square coordinate deviation on all Ca and
Cb atoms (see Table S4). No energyminimizationwas performed on
the average conformation of any cluster. The linear regression
analysis was performed using the PRISM 5 program for Mac OS X,
Version 5.0d (GraphPad Software, La Jolla, California).

http://cran.r-project.org/package=survival
http://cran.r-project.org/package=survival
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3. Results and discussion

3.1. Simulated folding times of b-protein CLN025 at different
temperatures

To determine how fast b-protein CLN025 autonomously folds in
silico, 40 distinct, independent, unrestricted, unbiased, iso-
bariceisothermal, and 3.16-ms MD simulations of CLN025 were
performed at 300 K. A cluster analysis of these simulations revealed
that the average conformation of the largest cluster adopted a b-
hairpin conformation [Fig. 1(A)]. This average conformation had a
CaRMSD of 0.87 Å and a CabRMSD of 0.94 Å relative to the average
conformation of 20 NMR-determined conformations of CLN025 [1]
[Fig. 1(B)]. Using (i) the average conformation of the largest cluster
as the predicted native conformation of CLN025 and (ii) CabRMSD
of �0.98 Å from the predicted native conformation to define the
native structural ensemble of CLN025, the first time-instant at
which CabRMSD of the full-length CLN025 sequence reached
�0.98 Å was recorded as an individual folding time for each of the
40 simulations (Table S3A). CabRMSD was used here to determine
the individual folding time because it has both main-chain and
side-chain structural information and is more stringent to measure
structural similarity than CaRMSD. Plotting the natural logarithm
of the nonnative state population of CLN025 versus time-to-folding
revealed a linear relationship with r2 of 0.97 (Fig. 2), which in-
dicates that CLN025 follows a two-state folding mechanism. Using
the 40 individual folding times as times-to-folding, a survival
analysis predicted the t of CLN025 to be 198 ns (95%CI ¼ 146e270
Fig. 1. Native conformations of CLN025 and Trp-cage (TC10b) derived from experi-
ments and simulations. (A) The average CLN025 conformation of the largest cluster of
the 40 distinct, independent, unrestricted, unbiased, isobariceisothermal, and 3.16-ms
MD simulations using FF12MC. (B) The average of 20 CLN025 NMR structures (PDB ID:
2RVD). (C) The average Trp-cage conformation of the largest cluster of the 40 distinct,
independent, unrestricted, unbiased, isobariceisothermal, and 9.48-ms MD simulations
using FF12MC. (D) The average of 28 Trp-cage NMR structures (PDB ID: 2JOF).
ns; n ¼ 40) at 300 K (Table 1). These results agree with the
experimental finding that the folding of CLN025 followed a two-
state folding mechanism with a t of 137 ns at 300 K, where the t
was obtained from Fig. 6 of Ref. [1]. To substantiate the agreement
between the experimental and simulated ts at 300 K, the 40
CLN025 simulations were repeated at 293 K. Using the same
CabRMSD cutoff and the same predicted native conformation, a
survival analysis showed that CLN025 followed a two-state folding
mechanism (r2 ¼ 0.94; Fig. 2) with a t of 279 ns (95%CI ¼ 204e380
ns; n ¼ 40) at 293 K (Table 1). This outcome again agrees with the
experimental t of 261 ns at 293 K that was also obtained from Fig. 6
of Ref. [1].

3.2. Simulated folding times of a-protein Trp-cage at different
temperatures

To determine how fast a-protein Trp-cage autonomously folds
in silico, 40 distinct, independent, unrestricted, unbiased, iso-
bariceisothermal, and 9.48-ms MD simulations of the Trp-cage
(TC10b) sequence were performed at 280 K. The average confor-
mation of the largest cluster of these simulations [Fig. 1(C)] had a
CaRMSD of 1.69 Å and a CabRMSD of 1.86 Å from the average
conformation of 28 NMR-determined conformations of TC10b [12]
[Fig. 1(D)]. Using the CabRMSD cutoff of 0.98 Å and the average
conformation of the largest cluster as the predicted native confor-
mation, a survival analysis showed that TC10b followed a two-state
folding mechanism (r2 ¼ 0.94; Fig. 2) in the simulations with a t of
2.4 ms (95%CI ¼ 1.8e3.3 ms; n ¼ 40) at 280 K (Table 1). These results
are consistent with the experimentally determined two-state
folding mechanism and the experimental t of 2.4 ms (95%
CI ¼ 1.6e3.2 ms) at 280 K for Trp-cage. The experimental t was
extrapolated from Fig. 4 of NMR lnkF in Ref. [2]. The experimental
95%CI was calculated from the reported errors of ±0.18 for lnkF in
the 12e14 range [2] according to the standard method for propa-
gation of errors of precision [29]. Repeating the 40 simulations of
TC10b at 300 K and the survival analysis using the same predicted
native conformation and the CabRMSD cutoff of 0.98 Å revealed a
two-state folding mechanism (r2¼ 0.96; Fig. 2) and a simulated t of
0.8 ms (95%CI¼ 0.6e1.0 ms; n¼ 40; Table 1), which is also consistent
with the experimental t of 1.4 ms (95%CI ¼ 0.8e2.0 ms) at 300 K [2].

