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ABSTRACT

Motivation: Recently it has been shown that the quality of protein

contact prediction from evolutionary information can be improved

significantly if direct and indirect information is separated. Given suf-

ficiently large protein families, the contact predictions contain suffi-

cient information to predict the structure of many protein families.

However, since the first studies contact prediction methods have im-

proved. Here, we ask how much the final models are improved if im-

proved contact predictions are used.

Results: In a small benchmark of 15 proteins, we show that the TM-

scores of top-ranked models are improved by on average 33% using

PconsFold compared with the original version of EVfold. In a larger

benchmark, we find that the quality is improved with 15–30% when

using PconsC in comparison with earlier contact prediction methods.

Further, using Rosetta instead of CNS does not significantly improve

global model accuracy, but the chemistry of models generated with

Rosetta is improved.

Availability: PconsFold is a fully automated pipeline for ab initio pro-

tein structure prediction based on evolutionary information. PconsFold

is based on PconsC contact prediction and uses the Rosetta folding

protocol. Due to its modularity, the contact prediction tool can be

easily exchanged. The source code of PconsFold is available on

GitHub at https://www.github.com/ElofssonLab/pcons-fold under the

MIT license. PconsC is available from http://c.pcons.net/.

Contact: arne@bioinfo.se

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The protein folding problem is one of the longest standing

problems in structural biology. Although the problem of
physically folding up a single protein chain in the computer re-

mains largely unsolved, there have been continuous effort and
progress, resulting in increased accuracy of predicted models

(Kryshtafovych et al., 2013).
The idea of using residue–residue contacts predicted from

analysis of correlated mutations observed in evolution for 3D
protein structure prediction is not new (Gbel et al., 1994;

Hatrick and Taylor, 1994; Neher, 1994; Shindyalov et al.,
1994; Vendruscolo et al., 1997). However, until recently contacts

predicted from multiple sequence alignments were not
sufficiently accurate to facilitate structure prediction methods

significantly (Marks et al., 2012). This only became possible
due to new statistical approaches to separate direct from indirect

contact information (Burger and van Nimwegen, 2010; Lapedes

et al., 1999, 2012; Marks et al., 2011; Morcos et al., 2011; Weigt

et al., 2009) as well as a greatly increased corpus of sequence

information. These efforts came to completion with the first

demonstration of successful computation of correct folds with

explicit atomic coordinates using maximum-entropy derived
contacts (Marks et al., 2011). Analysis of the relative contribu-

tion of secondary structure and co-evolutionary information

pointed to potential improvements in 3D accuracy (Sulkowska

et al., 2012). Since then there has also been continuous effort to

improve the quality of predicted contacts (Ekeberg et al., 2013;

Jones et al., 2012; Skwark et al., 2013).
In addition to the initial predictions of soluble proteins (Marks

et al., 2011) and protein complexes (Schug et al., 2009), contacts

predicted from evolutionary information have also been applied

in structure prediction of membrane proteins (Hopf et al., 2012;
Nugent and Jones, 2012).

To optimize protein structure prediction from predicted con-

tacts, we developed PconsFold, a pipeline for ab initio protein
structure prediction of single-domain proteins, see Figure 1.

PconsFold is based on predicted amino acid contacts from

PconsC. These contacts are used within Rosetta to fold a given

protein sequence from scratch. We benchmark our method on

two datasets and compare it with the CNS (Brunger, 2007)

protocol used in EVfold (Marks et al., 2011). It was found that

the improved quality of predicted contacts by PconsC (Skwark
et al., 2013) increases quality and native-likeliness of predicted

structures by about 33% over EVfold and 16% over EVfold-

PLM, that is using the improved contact predictions from

plmDCA (Ekeberg et al., 2013).

2 METHODS

2.1 Datasets

During the development of PconsFold, we used the proteins from Jones

et al. (2012) (PSICOV dataset). The dataset consists of 150 single-domain

proteins with sequence lengths between 52 and 266 amino acids. A list of

all Protein Data Bank (PDB) (Berman et al., 2000) and corresponding

Uniprot (Magrane and Uniprot Consortium, 2011) IDs are given in

Supplementary Table S1.

For each protein, we chose to use the PDB seqres sequence as input

and not the atom sequence. This avoids internal gaps due to missing

residues in the crystal structure. Uniprot sequences were not directly

used to avoid including mutations and other sequential differences with

the PDB sequences. This also allows direct comparisons between pre-

dicted models and native PDB structures.

