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ABSTRACT: The protein folding (Levinthal’s) paradox states
that it would not be possible in a physically meaningful time to
a protein to reach the native (functional) conformation by a
random search of the enormously large number of possible
structures. This paradox has been solved: it was shown that
small biases toward the native conformation result in realistic
folding times of realistic-length sequences. This solution of the
paradox is, however, not amenable to most chemistry or
biology students due to the demanding mathematics. Here, a
simplification of the study of the paradox and its solution is
provided so that it is accessible to chemists and biologists at an undergraduate or graduate level. Despite its simplicity, the model
captures some fundamental aspects of the protein folding mechanism and allows students to grasp the actual significance of the
popular folding funnel representation of the protein energy landscape. The analysis of the folding model provides a rich basis for
a discussion of the relationships between kinetics and thermodynamics on a fundamental level and on student perception of the
time-scales of molecular phenomena.

KEYWORDS: Upper-Division Undergraduate, Graduate Education, Biochemistry, Biophysical Chemistry, Molecular Biology,
Proteins/Peptides, Theoretical Chemistry

Understanding and controlling protein folding is arguably
the most important challenge in structural biology. The

ability to predict, and thus model, protein structure and
function from sequence may, in the future, transform
completely the molecular biology, synthetic chemistry, and
medicinal chemistry fields. Achieving this goal requires both the
comprehension of the general physicochemical aspects of
folding and of the specificities leading each protein, with its
particular sequence, to adopt a specific functional structure.
Presently, there have been great advances on the comprehen-
sion of the physics of folding mechanisms in general, although
the actual predictive ability of current models for particular
proteins is small. Thus, the protein folding problem can be
regarded at the same time solved as its physics is understood by
simple models, or completely open, as methods for prediction
of structure from sequence are still very limited.1

Protein structures are complex enough to stimulate educa-
tional efforts in many areas. For example, a continuous area of
educational research is the proposition of mechanical models of
representation of protein structures2,3 and the classification of
folds in periodic-table-like charts.4 Experiments and macro-
scopic models for specific unfolding events have been proposed
for undergraduate students.5,6 Another amazing tool with both
educational and scientific relevance is FoldIt,7 which provides
an interactive game for people with no particular scientific
background to play with protein folding by manipulating
structures, with remarkable achievements in solving and
designing protein folds.7,8 Nevertheless, the general theory of
protein folding has not been published in simplified forms
accessible for a more general audience.

From a general physicochemical point of view, the protein
folding problem is stated in Levinthal’s paradox:9 How can
proteins assume their functional structures given the enormous
amount of unfolded structures possible? Levinthal’s paradox
was introduced from the supposition that the folding
mechanisms of proteins occur by random search. Proteins, as
linear chains of amino acids, should randomly search
configurations until the native, functional arrangement is
reached. Such a search can be shown9,10 to be inconsistent
with experimental folding rates in such a way that proteins with
a few hundred residues would require astronomical scales of
time to reach, in average, the folded state.
Of course, real proteins fold in time-scales ranging from

microseconds to minutes,11 and therefore, only a minimal
fraction of the configurational space is sampled. The general
requirements for folding mechanisms that solve this problem
have been proposed; Bagchi and co-workers12,13 have shown
that small energetic biases toward the native state reduce the
conformational search to the point that realistic folding times
can be obtained. The analysis presented here is based on this
simple argument but avoids the use of mathematical concepts
not familiar to most chemistry or biology students. This
analysis naturally leads to the “folding funnel” picture, which is
widespread in both scientific and didactic books, many times
with incomplete explanations or misinterpreted implications.10

Published: August 4, 2014

Article

pubs.acs.org/jchemeduc

© 2014 American Chemical Society and
Division of Chemical Education, Inc. 1918 dx.doi.org/10.1021/ed300302h | J. Chem. Educ. 2014, 91, 1918−1923

D
ow

nl
oa

de
d 

vi
a 

L
A

W
R

E
N

C
E

 L
IV

E
R

M
O

R
E

 N
A

T
L

 L
A

B
 o

n 
Fe

br
ua

ry
 1

5,
 2

01
9 

at
 1

6:
07

:3
3 

(U
T

C
).

 
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

 

pubs.acs.org/jchemeduc


■ AUDIENCE
This analysis was presented during a graduate course on
“Thermodynamics of Biological Systems”. Most of the students
who were exposed to the present arguments, particularly
experimental molecular biology students, did not have strong
mathematical backgrounds, a reason why the present derivation
is intended to be very simple. At the same time, this analysis
addresses some fundamental concepts behind the proposal of a
physical theory of chemical reactions that graduates in physics
also appreciate. In particular, it stimulates discussions about (1)
the differences between thermodynamically and kinetically
controlled reactions and their intricate correlation in the
protein folding mechanism, (2) the validation of the simple
models by intuitive guesses on the nature of molecular
movements and energetics, and (3) validation or refusal of a
theoretical model using experimental data.
Therefore, the theory presented here can be included in

different undergraduate or graduate courses, for example, (1) as
a illustrative example of chemical kinetics in a physical
chemistry undergraduate course, (2) as an additional topic in
any molecular biology, structural biology or biophysical course
dealing with protein folding or protein structures, and (3) an
extra topic in a general chemistry course that focuses on
biochemistry or biophysics, after the introduction of basic
chemical kinetics and thermodynamics.
Some suggested questions are available as Supporting

Information as a follow-up assignment, an assessment for
learning or to stimulate classroom discussions.

