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On the Theory of Helix-Coil Transition in Polypeptides* 
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The evaluation of the configurational partition function of a polypeptide molecule, with the internal 
rotation angles as variables, leads to an improved treatment of the phenomenon of helix-coil transition in 
polypeptide molecules. The conditional probabilities of occurrence of helical and coiled states of the peptide 
units are obtained in the form of a 3X3 matrix. The order of this matrix is the lowest possible for the model 
employed, and is derived by a logical procedure which serves to eliminate redundancies in the enumeration 
of states. The eigenvalues of this matrix yield the various molecular averages as functions of the degree of 
polymerization, temperature, and molecular constants. Explicit formulas are given for the degree of intra­
molecular hydrogen bonding, average number of helical sequences, and the distribution of their lengths, 
as well as the number average and the weight average of these lengths. 

INTRODUCTION 

THE statistical thermodynamics of the helix-coil 
transition in polypeptide chains has been studied 

extensively in recent years by a number of authors.l-s 
In the present paper we propose a solution of the same 
problem from a different point of view, by applying the 
internal rotation angles of the polypeptide chain mole­
cule as the variables which determine the microscopic 
configurations of the molecule. A comparison of the 
other theories with the present treatment will show 
that the latter, being more rigorous, improves upon the 
former, and yet, in a sense, it is simpler. Like Zimm and 
Bragg,4 we apply a matrix representation of the parti­
tion function, from which the degree of helicity and 
other related quantities are calculated. Our choice of 
the matrix elements is, however, different. Zimm and 
Bragg,4 as well as Gibbs and DiMarzi06 and Nagai,S 
consider the probability that a chain element is hydro­
gen bonded as being dependent on the state of the 

* Partly presented at the Fourth Annual Meeting of the Bio­
physical Society, Philadelphia, Pennsylvania, February, 1960. 

t On leave from the Weizmann Institute of Science, Rehovot, 
Israel. 

t Supported in part by a research grant from the Heart Insti­
tute, U. S. Public Health Service. 

§ On leave from the Institute of Physical Chemistry, C.S.I.C., 
Madrid, Spain. 

1]. A. Schellman, Compt. rend. trav. lab. Carsberg, Ser. chim. 
29, No. 15 (1955); ]. Phys. Chern. 62, 1485 (1958). 

2 L. Peller, thesis, Princeton University, 1951; ]. Phys. Chern. 
63,1194 (1959). 

3 S. A. Rice, A. Wada, and E. P. Geiduschek, Discussions 
Faraday Soc. 25, 130 (1958). 

• (a) B. H. Zimm and ]. K. Bragg, ]. Chem. Phys. 28, 1246 
(1958); (b) 31, 526 (1959). 

5 (a) ]. H. Gibbs and E. A. DiMarzio, ]. Chern. Phys. 28, 1247 
(1958); (b) 30, 271 (1959). 

6 S. A. Rice and A. Wada,]. Chern. Phys. 29, 233 (1958). 
7 T. L. Hill, ]. Chern. Phys. 30, 383 (1959). 
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neighboring chain elements, but assume that the 
probability of a chain element being nonbonded is 
independent of the state of its neighbors. However, 
the probability of a chain element being nonbonded is 
actually smaller if its two neighbors are bonded than 
if they are not. Although the effect of that assumption 
on the final results might be small in many cases, it is 
not always negligible. Moreover, it appears that while 
eliminating this assumption, the order of the matrix 
of conditional probabilities can be reduced from eight 
in the theory of Zimm and Bragg, to three in our present 
treatment. This simplification makes it possible to 
calculate the various molecular averages of interest in 
terms of all three eigenvalues of the probability matrix 
and their corresponding eigenvectors. Thus, one 
obtains a solution to the polypeptide helix-coil transi­
tion problem for low as well as intermediate molecular 
weights, and a clearer insight into the effect of the 
various eigenvalues on the quasi-phase-transition III 

finite, one-dimensional systems. 

CONFIGURATIONAL PARTITION FUNCTION 

We consider a chain molecule of n+2 peptide units 
(amino acid residues), embedded in a solvent. The units 
are numbered, 0, 1, "', i, "', n, n+ 1, with the zeroth 
and the (n+ 1) units carrying the free carboxyl and the 
free amine, respectively. The peptide bonds connecting 
the adjacent peptide units are known to have a partial 
double-bond character, and are assumed to be fixed. 
The two other bonds of each peptide have a partial 
freedom of rotation, and the instantaneous values of 
the respective internal rotation angles (cPi, 1/Ii) deter­
mine the microscopic configuration of the chain (see 
Fig. 1). The nitrogen of the zeroth unit is assumed to 
form an intramolecular hydrogen bond with the oxygen 
of the fourth unit if, and only if, the units 1, 2, and 3 
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FIG. 1. Polypeptide chain, a schematic representation in the 
extended zigzag configuration. 

are in the a-helix conformation.9 Similarly, any pair of 
uni ts ( i - 2, 1 + 2) is bonded by a hydrogen bond 
provided the three peptide units i-I, i, i+ 1, are in 
the a-helix conformation. The energy of the intra­
molecular hydrogen bonds together with the interac­
tion between the R groups of the amino acid residues, 
tend to stabilize the a-helix structure, while the free 
energy of the partial freedom of internal rotation and 
the solvent-polymer interactions tends in general to 
favor the random, i.e., coiled, conformation. By 
calculating the configurational partition function of the 
system, one obtains a quantitative measure of the 
interplay between these two tendencies. 

The solvent polypeptide interactions may be of 
various kinds, including solvent peptide hydrogen­
bonding. We shall not discuss them here in detail. 
For our purpose it is sufficient to consider the total 
configurational energy V(n) (cf>I, 1/;1, ... , cf>n, I/;n) as a 
function of the 2n internal rotation angles, obtained 
after properly averaginglO over all possible configura­
tions of the solvent molecules, as well as over the 
internal rotation angles of the peptide units 0 and 
(n+ 1) which do not participate directly in stabilizing 
the helical structure. 