As an additional comparison between PconsFold and EVfold, we used

the set of 15 proteins as in Marks et al. (2011). PDB and Uniprot IDs and*To whom correspondence should be addressed.
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the sequences are given in Supplementary Table S2. According to the

Uniprot IDs, we extracted the sequences from the Pfam alignments

that were used in the publication. These sequences were submitted to

the EVfold web server and used as input for PconsFold.

2.2 Contact prediction

In PconsFold, residue contacts are predicted using PconsC (Skwark et al.,

2013). The contact predictor plmDCA (Ekeberg et al., 2013) is used by

Rosetta/plmDCA and in EVfold-PLM. Rosetta/plmDCA uses the direct

output from plmDCA, while in EVfold predicted contacts are further

optimized according to Marks et al. (2011). PSICOV (Jones et al.,

2012) was used in Rosetta/PSICOV.

Predicted contacts were ranked according to the confidence score as-

signed by the respective contact prediction method. For each protein, we

selected n= f � l top-ranked contacts, where l represents the length of the

protein sequence and f a factor to scale n relative to sequence length.

Consider f is set to 1.0. A protein with length 100 amino acids will thus be

constrained by the first 100 predicted contacts.

2.3 Rosetta

In PconsFold, Rosetta/plmDCA and Rosetta/PSICOV, we apply the

AbinitioRelax folding protocol (Rohl et al., 2004) of Rosetta in version

2013wk42 (Leaver-Fay et al., 2011). The file abinitio.op-

tions_tmpl in the folder pcons-fold/folding/rosetta of the

GitHub repository lists all options we are using with AbinitioRelax.

We employ the function FADE to integrate predicted residue contacts

into the internal scoring function of Rosetta. FADE calculates the energy

of a given contact as a function of the distance d between its residues as

given by the following equation:

FADEðdÞ=

0:0 for d5 lb or d4 ub
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The parameters lb and ub are lower and upper bounds, z represents the

fading zone’s width, lf and uf denote the inner boundaries for the fading

zone lb+ z and ub – z, respectively. The well depth of the interval between

both inner boundaries is given by w. We set lb to –10 Å, ub to 19 Å and z

to 10 Å. This defines a contact to be fully formed if the participating

residues are within 9 Å of each other. The fading zones allow for a soft

margin between formed and non-formed contacts. In terms of energy, all

non-formed contacts are ignored. In our opinion, this accounts best for

the fuzzy nature of predicted contacts. The fading zone at the lower

bound allows Rosetta to detect and resolve overlapping residues, i.e.

when there is a negative distance between two residues.

To avoid the inclusion of homologous fragments into Rosetta, the -

nohoms flag was used during fragment picking. This means that only

fragments from non-homologous protein structures were selected. This

was done to simulate a real application case and not to overestimate

prediction performance. If not stated otherwise, we used all 150 proteins

of the PSICOV dataset as prediction targets in this section.

2.4 Folding with CNS using EVfold-PLM

On the PSICOV dataset, EVfold-PLM was run in a standalone version.

The alignment E-value cutoff was fixed to 10�4. The parameter m was set

to 0.9. This defines a threshold to exclude sequences from the alignment

that consist of490% of gaps. Using just one E-value for the alignment

enabled comparison across the methods, but it should be noted that the

EVfold server offers optimization of the E-values based on sequence

coverage and number of sequences found, which results in improved re-

sults in some cases.

EVfold-PLM was run with default parameters on the small test set

using the web interface available at http://evfold.org/. We ensured that it

uses pseudolikelihood maximization (plm) on all data, instead of the

na€ıve mean field approach for contact prediction.

Folding with EVfold-PLM was performed using CNS and the same

protocol as described before (Marks et al., 2011). Here, the distance

geometry protocol is initially used and followed by a short simulated

annealing. The CNS-based folding protocol used in EVfold is approxi-

mately one order of magnitude faster than the Rosetta protocol used in

PconsFold. In addition, PconsC is at least four times slower than just

running the contact predictions used in EVfold-PLM.

2.5 Identification of top-ranked model

In addition to internal Rosetta scoring, we assessed the quality of all

predicted models with the model quality assessment programs

(MQAPs) Pcons (Lundstr€om et al., 2001), ProQ2 (Ray et al., 2012)

and DOPE from the Modeller software package (Eswar et al., 2006).