■ KINETIC DEFINITION OF THE PARADOX
The analysis of the protein folding problem is simplified by
representing the sequence of a protein in a unidimensional way.
The “protein” is defined by a sequence of letters

cicicciciciccicic...

where c corresponds to a letter that corresponds to an “amino
acid residue in the correct conformation”, that is, in the
conformation in which it should be in the native fold, and i is an
“amino acid residue in the incorrect conformation”, that is, one
different from that of the native fold.
The first argument toward the comprehension of the

Levinthal paradox is that the “correct fold” is characterized by
a unique conformation, in this case the sequence

ccccccccccccccc....

If the two states c and i are equally probable, the probability is
0.5N of such conformation in an evenly distributed set of
sequences of N elements. If N = 100, this is 0.5100 ≈ 10−30,
which is a very small number. In one mole of protein, not a
single folded structure would be generally observed if the
folding occurred by chance. Thus, even for a small protein of
100 residues, a homogeneous population cannot explain
function.
Therefore, there must be a bias toward the native fold so that

the population of the native fold can increase and justify the
activity of the protein solution.

■ ASSUMING THE STABILITY OF THE FOLDED
STATE

This brief analysis is to introduce the first assumption: from
experience, it is known that the population of proteins
assuming the native fold relative to unfolded protein in
functional conditions is very large (close to unity). In

accordance with this experimental observation, the first
assumption is

Once a structure reaches the folded state, it remains folded.
Therefore, regardless of the protein folding path, reaching the
folded state would give rise to an increase of the folded
population, thus explaining function.
At this point, the relationships between kinetics and

thermodynamics are discussed; the assumption above implies,
thermodynamically, that the equilibrium population of the
folded state is unitary. Therefore, the equilibrium population
cannot provide information on the folding mechanism and the
folding kinetics must be studied. As with the determination of
mechanisms in physical chemistry, one may guess a particular
mechanism and deduce its kinetics, to be validated by
comparison with experimental data.
Similar to using this assumption is the calculation of the first

passage time of the structure through the folded state. Here,
however, the stability assumption is used because it clearly
identifies the folding paradox as a kinetic rather than
thermodynamic problem, thus implying that the discussion
leading to its solution will be based on an assumption of its
mechanism. A fruitful discussion on the nature of protein native
structure stability is introduced by this assumption: most
students with an experimental background know, from
experience, that the activities of their purified proteins are
rarely preserved for more than a few days. Thus, one may argue
that many proteins may be kineticallybut not actually
thermodynamicallystable, thus justifying either the use of
the first passage time or the assumption above to analyze
folding rates without additional complications related to
unfolding reactions.

■ ELAPSED TIME TO THE FOLDED STATE
At this point, the correct question is posed: given the first
assumption on the stability of the folded state, how much time
is needed for a protein to fold? The following model for the
protein fold mechanism is proposed:

(1) A protein starts with any unfolded structure. An unfolded
structure, in the representation used here, is any structure
for which at least one residue is in the incorrect, i,
conformation.

(2) At every time, τ, each residue (each letter) suffers a
perturbation.

(3) The perturbation leads each residue to c or i with equal
probabilities, independently of the previous state.

Within this simple kinetic model, at every τ, each residue is
perturbed, so that for a sequence of N residues, the probability
of obtaining the correct fold is 0.5N. Thus, the probability for
the sequence to remain unfolded at every τ is 1−0.5N, such that
after t/τ units of time the probability of remaining unfolded is
(eq 1)

= − τP t( ) (1 0.5 )N t
remain unfolded

/
(1)

Folding times clearly increase as a function of increasing
sequence. (Students may benefit from explaining this last
formula using the simple example where N = 1 and the analogy
with the probability of throwing a coin at every τ seconds and
systematically not obtaining heads−heads being the folded
state.)
From eq 1, the probability for a particular sequence to be

folded at time t is (eq 2)

Journal of Chemical Education Article

dx.doi.org/10.1021/ed300302h | J. Chem. Educ. 2014, 91, 1918−19231919



= − − τP t( ) 1 (1 0.5 )N t
fold

/
(2)

thus, the half-time, t1/2, to sequence folding (the time necessary
for 50% of the sequences to fold) is given by (eq 3)

− − =τ1 (1 0.5 ) 0.5N t/
(3)

or (eq 4)