We shall assume that the configurational energy V(n) 

is given by 

V(n) = tv ;'1) (cf>i, I/; i) 
i=l 

n-I 

+ LV P) (cf>i-l, I/;i-I, cf>i, I/;i, cf>i+l, 1/;1+1)' (1) 
i=2 

The terms V /1) (cf>i, 1/;;) represent the potential of 
hindered rotation, namely, the part of the energy of 
each peptide unit which is independent of other units. 
They also include the energy of solvent-peptide hy­
drogen bonds or other particular interactions when­
ever such interactions are present. The terms 
V P) (cf>H, ••• , I/; i+l) represent the energy of formation 

9 L. Pauling, R. B. Corey, and H. R. Branson, Proc. Nat!. 
Acad. Sci. U. S. 37. 205, 241 (1951). 

10 A detailed discussion of the nature of V(n) for polymer mole­
cules in general is given in a recent paper by S. Lifson and I. 
Oppenheim, J. Chern. Phys. 33, 109 (1960), where V(n) is shown 
to be the potential of the average torque acting on the internal 
rotation angles. It has, roughly speaking, the nature of a free 
energy with respect to the solvent molecules and of an internal 
energy with respect to the intra-polypeptide interactions. 

of the helix. ll They include the energy change ac­
companying the formation of a hydrogen bond between 
the NH group of the (i-2) peptide unit and the 
oxygen of the (i+2) unit, and also other interactions 
such as interactions between side chains which help to 
stabilize the a helix and are presumably essential in 
determining the right- or left-handedness of the 
helix.12 The term V i(3) is assumed to be different from 
zero if, and only if, all three pairs of internal rotation 
angles have the values cf>i_l(h) •• ·I/;i+l(h) assigned to 
them in the a-helix conformation, within a narrow 
range of variation 

The configurational partition function of the system 
is given by 

(2" 1.2" 
Z=J, '" exp[-iJV(n)]dcf>l"',dl/tn, (2) 

.i>J=O Y-n=O 

where {3= l/kT. 
Evidently, the multiple integral of Eq. (2) cannot be 

factorized; however, it can be reduced to a sum of 
products and the summation performed with the help 
of matrix methods. For this purpose we divide the 
integration region of each pair of internal rotation 
angles (cf>i, I/; i) into two parts: the coil region C i and 
the helix region hi. These regions are shown sche­
matically in Fig. 2. 

The integration over the coil region Ci can be 
performed over each pair of angles independent of the 
state of the adjacent peptide units, since V /3) =0 holds 
over the entire region Ci, and we may write 

1 exp( -{3V i(l»)dO;dl/;i=U, 
Cj 

i=l or n (3) 

L exp(-{3VPl-{3VP»)d4>;dl/;;=u, i=2, . n-l. 

(4) 

The integration over the helical region hi does depend 
on the state of the adjacent peptide units. When both 
the i-l and i+ 1 peptide units are in the helix region, 

FIG. 2. Range of integration of a 
pair of internal rotation angles 
(</>i, ""i). 

11 The attributions of Vi (3) (</> ..... 1·· ·""._1) to the ith umt IS 

arbitrary. We could just as well attribute it to any of the units 
between i-2 and i+2. It has, however, the advantage of sym­
metry. We shall sometimes say that the ith unit is hydrogen 
bonded meaning merely that V,(3),..0. 

12 E. R. BIout, C. de Loze, S. M. Bloom, and G. D. Fasman, 
J. Am. Chern. Soc. 82, 3787 (1960). 
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the energy V P) is different from zero, and we have 

.li exp( -i3V p L i3V P»)d</J.dl/;i=W, 

i=2, "', n-1; both 
i-I and i+ 1 in the 
helix region. (5) 

Otherwise the energy V /3) vanishes, and we have 

1 exp( -i3V PJ-i3V P»)dcpidl/;i=V, 
hi 

i=2, "', n-1; either 
i-lor i+ 1 or both are 
in the coil region. (6) 

Similarly, integration over the helical regions of the 
peptide units at both ends gives always 

i= 1 or n, (7) 

irrespective of the state of the adjacent unit. 
Consider now a compound state of the polypeptide 

chain defined by specifying the state of each peptide 
unit as being either in the helix region or in the coil 
region. The contribution of such a state to the partition 
function can be expressed as a product of n factors, 
each of which is either u, v, or w. As an example, let us 
examine a sequence with n = 15 in the state described by 

hhhhhccchhchccc, (8) 

[the units 0 and 16 were omitted; see the discussion 
preceding Eq. (1)], in which the first five peptide units 
are in the helix region, the three succeeding units are 
in the coil region, etc. The contribution of this state to 
the partition function is seen to be 

vwwwvuuuvvuvuuu. (9) 

The rules in constructing such terms follow directly 
from Eqs. (3)-(7): 

(1) A peptide unit in the coil state always con­
tributes a factor u. 

(2) A peptide unit at the beginning or at the end of 
an uninterrupted sequence of helical states contributes 
a factor v. 

(3) A peptide unit at the interior of an uninterrupted 
sequence of (more than two) helical states contributes 
a factor w. 

The product given in (9) is proportional to the 
probability of occurrence of the sequence (8), the 
the proportionality factor being Z-l. The factors u, v, 
and W represent conditional probabilities of occurrence 
of their corresponding events, the conditions being 
given by the above three rules. Since the terms u, v, 
and ware not normalized, only ratios between them are 
significant. If one of these factors is arbitrarily set 
equal to unity, this is equivalent to fixing arbitrarily 

the zero point of the energy in Eq. (1), and does by no 
means limit the generality of the discussion. We shall 
later make use of this freedom, by setting u = 1, and shall 
consider the different quantities of interest as functions 
of v and w only. 

Note also that, in general, 

V«u (10) 

because the region h is much smaller than the region c. 
Also 

V«w (11) 

because v(a) must be negative if a helix-coil transition 
is to be expected. 