Pcons uses a comparative approach and ranks all decoys according to

pairwise structural similarity between them. ProQ2 and DOPE assess

single proteins and evaluate structural features, such as side-chain place-

ment and overall shape. For our ranking, we use the global score each

MQAP assigns to a predicted structural model (decoy). Residue-wise in-

formation about local model quality is thus not used.

For each structure prediction method, all decoys were re-ranked with

each MQAP. The top-ranked model was then selected and compared

with its native structure. For this comparison, we used the TM-score

(Zhang and Skolnick, 2004) as a measure of structural similarity. As

native structure, we used the PDB structure of each protein without fur-

ther loop closing or other refinement. Residues present in seqres but not

observed in the crystal structure, although modelled, are therefore

ignored in the structural comparison.

The positive predictive value (PPV) was calculated to assess the quality

of predicted models. It indicates how well a given contact map fits a given

structure. All PPV values were calculated using reference contacts C� (C�

in case of glycine) distances in the structure (native or model) with a

cutoff at 8 Å.

2.6 Model quality assessment

Accurate stereochemistry becomes important when the predicted models

are of correct overall fold. Therefore, we used MolProbity (Chen et al.,

2010) to assess the chemical model quality. The MolProbity tool one-

line-analysis was used to detect clashes and to evaluate backbone

dihedrals as well as side-chain rotamers. To prepare all structures for this

analysis, we first relaxed them with fixed backbone atoms. The Rosetta

Fig. 1. PconsFold pipeline. Based on a given protein sequence, amino

acid contacts are predicted with PconsC. These contacts then facilitate

protein folding with Rosetta. In the end, PconsFold outputs a structural

model for the given sequence
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protocol relax.linuxgccrelease was used with the flags -

relax:quick -in:file:fullatom -constrain_relax_to_s-

tart_coords. Hydrogen atoms were then added with the MolProbity

tool reduce-build. All resulting structures are provided in the

Supplementary Material.

2.7 Running time

A reduction from 20000 to 2000 decoy structures corresponds to a 10-

fold decrease of runtime during the Rosetta folding step but also leads to

an expected decline in average model quality, see Figure 2a. On one core

of an Intel E5-2660 (2.2GHz Sandybridge), the calculation of one decoy

takes between 1 and 10min for the shortest and longest protein in the

PSICOV dataset, respectively. To compute 2000 decoys for each protein,

we ran 16 threads in parallel. Each of these threads then generates 125

decoys, starting with independent random seeds. With this setting it takes

between two hours and nearly one day to generate all decoys for one

protein. This simple scaling is possible, as Rosetta runs are independent

of each other as long as they are based on independent random seeds.

Increasing the number of threads can then be used to reduce overall

runtime or to generate more decoys within a given time span.

3 RESULTS AND DISCUSSION

3.1 PconsFold

For all results in this section, we used the internal Rosetta score

to rank all predicted decoys. The top-ranked decoy structure was

then selected as the final model.
Previous studies have shown that 20 000–200000 decoys are

necessary to sample native-like conformations without using spa-
tial constraints (Simons et al., 1999). We set out using 20000

models and then reduced the number of decoy structures to

2000. The bulk at around 0.3 TM-score observed for when

only 2000 models are generated represents an increased

number of low quality models, see Figure 2a. In general, the

practical advantages of massively shorter Rosetta runs outweigh

slightly worse predicted models. This parameter is therefore set

to a default value of 2000 but can be specified by the user via a

command line argument. All further results in this section are

generated with this default setting, i.e. using 2000 models.

We selected the FADE function to incorporate predicted resi-

due contacts into Rosetta’s native energy function. We then

optimized the parameter w (well-depth) of FADE (Equation

1). A subset of 14 proteins of the PSICOV dataset, see

Supplementary Table S1, was used to reduce CPU hours of

this step. The resulting TM-scores are shown in Figure 2b. The

energy term from spatial constraints diminishes with well-depth

values of –0.5 and above. This leads to a significant decrease in

model quality. Stronger weights than –5.0 put a larger absolute

weight on the constraints resulting in higher model qualities. This

trend can also be observed when looking at the full dataset. The

average TM-score decreases to 0.28 using a well-depth of –1.0.