3.3. Convergence of the simulated folding times

The simulated tmay not be converged and useful if the number
of simulations is insufficient or if a lax CaRMSD or CabRMSD is used
to define the native structural ensemble. To assess the convergence
of the simulated ts of CLN025 and Trp-cage described above, the
average conformations of the largest cluster (viz., the predicted
native conformations) for CLN025 and Trp-cage shown in Fig. 1 and
the corresponding simulated ts listed in Table 1 were re-generated
using Simulations 1e20 or 1e30, respectively. According to the
CabRMSDs in Table S4, the average conformation of the largest
cluster of Simulations 1e40 for CLN025 is identical to the corre-
sponding ones of Simulations 1e20 and Simulations 1e30, and the
same is true for Trp-cage. Further, the resulting changes in the
mean and 95%CI of the simulated t are negligible when the number
of simulations increased from 20 to 30 or 40 (Table S5). These re-
sults indicate that 40 simulations are sufficient.

In the present study, a stringent CabRMSD of�0.98 Å for the full
sequence of CLN025 or Trp-cage was used to define the native
structural ensemble, in contrast to the use of CaRMSD for a fast-
folding protein with truncations on terminal residues. However,
using an “overly” stringent CabRMSD cutoff of 0.98 Å may lengthen
the simulated t, whereas using the average rather than the repre-
sentative instantaneous conformation of the largest cluster as the



Fig. 2. Plots of the natural logarithm of the nonnative state population of CLN025 and Trp-cage (TC10b) over time-to-folding. The individual folding times were taken from
Table S3A.

Table 1
Experimental and simulated folding times of CLN025 and Trp-cage (TC10b).

Fast-folding protein and temperature Folding time (ms) E/Sa

Experimentalb Simulatedc

Mean 95%CId Mean 95%CId

CLN025 at 293 K 0.261 e 0.279 0.204e0.380 0.94
CLN025 at 300 K 0.137 e 0.198 0.146e0.270 0.69
TC10b at 280 K 2.4 1.6e3.2 2.4 1.8e3.3 1.00
TC10b at 300 K 1.4 0.8e2.0 0.8 0.6e1.0 1.75

a E/S: Experimental folding time divided by simulated folding time.
b The experimental folding times of CLN025 and TC10b were obtained from the Arrhenius plots of Refs. [1,2].
c The simulated folding time was predicted from 40 distinct, independent, unrestricted, unbiased, isobariceisothermal, and 3.16-ms (for CLN025) or 9.48-ms (for TC10b)

molecular dynamics simulations with FF12MC using a parametric survival function and a Ca-and-Cb root mean square deviation of 0.98 Å from the average conformation of
the largest conformation cluster of these simulations.

d 95%CI: 95% confidence interval.
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predicted native conformation may shorten the simulated t. To
address these concerns, all ts in Table 1 were re-estimated from the
same simulations using both the average and representative con-
formations with CabRMSD cutoffs that varied from 0.98 Å to 1.40 Å.
As apparent from Table S6, the simulated ts of CLN025 and Trp-
cage are insensitive to the change from the average to the repre-
sentative conformation, and these ts are also insensitive to the
variation of the CabRMSD cutoff within 0.98e1.40 Å. In addition, all
ts in Table 1 were determined from trajectories that revealed not
only hazard functions of a two-state folding mechanism for both
CLN025 and Trp-cage (Fig. 2) but also their consistent folding
events, which are traceable in Videos S1 and S2 (videos of long
folding events are not shown due to file size limit). The theoretical
mechanism and folding events are consistent with their experi-
mentally determined folding mechanism and native conforma-
tions. It is therefore conceivable that the simulated ts in Table 1 are
converged and may be used to explain, confirm, or predict folding
rates of CLN025 and Trp-cage.

Supplementary Videos S1 and S2 related to this article can be
found at http://dx.doi.org/10.1016/j.bbrc.2017.08.010.
3.4. Significance of the simulated folding times

The present study shows that agreements within factors of
0.69e1.75 between the experimental and simulated ts have been
achieved for CLN025 and Trp-cage (Table 1). These agreements
indicate that fast-folding proteins CLN025 and Trp-cage can now
autonomously fold in simulations as fast as in experiments, and
provide an answer to the important question of how fast fast-
folding proteins fold in silico. These agreements also suggest that
the accuracy of folding simulations for fast-folding proteins is
beginning to overlap with the accuracy of folding experiments. This
opens new prospects of combining simulation with experiment to
develop computer algorithms that can predict ensembles of con-
formations and their interconversion rates for a protein from its
sequence. Such algorithms can improve the artificial intelligence on
how and when “proteins act as receivers, switches, and relays and
facilitate communication from the subcellular level through to the
cell and tissue levels” [8]. Then the genetic information that en-
codes proteins can be better read in the context of intricate bio-
logical functions.

http://dx.doi.org/10.1016/j.bbrc.2017.08.010
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