At this point it seems instructive to compare the set 
of statistical weights, or conditional probabilities, 
introduced by Zimm and Bragg with those employed 
here. Our w corresponds to their s. Also our v corre­
sponds to their u!. This last correspondence is somewhat 
disguised by the fact that they attribute the factor a 
to the beginning of a helical sequence, while we at­
tribute a factor v, namely, u~, to both the beginning and 
the end of a helical sequence which, nevertheless, 
amounts to the same final effect. Our statistical weight 
of the coil region, u, however, does not correspond 
exactly to their statistical weight of the unb~nded 
segment. It follows from our definitions of u, v, and w 
that the (unnormalized) probability of a segment to be 
unbondedll is u+v if either of its neighbors is in the 
coil region, but it reduces to u if its two neighbors are 
both in the helical region. Zimm and Bragg did not 
distinguish between these two possibilities and at­
tributed the same statistical weight (unity) to the 
unbonded segment, irrespective of the state of its neigh­
bors. The effect of this approximation is small as long 
as v«u. The approximation, however, is unnecessary 
since the more rigorous treatment is also simpler. It 
should be noted that the above remarks hold, with 
minor differences, with respect to Gibbs and Di­
Marzio,S and Nagai.8 

To obtain the partition function we sum over all 
possible terms which can be constructed following the 
rules 1 through 3. To do this we define a variable index 
p which stands for either h or c, and introduce the follow­
ing notation 

( 12) 

The partition function can be written now as 

f f 
n-l 

Z= L ... L ... exp( -IW1(1»n-lII 
Pl=h,c Pn=h,c PI Pn t=2 

(13) 
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FIG. 3. Secular equation for '11=0.1 (dashed lines) and (see 
footnote 15 in text) '11=0.0141 (solid lines). The dotted lines 
represent the asymptotic behavior in the limit '11->0. 

or 

Z= L ... L UPIWPIPZP3" 'WP,,-ZPn-IPnUPn' (14) 
Pl=h,c Pn=h,c 

where uPJ i = 1 or n) is either U or v according to 
whether Pi is ei [Eq. (3) J or hi [Eq. (7) J. Similarly 
Wpi-IPiPi-1 is either U or v or W according to whether the 
sequence Pi-IPiPi+l corresponds to the conditions of 
Eqs. (4), (6), or (5), respectively. 

The values of WPi-IPiPi+1 may be represented by a 
3X3 matrix Wi= !Wr .} in which the rows correspond 
to the value of Pi-lPi and the columns to those of 
PiPi+l: 

Pi+l h e hUe 

Pi-I Pi h h c 

W.=!W .. }= h h W v ° (15) 

h c ° ° U 

c hUe v v U 

The notation hUe means "h or c." The third row is 
denoted by (c, hUe) which means that Pi-l is deter­
mined, Pi-l =c, while Pi can be either h or e and is 
determined for each element in the row by the column 
to which it belongs. Similarly, the third column has 
Pi=C, while Pm is either h or e. As long as Wi is con­
sidered alone, the value of Pi+l in the third column is 
not determined and is also irrelevant. However, when 
we form, for example, the matrix product W iW i+I, 
elements of the third row of W i+l always multiply 
elements of the third column of Wi and thereby the 
value of Pi+l becomes determined for each element of 
the product. 

By the rules of matrix multiplication the sum III 

Eq. (14) is represented exactly by the product 

(16) 

where u and u+ are, respectively, the row and column 
vectors 

u= (v, v, u), u+= (v, u, v+u) *, (17) 

and represent the peptide units at the two ends of the 
chain. We use the asterisk to denote a transpose of a 
vector or matrix, but note that u+ is not the transpose 
of u. The elements of the vector u correspond to the 
states h, h, c which are the values of the variable index 
Pi-l in Wi. Similarly, the elements of the vector u+ 
correspond to the states h, c, hUe of Pi+l in Wi. 

The introduction of the logical symbol U, as in the 
third row and column, serves to reduce the four possible 
values of Pi-IPi (as well as of PiPi+I) to three. I3 Its 
applicability is quite general; it helps to reduce con­
siderably the high orders of matrices which represent 
the partition function of more complicated problems, 
such as the detailed balance between intra- and inter­
molecular hydrogen bonding, or between right-handed 
and left-handed helices when both are feasible. A de­
tailed discussion of such systems will be published 
separately. 

In very small chains, where the end effects are of 
major importance, the terms v and U in U and u+ might 
be considered as different from those in the interior 
of the chain, mainly due to the particular structure of 
the end groups. If, however, we do not wish to make 
this distinction, it appears preferable for later applica­
tions to define the row and column vectors 

e=(0,0,1), e+= (0, 1, 1) * (18) 

so that 
u=eW, (19) 

13 Instead, we might represent WPi-IPiPHI by a 4X4 matrix. Let 
the rows and columns correspond to the 4 pairs hh, eh, he, ee. 
The partition function is then given by 

W 0 v 0 n-i V 

'II 0 V 0 v 

U 0 u u 

U 0 U U 

To show that this expression is equivalent to Eq. (16) we intro-
duce a similarity transformation 

1 0 0 0 0 0 0 

0 -1 1 -1 0 0 1 0 
X= X-I = 

0 0 0 0 0 1 

0 1 0 0 0 -1 

and obtain Z= (u'X) (X-IW'X) n-2 (X-Iu'+) which is equal to 
uWn-iu+ of Eq. (16), except that it has all 4th rows and columns 
zero. Since the matrix W is regular, there can be no further reduc­
tion of order. 
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and the partition function may be written as 

Z=eWne+, (20) 

where each peptide unit is represented by a matrix W. 
An evaluation of Z is effected by transforming W 

into a diagonal matrix A according to the transforma­
tion 

T-IWT=A. (21) 

The diagonal elements AI, A2, Aa, of the diagonal matrix 
A are the eigenvalues of the matrix W, namely, solu­
tions of the secular equation 

I(A; W, v, u) = (A-W) (A2-UA-UV) -uv2=0. (22) 

After introducing W=TAT-l into Eq. (20), the 
partition function Z can be written as 

Z=eTAnT-le+. (23) 

The columns of T are right-hand eigenvectors of W 
which satisfy the equations Wx,.* = Arx,.* (r = 1, 2, 3), 
and are seen to be proportional to [UV/(Ar-W) , U, ArJ*; 
the proportionality factor will be set here as Ar-\ 

r= 1,2,3. (24) 