At the end, we choose to use a value of –15.0 to achieve high

model quality without outweighing Rosetta’s internal energy

function completely.
With any number of contacts used during structure prediction,

the resulting model quality is on average higher than it would be

without contact information. Figure 3a shows that predicted

contacts generally improve model quality, regardless of method

or amount of contacts.
In addition, improvements in contact prediction methods

further increase the quality of predicted structures. With an aver-

age TM-score of 0.55, PconsFold, i.e. using PconsC contacts,

provides a 10% improvement over using PSICOV or plmDCA

contacts. This observation is consistent with a direct comparison

of contact prediction methods as in Skwark et al. (2013).

(a) (b)

Fig. 2. Model quality in TM-score for adjustments of two different Rosetta parameters. (a) Performance distributions for two different sample sizes of

20 000 (left) and 2000 (right) decoy structures. The black boxes indicate upper and lower quartile with white dots at the median of the distributions. For

each protein in the full PSICOV dataset the top-ranked model was selected from the decoys by its Rosetta score and compared with the native structure.

(b) Effects of adjustments to the well-depth parameter of the FADE function. A low absolute well-depth (left side) puts low weight on predicted

constraints. Constraints are stronger weighted by higher absolute values of well-depth (right side). A subset of 14 proteins of the PSICOV dataset was

used here
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However, the performance difference between PSICOV and

plmDCA diminishes when their contacts are used in structure

prediction.
There is an optimal number of contacts, specific to the contact

prediction method. In Figure 3a, the average TM-score max-

imum is reached at x=1.0 for PconsFold, while for PSICOV

and plmDCA fewer contacts provide better models. This can be

explained by the quality of predicted contacts, i.e. there exists a

larger number of correct contacts in PconsC compared with

plmDCA or PSICOV (Skwark et al., 2013). Using more of

these contacts during structure prediction leads to improved

models.

This relation between contact and model quality can also be

observed in Figure 3b. The overall Pearson correlation between

PPV and TM-score in this dataset is 0.59, i.e. proteins with con-

tact maps of lower quality tend to be modelled less accurate.
Proteins belonging to the mainly alpha CATH fold class seem

to be easier to fold than proteins from the alpha & beta fold class,

and proteins from themainly beta fold class seem to be hardest to

fold, see Figure 3b and Supplementary Figure S1. On average,

predicted contact maps in mainly �-helical proteins (blue) have
similar or lower PPV values than those of �-sheet containing

proteins (green and yellow), but the resulting models are more

accurate in terms of TM-score. This might be explained by

higher contact-order (Plaxco et al., 1998) in beta-sheet proteins,

which renders such proteins more difficult to fold (Bradley and

Baker, 2006).

3.2 Identification of top-ranked model

Table 1 summarizes the evaluation of different MQAPs on the

predictions for the PSICOV dataset. It shows average TM-scores

for top-ranked models after re-ranking all models with each

MQAP. The difference between two TM-score values is signifi-

cant with495% confidence if its absolute value is 0.02 or above.

Due to the different ways constraints are used within CNS and

Rosetta, we did not apply Rosetta’s internal scoring function to

the models generated by CNS. To provide a TM-score baseline,

we ran the Rosetta folding step without constraints and using the

internal scoring only. This resulted in an average TM-score of

0.34. For PconsFold and Rosetta/plmDCA, the internal scoring

performed best, which is indicated by the highest average TM-

score in Table 1. The internal scoring function takes into account

the number of satisfied predicted contacts as a part of the energy

function, i.e. models that satisfy more predicted contacts are as-

signed low energies and thus ranked on top.

In EVfold-PLM the best method to identify top-ranked

models is by using Pcons (Lundstr€om et al., 2001). Further,

Pcons performed only slightly worse than the internal scoring

function of Rosetta on the models from PconsFold and

Rosetta/plmDCA, showing the advantage of simple clustering

methods.