Similarly the rows of T-l are left-hand eigenvectors 
of W which satisfy the equations yrW = ArYr and are 
given by 

Yr=[UV/Ar(Ar-W), (l-u/Ar), U/ArJCr. (25) 

The normalizing factor Cr=Cr(Ar) is determined by 
T-IT= 1 which requires Yrxr *= 1, and is given by • 

or 

or 

where 
f.Lr=Ar2-UAr-UV. 

r=l=s=l=t= 1,2,3, 

(26') 

(27) 

The various forms of Cr are introduced for later 
application and are obtained by using the secular 
equation (22) and the symmetric functions of its 
coefficients 

3 

LAr=W+U, 
,...1 

a 
L ArA.=U(W-V), 
r<s 

(28) 

By using Eqs. (24)-(26) to obtain eT and T-le+, 

eT= (1,1,1), 

the partition function Z is finally derived, after intro-

c 

0.8 

0.6 

0.4 

0.2 

o 
-0.4 -Q2 o 

In w 

v·O.1 , 

0.2 0.4 0.6 

FIG. 4. Dependence of C, on Inw for v=O.l and v=O.0141. 

ducing Eq. (29) into Eq. (23) : 

a 
Z= LZr (30) 

r=l 

with 
(31) 

A fair insight into the problem of the helix-coil 
transition and its relation to the eigenvalues of the 
probability matrix W can be obtained by analyzing the 
dependence of the three eigenvalues AI, A2, and As on 
the parameters wand v. We shall put u=l since, as 
indicated before, only ratios between the parameters 
w, v, and U have physical significance.l4 The secular 
equation may be rearranged for that purpose in the 
form 

(u=l). (32) 

In Fig. 3, A(W) is plotted from this equation, for two 
values of v, v=O.l and v=O.0141.l5 The dotted lines 
indicate the asymptotic behavior of A(W) in the limit 
~. The point of intersection of the dotted lines is 
the point of a true sharp phase transition which may 
occur only in the limit ~, as was pointed out by 
Zimm and Bragg.4 The region of the actual diffuse 
transition is in the vicinity of that point,16 where the 
values of the eigenvalues Al and A2 deviate from their 
asymptotic values to an extent dependent on the value 
of v. In this region the difference between Al and A2 is 

14 The relationship between these parameters and observable 
quantities such as temperature or chemical potential has been 
discussed by other authors and will not concern us here; the sig­
nificance of In w is briefly mentioned in Eq. (33). 

15 This value was chosen for comparison with Zimm and 
Bragg's results (see footnote 4). 

16 The midpoint of the transition for large n is approximately 
w=l+v, AI=1+2v, A2=1. We shall refer sometimes to this point 
as the transition point or simply the transition. 
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small, of the order of v, and the contribution of A2 to 
the partition function, the degree of helicity etc., may 
not be neglected unless n is very large. On the other 
~and, A3 is seen to be always small and essentially 
mdependent of w. Its contribution to the transition 
therefore, is negligible except at extreme conditions of 
very ~mal~ n an~ relativ~ly large v. Since Aa is always 
negatIve, Its mam contnbution to the partition func­
tion changes sign according to whether n is odd or even. 
A corresponding significant difference between the 
properties of polypeptides with odd and even numbers 
of peptide units evidently may occur only when n is 
small. 

The mathematical procedure leading from the 
formulation of the configurational partition function 
E.q. (2), to it~ final evaluation, Eq. (30), may b~ 
VIewed as a senes of transformations of the state vari­
ables which determine the state of the peptide units of 
the polypeptide chain. The first transformation re­
p~aced the 2n continuous variables CPi and 1/;; by n 
dIscrete state variables, one for each unit, each with 
two values e and h. Represented by these variables 
the partition function, Eq. (14), was given as a su~ 
over the corresponding 2n configurations of the whole 
s?,stem. When we next applied the matrix representa­
~IOn of the partition function, Eq. (20), we introduced 
m fact as our new state variables the states of the n-1 
pairs of adjacent units, each with three values (h h) 
( 

, , , 
h, e), and (e, hUe). The representation of the 2n con­

figurations of the whole system was unaltered by this 
transformation. Finally, the similarity transformation 
T, which diagonalized the matrix of conditional proba­
bilities W, may also be considered as a transformation 
to new n-1 state variables whose values determine the 
state of the n units of the system. Since the matrix of 
conditional probabilities is diagonal in these variables, 

it follows that the whole system can be found in this 
representation, in one of the three states r::: 1 2 3 
with a probability Zr/Z for each. We shall consider' Zr 
as the partition function for the rth state. It is to be 
expected, therefore, that any average molecular 
property should be calculated by averaging its values 
ove~ t~ese th~ee states, with Zr/ Z as the corresponding 
statIstical weights. In the next section we shall derive 
explicitly such formulas for various average molecular 
properties. 

The expression Zr=ArnCr suggests that Ar is the con­
tribution of each unit to Zr while Cr is a factor which 
r~~resents ~he contribution of end effects to the par­
tItIOn functIOn Zr. In Fig. 4 we see the dependence of 
these end effects on lnw; this variable was chosen 
because of its correlation with the temperature, which 
we assume to be 

Inw=-!:1H/kT+!:1S/k. (33) 

Here !:1H is the energy change accompanying the forma­
tion of an intramolecular hydrogen bond, and !:1 S is the 
corresponding charge of entropy. Both !:1H and !:1S 
include, in general, contributions from solvent inter­
actions. It is easy to show that C1+C2+Ca=1 and that 
Ca<O. The latter is essentially independent of wand is 
very small; for v=O.1, Ca is less than 1% of the largest 
?f .C1 or C2 and for smaller values of v, such as v=0.0141, 
l~ IS ~ompletely negligible. On the other hand, the rela­
tive Importance of C1 and C2 depends strongly on lnw; 
at l?w values of w (coil region) C1 is near unity, whereas 
~2 IS small, the end effect thus being appreciable only 
m Z2. On the other hand, at large values of lnw (helical 
region) only Zl is appreciably reduced by the end 
effect while C2 is near unity; at the transition point, 
C(~C2. 

The three partition functions Zr are strongly de­
pendent on n through the factor Arn. Even for very low 
values of n, the value of Aan is small; this together with 
the behavior of Ca makes Za completely negligible. The 
relative magnitude of Zl and Z2 is determined essentially 
by (A2/Al)n; as seen from the secular equation (22) and 
Fig. 3, this factor has a maximum at the transition 
point. The sharpness of this maximum increases and 
its value decreases when n and/or v increases and 
makes Z2 important only in the transition region, i.e., 
around w= 1 +v, and even then only if n and/or v are 
not too large. In Fig. 5 the values of Zl/ Z and Z2/ Z at 
w~1 +v (where C1 = C2) are plotted vs n, which show 
the change of their relative magnitude with increasing 
n for v=0.1 and for v =0.0141. The value of n at which 
Z2 i~ negligible within a specified degree of approxi­
matIOn can be calculated as follows, according to 
Eqs. (30), (31), and (26'): 

Z"" Zl[1 + (A2/~q) n( C2/C1)] 

""Z{l + (X2/~q)n+l(W-A2)/(AI-W)], (34) 
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if we assume that Z3"'0 and that (AI-A3)/(A2-A3)'" 
AI/A2. The maximum of (AdAI)n+1 occurs at the transi­
tion point but that of the bracket is shifted slightly 
toward larger w since C2/ CI is an increasing function of 
w as can be seen from Fig. 4. This shift is very small, 
though; at a point such as AI"'1+3v, (w::::J+%v, 
A2"'1+!v) , at which (W-A2)/(AI-W)"'t"'1 the 
derivative a(ZdZI)/aW is already negative for any 
value of v and n. Then, 

(ZdZI) max "'(AdAI) maxn+1"'(1 +2v)-n 

=exp[-n In(l +2v) ]"'e-21lv. (35) 

Therefore, to have (Z2/ Zl) max<O.Ol, n has to be such 
that nv>2.3. For nv;:::::3, the term Z2/Z1 is negligible 
within an error of less than 1/300, and one might adopt 
this as a criterion for the negligibility of Z2, i.e., 

ifnv;:::::3. (36) 

To sum up the above discussion, we observe that 
among the three terms which comprise Z, one, Z3, is 
practically always negligible. Among the others, Z2 
contributes to the partition function only in the 
transition region, i.e., in the vicinity of w=l+v, and 
provided nv<3; the effect of the ends of the chain, 
through C2/C1, is negligible at the coil region, but 
tends to increase slightly the relative weight of Zz at 
the helix side of the transition, within the narrow 
range 1+v:=:;w:=:;1+2.5v. Beyond this range Z2 is neg­
ligible, unless nv is significantly smaller than 3. 

MOLECULAR AVERAGES 

Degree of Intramolecular Hydrogen Bonding 

The average number of intramolecular hydrogen 
bonds, iibond, and the relative number or degree of 
hydrogen bondings, (J=iibond/n, are both functions of 
n, w, and v (we set u=l without loss of generality). 
By standard methods of statistical mechanics we have 

(J=n-1a InZ/a Inw. (37) 

On using Eq. (30) we may write 

3 

(J= L(JrZr/Z, (38) 
r=l 

where (Jr is given by 

(Jr=n-1a InZr/a lnw. (39) 

Thus, it appears that (Jr is the same function of Zr as 
(J is of Z and may, therefore, be considered as the degree 
of intramolecular hydrogen bonding for the rth state. 
Equation (38) then gives (J as the average value of (Jr 
with statistical weights Zr/ Z, as pointed out in the 
preceding section. After introducing Eq. (31) into 
Eq. (39) we obtain 

(Jr=a InAr/a Inw+n-Ia InC/a lnw=(JrO[l+n-I(Jr'], (40) 
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FIG. 6. Dependence of 01°, O2°, 01', and O2' on lnw for v=O.0141. 

where the last term, n-1(J/, is a correction due to end 
effects, linear in n-1, whereas (Jro represents the limiting 
value of (Jr for large n. The explicit expressions 
for (Jro and (J/ are easily found from Eqs. (40), (26"), 
(27), and (22) : 

Thus, we have (Jro and (J/ in terms of v and Ar(W, v), 
i.e., as functions of the variables of physical interest, 
v and w. The molecular weight dependence of (J is 
represented explicitly by the factors Zr/Z in Eq. (38) 
and the factor n-l in Eq. (40), while (J/ are inde­
pendent of n. As Z3 is usually negligibly small, only 
(Joo, (JI', (J20, and (J2' will be considered. In Fig. 6 these 
functions are plotted vs Inw, with v=0.0141. It is seen 
that the contributions of (J20 and (J/ to (J counteract 
those of (JIO and (JI', respectively, (J2o tends to zero when 
(JIO tends to one, and vice versa, while (Jz' and (JI' have 
opposite signsP It should be noted also that (J2' and 
(JI' are rather large in absolute value in the transition 
region, and increase with decreasing v. 

We can now see in a more quantitative fashion at 
which value of n and v can (J20 and the end effects be 
considered negligible within a certain error. Equation 
( 38) can be rewritten as 

1 + (J2Zz/(JIZI 
(J=(JI . 

l+ZdZI 
(42) 

By using Eqs. (40), (41), (31), (26"), (22), and (28) 
and by approximating again (;1\1- A3) / (A2- A3) by 

17 In fact, it tan be shown rigorously that ~rOro= 1, and that 
Oao and Oa' are relatively negligible, thus 02°~1-/II°, /I2'~-el'. 
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bonding, 8, on lnw for v = 0.0141 and n = 26, 46, and 1500. Compar­
ison of the present theory (solid lines) with that (see footnote 4 
in text) of Zimm and Bragg (dashed lines). 