(a) (b)

Fig. 3. Folding performance on the full PSICOV dataset. (a) The number of contacts used in structure prediction is plotted against average TM-score for

three different methods: PconsFold (green circles), Rosetta/plmDCA (blue triangles) and Rosetta/PSICOV (black squares). For each protein, the number

of top-ranked contacts was selected relative to its sequence length. A value of 1.0 on the x-axis represents one contact per residue on average. Error bars

indicate standard errors. (b) TM-scores are compared with the PPV of underlying contact maps for PconsFold (using PconsC). The colours represent all

four CATH fold classes. Lines are fitted to the data to illustrate performance differences between the fold classes

Table 1. Average TM-scores for top-ranked models

Method EVfold-PLM Rosetta/plmDCA PconsFold

Rosetta – 0.50 0.55

Pcons 0.47 0.47 0.53

ProQ2 0.36 0.46 0.51

DOPE 0.46 0.32 0.36

Models were ranked by different MQAPs.
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Further, we examined two quality assessments that have been
reported to show good ability to identify accurate protein

models, ProQ2 (Ray et al., 2012) and Dope (Shen and Sali,
2006). The ProQ2 quality did not perform well on EVfold-

PLM models but only slightly worse than Pcons on models
from PconsFold and Rosetta/plmDCA. We also tested a com-

bination of ProQ2 and Pcons, as in Wallner et al. (2007).
However, the results are omitted, as they were not significantly
different from those of Pcons alone. DOPE scoring of EVfold-

PLM models worked almost as good as Pcons, but we observe a
strong decline in average model quality for PconsFold and

Rosetta/plmDCA.

3.3 Does PconsFold optimally use the contact

information?

Next, we examined if the folding protocol has fully used the
available contact information. This was done, by comparing
the number of satisfied constraints (PPV) in the top-ranked

model and the native structure. On average, the PPV of predicted
contacts is higher in native structures than in the models (0.55

versus 0.47). This shows that using a more efficient folding
protocol would improve the models. All points in the lower
right triangle in Figure 4a indicate models that could be im-

proved. Clearly, for predicted contacts below PPV=0.4, many
models satisfy the constraints better than the native structures,

i.e. we would not expect that a better folding protocol would
improve the models. It is possible that these low-quality contact

maps mislead the structure prediction process and that this re-
sults in models that diverge from native structures with a better
fit to the predicted contacts. Possibly, in these cases, it would be

better to use fewer contacts. However, for most proteins with a
PPV higher than 0.4, we are clearly not able to satisfy all con-

straints. Here, an improved folding protocol would improve the
models.
In Figure 4, we also study one example of non-optimal folding

more closely. We selected 1JWQ, as it represents the worst-case

scenario where the difference between native and model PPV is

largest. With a PPV of 0.83, most of the contacts were predicted

correctly for this protein. The overall PPV decreased to 0.46 for

this model. Clearly, the folding protocol has not been able to

produce a compact model. Generating more decoys might solve

this problem but a more efficient folding protocol would be

preferable.

3.4 PconsFold versus EVfold

When looking at Figure 5, the majority of alpha-helical proteins

(blue) achieved higher TM-scores with PconsFold than with

EVfold-PLM. On average, we see an improvement of 14% of

PconsFold over EVfold-PLM on alpha-helical proteins. The

same improvement can also be observed for Rosetta/plmDCA.

Together with Figure 3, this indicates that Rosetta performs

better on alpha-helical proteins. The average performance of

PconsFold on alpha & beta proteins (green) is 15% higher

than for EVfold-PLM. However, Rosetta/plmDCA performs

equally good as EVfold-PLM on average on such targets. The

improvement might thus be due to PconsC contact maps, as it is

only observable for PconsFold and not for Rosetta/plmDCA. At

a level of single proteins, we see quite some divergence between

the results of EVfold-PLM and PconsFold in Figure 5. This is

especially true formainly beta proteins and alpha & beta proteins.

The analysis with MolProbity reveals that the backbone dihe-

dral quality of Rosetta models is higher than for EVfold-PLM

models. The percentage of Ramachandran outliers is 0.62% for

PconsFold and 12.16% for EVfold-PLM. MolProbity further

reports an average clash score of 10.48 for PconsFold and 9.90

for EVfold-PLM. The EVfold-PLM models have slightly less

clashes than the models from PconsFold. The average final

MolProbity score is with 1.85 better for PconsFold then 2.38

for EVfold-PLM. This corresponds to a better average

MolProbity percentile rank of 80.69 for PconsFold than the

average rank of 54.21 for EVfold-PLM. Additional analysis

(a) (b) (c)

Fig. 4. Analysis of contact maps in native structures and top-ranked models. PPVs were calculated for the sets of contacts that were used during folding

(1.0 � l top-ranked contacts) with a C� distance cutoff of 8 Å in the structures. (a) PPV values for PconsC contacts on native structures (x-axis) against