}.4A2we have 

(lzZ2 ( / ) n(AI-A2)+2A2 
-'" A2 Al n a 
01Z1 n(AI- A2)- 2Al 

(43) 

The last fraction shows a maximum near the mid­
point of the transition w"'l +v and tends to unity with 
increasing values of 17 and/or v since then n(AI-A2) 
becomes larger. The maximum value of the whole 
expression, 02Z2/(hZl, then lies quite near the point 
w"'l+v, as can be shown by making a (02Z2/0IZ1)/aW = 
O. The condition for maximum is, after minor simpli-
fications, . 

This equation cannot be solved analytically for w 
but it can be shown that the solution lies in the narrow 
range: (1-!v) <w<l+v in which the last fraction in 
Eq. (43) is very close to 2, if nv=3. Then, according to 
Eq. (35) and its discussion, 

and 

within an error of less than 1 %. 
The influence of the end effects, included in 01', 

however, is still important and vanishes only at rela­
tively large values of 17, at which 17-101':::::0. The actual 
value of n at which that happens is easily found from 
Eqs. (40), (41), and the secular equation; according 
to them, 

Obviously the maximum value of the fraction will occur 
at the transition, where Al- A2"'2v, as seen in Fig. 6. 
Then, when l/nv is negligible compared with 1, Eq. 
( 38) becomes 

if nv»1, (45) 

that is, (j reaches its limiting value. This result could be 
obtained directly from Eq. (37) if we assume that, at 
high values of n, InZ"""'n InAI. 

As a summary of the results, 0 has been plotted vs 
lnw in Fig. 7 for v=0.0141 and several values of 11 

together with the results of Zimm and Bragg,4 (for 
(T = 2 X 10-4 in their notation). Except for a shift in the 
scale of lnw, the agreement between the two theories in 
fairly good. While in our theory the transition point is 
at w= 1 +v, in the theory of Zimm and Bragg it occurs 
at w= 1. The difference can be traced to the different 
ways of assigning conditional probabilities, which has 
been discussed in the preceding section. 

The experimental data of Doty and Young,lil and 
Zimm, Doty and Iso,t9 on the optical rotation of poly-/'­
benzyl-L-glutamate were analyzed according to our 
theory, by using Eq. (33) to determine the rdation of 
lnw to T. We obtain I:.H=950 cal/mol, which is lOm­
parable to I:.H =850 cal/mol obtained by Zimm, Doty, 
and Iso. 

Average Number of Helical Sequences and 
Number-Average Length of a Sequence 

When the degree of hydrogen bonding 0 is different 
from its extreme values 0 and 1, the question arises 
how strong is the tendency of helical states to group 
into long sequences. The smaller the average number 
of sequences for a given 0, the longer is the average 
length of a sequence. Let ii.seq denote the average num­
ber of helical sequences having at least 2 helical states 
in a sequence, then the number-average length In of a 
helical sequence is given by 

In = (ii.bond+2ilseq) / (n)seq =0/1]+2, (46) 

where 1]=ii.seq /n. The term 2ii.seq represents the two 
nonbonded units in the helical state which start and 
end each sequence. 

To obtain 1] (or ii.Seq ) , we make the following observa­
tion. In the matrix W, Eq. (15), the three elements 
(31), (12), and (32), though having the same value v, 
represent three distinguishable states of nonbonded 
helical units. Let us denote them, respectively, by V31, 

and V12, and V32. Then V31 belongs to a peptide unit which 
starts a helical sequence. This is evident from the 
values of Pi-lPiPi+l for this element, namely chlz. 
Similarly V12 belongs to a peptide unit at the end of a 
helical sequence because it is determined by Pi-IPiPi+l = 
lzlzc, while V32 corresponds to Pi-lPiPi+l =chc and, there-

18 P. Doty and J. T. Yang, J. Am. Chern. Soc. 78. 498 (1956). 
19 B. H. Zimm, P. Doty, and K. Iso, Proc. Natl. Acad. Sci. 

U. S. 45, 1601 (1959). 
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fore, belongs to a lonely helical state. Since each 
helical sequence of two or more units has one beginning 
and one end, the average number of Val, denoted by 
na1, equals the average number n12 of V12 and the average 
number of sequences, nseq , 

( 47) 

To obtain these averages we distinguish between the 
three v's in the secular equation (22), and thus have 

j(A; w, V12, Val, Va2) = (}I.-w) (A2-A-Va2) -V12V31 =0. 

(48) 

Now Ar and Z are functions of the different v's and we 
have 

7] = fh2/n= n-1a InZ/a Inv12. (49) 

By following the same reasoning which led from 
Eqs. (37) to (40), we have 

(50) 

where 
(51) 

Again 7]T represents the relative number of helical 
sequences for the rth state. Explicit expressions can be 
obtained by using Egs. (51), (26"), (27), (22), and 
(41) : 

V2f.J.T 
TJTo= OTO[ (AT-W) /wJ 

Ar[v2(2Ar-1) +f.J.r2] 

'/'fr' = Or' + (Arf.J.r/ v2
) • (52) 
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FIG. 9. Dependence of the average number of helical sequences, 
n.,q, on lnw for v=0.0141 and n=26, 46, and 1500. 

We neglect 7]a since its statistical weight Za/Z is very 
small; therefore, only 7]1 and 1/2 have to be considered. 
According to Eq. (52) 1/ro is always small, because when 
Oro tends to unity, (Ar-W)/W tends to zero. Both 
1/1° and -1/2° have a shallow maximum in the transition 
region, as seen in Fig. 8. On the other hand 1/r' under­
goes very large changes. For example, 1/1' increases 
indefinitely with increasing w, because of the term 
A1f.J.1/V2, while 1/1° tends at the same time to zero. It 
appears more instructive, therefore, to consider the 
molecular weight dependence of 1/r through the product 
1/.01// which is plotted vs lnw in Fig. 8. We see that 
1/1°1// and 7]2°1/2' are approximately symmetric with 
respect to a line through the transition point. At the 
extreme helical region, when 0 tends to unity, 1/1°7]1' 
tends also to unity and 7] tends to l/n; namely, the 
molecule consists of a single helical sequence. In follow­
ing arguments similar to those used in the discussion of 
0, we find that 1/ is given to a good approximation by 7]1 
provided nv is of the order of three or larger, 

(53) 

As a summary of these results, the average number 
of helical sequences, nseq , is plotted in Fig. 9 vs lnw 
for v=0.0141 and n=26, 46, and 1500. All three curves 
tend to zero in the coil region, and to unity (single, 
unbroken helix) in the helical region, but only when 
the molecular weight is high is the average number of 
helical sequences significantly larger than one, and its 
maximum value occurs in the transition region. The 
number average length of a helical sequence [Eq. (46) ] 
increases with increasing helicity monotonously and 
smoothly irrespective of whether 1/ has a maximum 
in the transition region or not. This is seen in Fig. (10), 
where In/n is plotted vs lnw with the values of n and v 
the same as in Fig. 9. 
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Distribution of Lengths of Helical Sequence 

We now ask wha(is the average number ii", of helical 
sequences of length x (i.e., sequences of x peptide units) 
for a molecular chain of n units, and given values w 
and v. To answer this and other similar questions we 
need a more general method of averaging over mo­
lecular properties than that used in the preceding ex­
amples. We shall now derive such a method, which is a 
modification of a method used by one of us20 in cal­
culating average dimensions of polymers, and which 
takes advantages of the simplicity of the matrix 
representation of the partition function. 

It was observed before, that the three v's in the 
matrix W represent three distinguishable states of non­
bonded helical units. The same is true for each element 
of the matrix, i.e., the corresponding state is deter­
mined by the sequence Pi-lPiPi+l to which it belongs. 
For example, the element U23 [in position (23) ] starts 
a random sequence, the element U33 continues such a 
sequence while w evidently belongs to a bonded unit in 
the interior of a helical sequence. (A better distinction 
between different u's is obtained when the 4X4 matrix 
representation13 is followed.) 

We ask now, what is the probability pr.(i) that a 
particular peptide unit, the ith, will be found in one of 
the above-mentioned positions. It should be clear that 
the answer cannot be u, v, or w since these are condi­
tional probabilities determined by the unit under con­
sideration and its neighbors, while we are interested in 
the probability of finding the ith element in a given 
state (rs) irrespective of, and therefore averaged over, 
all the admissible positions of all other peptide units. 

The probability of finding the whole chain in a 
specified state, Pl'" pn, is given by the summand in 

20 S. Lifson, J. Chern. Phys. 30, 964 (1959). 

Eq. (14). To obtain Pr.(i) we fix the ith unit in the 
state (rs) and sum over all the states of the i-I units 
on the left and the n-i units on the right, which are 
consistent with the state (rs) of the ith unit. In matrix 
notation, 

Pr.(i) =eWi-l(W .. Er.)Wn-ie+/Z, (54) 

where Wrs is the element (rs) of W, and Ers is a 3X3 
matrix with the digit one in position (rs) and zero 
elsewhere. Note that Ers does not commute with W. 
The factor Wr.Ers represents our requirement that the 
ith elements be in the (rs) position, while eWi-l and 
Wn-ie+ represent the summation, or averaging, over all 
possible states of the other peptide units, consistent 
with the ith unit in (rs); 1jZ is the normalization 
factor. That these probabilities are normalized, i.e., 

L.Prs(i) =1; i=l, "', n 
r,8 

follows directly from the identity 

W = L.Wr.Ers • 
r,8 

(55) 

(56) 

Equation (54) can be transformed to enable direct 
summation over i. We first diagonalize W by Eq. (21), 
and obtain 

Now let l, and la * be a row and a column vector,. 
respectively, whose components are the diagonal ele­
ments of Aa, where a is any integer; and let Tr+ and 
T. be diagonal matrices whose diagonal elements are, 
respectively, the rth column of T-l and the sth row of 
T. Let us further denote 

a.+=TsT-le+. (58) 

Equation (56) can then be written as 

pr8(i) = Wr.arL-l*·ln-ia.+/Z, (59} 

wherel.o -1* • In-l is the diadic product of the two vectors. 
As examples of the use of the probabilities pro we shall 

first obtain the functions (j and TJ derived already 
above, Eqs. (38) and (50). Thus, the degree of hydrogen 
bonding 8 is given by 

8= nbond/n = i)n(i)/n=alLn_lal*/Zn, (60) 
i=l 

where al and al* are obtained from Eq. (58) with the 
help of Eqs. (24), (25), and (29), setting u= 1, 

(61) 

al*= al+ is the transpose of al; and Ln- l is the sym­
metric matrix 

n 

L -"1· *·1 . n-l -.l-J 1.-1 n- i, 
1.=1 

(62). 
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The equivalence of Eqs. (60) and (38) can be easily 
shown, and will not be given here. 

Similarly 1/ can be obtained by 

1/ =ii12/n = tP12( i) /n = a 1Ln- l a2+ /nZ, (63) 
i=l 

where a2+ is obtained like al+ above, and is given by 

(64) 

and again Eqs. (63) and (50) can be shown to be 
equivalent. 

This formulation of probabilities can be applied to 
states involving more than one peptide unit. For ex­
ample, we may ask what is, in terms of the matrices W 
and Ers, the probability p(x, i) that a helical sequence 
of length x (i.e., having x peptide units) starts at the 
unit i-x+1 and ends at i, (x~i). The above con­
siderations lead directly to the answer 

P(x, i) =eWi-x(vEa1 ) (wEll )x-2(vEI2 )Wn-ie+/Z, 

2~x~i, (65) 

which is reduced to 

p(x, i) = (v2wx-2)eWi-xE32Wn-ie+/Z, 

by using the identities 

Ert E18 = Ers • 

2~x~i (66) 

(67) 

We are now in a position to answer the question 
stated at the beginning of this section: The average 
number iilt of helices of length x is given by 

rlx='tp(x,i)=(v2wX-2)aaLn_Ita2+/z 2~x~n, (68) 
i=x 

where Ln_ x is obtained from Eg. (62) by replacing 
n by n-x+1; as is obtained from Eq. (58) with the 
help of Eqs. (25) and (29), and the result is the same 
as Eq. (64), i.e., a3=(a2+)*. Thus, 