PPVs on the top-ranked models from PconsFold (y-axis). The colours represent TM-scores of models against native structures. (b) Native structure of

1JWQ. Lines represent all predicted contacts. The colour scheme indicates spatial distances of residue pairs in the structure. The PPV is 0.83. (c)

Predicted contacts in the top-ranked model for 1JWQ with the same color scheme. This model has a TM-score of 0.62 and a PPV of 0.46
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with PROCHECK confirmed this trend with 0.1%

Ramachandran outliers for PconsFold and 8.6% for EVfold.
Table 2 contains TM-scores for the top-ranked models of each

protein in the small test dataset. We compare the EVfold results,

as published in Marks et al. (2011), with results from the current

EVfold-PLM and PconsFold with 20000 generated decoys. With

an average TM-score of 0.55, EVfold-PLM performs 15% better

than EVfold with mean field within the 90% significance inter-

val, showing the importance of improved contact prediction.

When using PconsFold, there is an additional improvement of

16% to an average TM-score of 0.64 within the 95% significance

interval. This further supports our observation that improved

contact maps improve structure prediction.
Generally, co-evolution based methods are applicable to larger

proteins, as earlier studies on membrane proteins have shown

(Hopf et al., 2012; Nugent and Jones, 2012). Limitations are

given by the number of available sequences per residue (Hopf

et al., 2012; Kamisetty et al., 2013) and runtime.

4 CONCLUSION

Here, we show that improved contact predictions from PconsC

(Skwark et al., 2013) actually lead to improvements in protein

structure prediction. Further, it is clear that for proteins with

better-predicted contacts, the generated models are of higher

quality, i.e. future improvements in contact predictions will

result in higher quality models. According to Kamisetty et al.

(2013), there are 422 protein families without known structure

that are suitable for co-evolution-based contact prediction meth-

ods. This number will surely increase due to improved contact

prediction methods and growing sequence databases at increas-

ing rates. A comparison between using Rosetta and CNS indi-

cates that using similar contact predictions generates models of

similar quality. However, Rosetta models are chemically more

correct. Finally, it is also clear that in many top-ranked models,

the contacts are less well satisfied than in the native structures,

i.e. an improved folding protocol would improve the models.

One option would be to use model-PPV as a measure of model

quality, or as a stopping criterion for decoy generation, another

option is to use both CNS and Rosetta and then try to identify

the optimal model. Our results on different fold classes show that

model quality, especially in beta-sheet containing proteins, could

(a) (b)

Fig. 5. TM-score comparison for top-ranked models of the proteins in the PSICOV dataset. The decoys for each method were re-ranked using Pcons to

assess the performance of the structure prediction process independent of the model ranking scheme. The colours represent all four CATH fold classes.

(a) PconsFold compared with EVfold-PLM. (b) Rosetta/plmDCA compared with EVfold-PLM

Table 2. TM-scores for top-ranked models comparing EVfold with mean

field, EVfold-PLM and PconsFold with 20 000 decoys

Protein EVfold EVfold-PLM PconsFold

BPT1_BOVIN 0.49 0.25 0.57

CADH1_HUMAN 0.55 0.54 0.53

CD209_HUMANa 0.39 0.64 0.54

CHEY_ECOLI 0.65 0.66 0.82

ELAV4_HUMAN 0.57 0.61 0.80

O45418_CAEEL 0.48 0.62 0.65

OMPR_ECOLI 0.35 0.44 0.59

OPSD_BOVIN 0.50 0.55 0.56

PCBP1_HUMAN 0.25 0.43 0.60

RASH_HUMAN 0.70 0.62 0.67

RNH_ECOLI 0.54 0.66 0.61

SPTB2_HUMAN 0.37 0.51 0.74

THIO_ALIAC 0.55 0.56 0.83

TRY2_RAT 0.53b 0.78 0.54

YES_HUMAN 0.35 0.31 0.57

Mean 0.48 0.55 (0.09*) 0.64 (0.04**)

aThe Uniprot entry A8MVQ9_HUMAN of the EVfold publication was renamed

into CD209_HUMAN.
bThis value was corrected, as in the original publication it showed the value for the

best possible model.

*P-value for a one-sample t-test of TM-score difference to EVfold TM-scores.

**P-value for a one-sample t-test of TM-score difference to EVfold-PLM TM-

scores.
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be even further enhanced by focusing future work on long-range

contacts.
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