(69) 

For the special case x= 1, when iiI is the average 
number of lonely helical states, Eq. (66) has to be 
slightly modified: The factor v replaces (v2.zeJz--2) , so that 

(70) 

It is seen that iix of a chain of n units is related to iiI 
of a chain of n-x+1 units by 

(71) 

where superscripts such as (n) and (n-x+1) will 
denote henceforth, when necessary, the respective 
numbers of peptide units in the whole chain. An ex­
pression for iiI may be obtained also by using the 
common method of calculating molecular averages 

(72) 

where Z is a function of V32 through the eigenvalues of 
the secular equation given in Eq. (48). By following 
again the same path which led to Eq. (38) for 0, we 
obtain for any x 

3 

iil(x)/x= L:~rZ/x)/Z(X), (73) 
>=1 

where 
~r=~r°(1+X-I~r'), (74) 

~ro=a lnAr/a lnv32, (75) 

~r' = (a lnCr/O Inv32) / (a InAr/a Inv32)' (76) 

By introducing Eq. (73) into Eq. (71) we have 
after replacing x by n- x+ 1 in Eq. (71), 

3 

iin_x+l(n) = (vwn-1/Z(n» LCr~rO(x+~r') (Ar/w)x. (77) 
7"='1 

If nv23 we may write, according to Eq. (36), Z(n) = 
Zl(n), and 

3 

iin_x+l(n) = (V/Al) (W/Al)n-l L (Cr/ C1) ~rO(X+V) (Ar/W) x. 
r=l 

(78) 

For a large part of the range of variation of x we may 
also reduce the sum in Eq. (78) to only its first term, 
and we obtain then for most of the distribution 

iix(n) = (V/Al)~lO(n+1-x+~l/) (W/Al)J;-2. (79) 

Equations (77)-(79) indicate that the distribution of 
lengths of helical sequences is rather broad on both 
sides of the transition region, although the actual value 
of all iix increases steeply with the transition from the 
coil to the helix region. 

After having derived iix we obtain directly the dis­
tribution of peptide units among the various helical 
sequences 

(80) 

and the "weight-average" length lA of a helical seg­
ment, where the statistical weight of each sequence is 
proportional to the number of peptide units com­
prising the sequence. Since the distribution iix is rather 
broad, lA is, in general, much larger than in. It is given by 

n n n n 

lw= Lxm"/Lm,,= Lx2iix/LXii" 
:>:=2 x=2 0:=2 :<=2 

n 

= Lx2iix/n(O+21/)' (81) 
:<=2 

The distribution of helical sequences or the weight­
average length of such sequences may be helpful in the 
study of the hydrodynamic behavior of polypeptides at 
and above the transition region. According to Eq. (79) 
iix tends to zero when x is large enough for any fixed 
value W/Al < 1. Therefore, when n is large enough the 
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polypeptide molecule must exhibit a hydrodynamic 
behavior of a kinked chain of rigid rods, whereas a 
short or medium length molecule might behave as a 
rigid helix under the same conditions of temperature 
and solvent. It is appropriate to note in this connection 
that Nagai,8 has discussed the hydrodynamic behavior 
of polypeptide chains in the transition region by 
calculating the mean-square end-to-end distance of a 
partially helical chain. His results may be simplified 
considerably by replacing his 7X7 matrices by our 
3X3 ones. 
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Polymeric and colloidal systems are usually polydisperse, containing possibly hundreds or thousands or 
more, of subspecies differing only in degree of polymerization n. The required thermodynamic approach is 
that appropriate to it highly multicomponent system. Let pen) be the fraction of polymer molecules of size 
n. The distribution function P(n) will depend on one or more parameters, for example, the mean ii and 
standard deviation tT in the case of a Gaussian distribution. The thermodynamic problem becomes tractable 
if we replace, as composition variables, the numbers of molecules of all the polymer subspecies by the total 
number of polymer molecules N and the parameters of P (n). The new set of variables may be only two, three, 
etc., in number. Our main interest in this paper is to investigate how the thermodynamic functions of the 
system change when the distribution function P(n) changes, as, for example, in a kinetic study in which 
P(n) evolves sufficiently slowly with time or in thermodynamic studies on different samples of the same 
polymer. 

I. INTRODUCTION 

I N systems such as a solution of a natural or synthetic 
polymer, a gas of liquid droplets or nuclei, inor­

ganic colloidal particles or nuclei suspended in a liquid, 
etc., the "polymer," which is the general term we shall 
use for brevity in all these cases, does not exist, in 
general, as a single component but rather as a whole 
series of components differing in the degree of poly­
merization or aggregation, i.e., in molecular weight. In 
other words, the polymer is usually polydisperse 
(heterogeneous). The required thermodynamic ap­
proach here is that appropriate to a highly multi­
component system: the number of polymer subspecies 
may range, say, from ten to thousands or more. 

Let n be the number of monomers (repeat units) or 
molecular units (e.g., water molecules in a water 
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droplet) in a given polymer subspecies, and let P (n) 
be the fraction of all polymer molecules containing n 
monomers. In this paper we shall be concerned pri­
marily with the question of how the thermodynamic 
functions of the system change when the distribution 
function Pen) changes. Such a discussion should be of 
use in equilibrium studies comparing different samples 
[with differing distributions Pen)] of the same poly­
mer or in kinetic studies on a polymeric system in which 
the distribution evolves with time (e.g., polymerization 
of a polymer, aggregation of a colloidal suspension, or 
formation of condensation nuclei in a gas). In the 
kinetic case the rate must be sufficiently slow so that 
quasi-equilibrium is attained at each stage of evolution. 

In any given application the mathematical form of 
Pen) must be sufficiently general to encompass the 
complete range of alterations in P (n) to be encountered. 
Thus P will be a function not only of n but also of a 
sufficient number of parameters ai, a2, •• '. The number 
of parameters in practical cases would usually be in 
the range one to four. Ordinarily the degree of poly­
merization will be sufficiently large so that a continuous 
distribution P(n)[normalized by fP(n)dn=l] can 