τ=
−

t
ln 0.5

ln(1 0.5 )N1/2
(4)

Do these time-scales make sense? This depends on the
relationship between the folding time, t1/2, and the character-
istic time of the perturbations τ, which must be deduced, or
supported, by real data.
By direct computation, for a sequence of 50 residues, t1/2 ≈

1016τ. Thus, for a typical protein folding time of one second,
conformational changes in residues would need to be sampled
at rates on the order of 10−16 s−1 = 0.1 fs. This does not make
sense, as 0.1 fs is a time-scale faster than even the vibration of
covalent bonds. No significant structural perturbation could
occur that fast so that the peptide would fold in one second.
At the same time, for a sequence of 30 residues (N = 30), τ =

1 ns. Protein conformational changes can occur at the
nanosecond time-scale, and therefore, a peptide of such size
could fold by a random search with equal probabilities in a
second. However, it is clear that for natural size proteins (i.e.,
100 to 500 residues), this mechanism of a random search with
equal probabilities cannot account for protein folding rates.
This is the actual nature of “Levinthal’s paradox”: How can a

protein reach its folded state while avoiding a random search
through all possible conformations in realistic time?

■ SOLUTION TO THE LEVINTHAL’S PARADOX
Bagchi and co-workers12 have shown that under a similar
scheme as the one described above, the introduction of a small
energetic bias toward the native state leads to decreases in
folding rates such that they can be compared with experiment.
Their analysis involved the use of advanced calculus and
thermodynamics, such that it is not amenable to most
chemistry or biology students. Here, a simplified use of their
arguments within the model above leads to the same
semiquantitative analysis. A simple thermodynamic interpreta-
tion of the result confirms that it is a realistic explanation for
the observed folding rates.
Kinetics of Protein Folding with Unequal Probabilities

Following the guidelines of Bagchi and co-workers,12 a bias is
introduced toward the native state. The simple way to do so in
the context of the protein model of the previous section is to
attribute unequal probabilities for a correct, c, or incorrect, i,
fold for each residue at each perturbation time τ.
Thus, if α is the probability of the residue to turn into c at a

given time, 1 − α is the probability of i. Only cases where α >
0.5 are of concern, introducing a bias toward correctly folded
residues.
Following the same arguments above, but generalizing the

probability of the folded residue at instant t, the probability for
a sequence of N residues to remain unfolded is (eq 5)

α= − τP t( ) (1 )N t
remain unfolded

/
(5)

and the probability of the sequence to fold is (eq 6)

α= − − τP t( ) 1 (1 )N t
fold

/
(6)

The mean time to protein folding, t1/2, becomes (eq 7)

τ
α

=
−

t
ln 0.5

ln(1 )N1/2
(7)

Equation 7 shows that t1/2 has a dramatic dependence on α,
which is illustrated in Figure 1. Increasing α, that is, favoring at

each element of the sequence the folded conformation,
increases significantly the minimum size of the structure for
which the folding rate becomes prohibitive. For α = 0.95, for
instance, every sequence of less than 500 residues folds within
t1/2 = 60 s for a perturbation rate of 1 ns (used to build the
figure). Thus, by favoring in the random search the folded
conformation of each residue, the folding times can be driven
to realistic times.
Thermodynamic Interpretation and Validation

The above interpretation is reasonable whenever the favored
transition toward the folded state of each residue can be
physically explained. The energetic requirement for the
differential probabilities is considered now. This connects the
above solution of the paradox to the thermodynamics of
protein folding.
In the model here, the relative probability of observing

configurations c or i for a given residue at any time is (eq 8)
α

α−1 (8)

This probability must be connected with the relative energies
of states c and i. According to the Boltzmann distribution, the
probability of finding configurations of energy E in a system is
(eq 9)

=
−

P E
g

Z
( )

e E RT/( )

(9)

Figure 1. Dependence of t1/2 on the sequence length, N, and on the
probability α: (A) linear-scale plot and (B) logarithmic sale plot. For
the preparation of this figure, τ = 1 ns.
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where g is the degeneracy (the number of configurations with
energy E) and Z is the partition function.
Therefore, the relative probability of two configurations of

energies Ec and Ei, which are associated with states c and i,
respectively, is (eq 10)

=
−

−
P
P

g e

g e
(c)
(i)

E RT

E RT
c

/( )

i
/( )

c

i
(10)

Using γ = gi/gc as the relative degeneracies of incorrect and
correct configurations (it is expected that γ > 1, as it is
reasonable to suppose that the number of incorrect
configurations is greater), the relative probabilities of
configurations c and i are (eq 11)

γ
α

α
= =

−

−

−
P
P

e
e

(c)
(i) 1

E RT

E RT

/( )

/( )

c

i (11)

or (eq 12)

γ α
α

− = −
−

⎜ ⎟
⎛
⎝

⎞
⎠E E RT ln

1c i (12)

Thus, this equation connects the relative probability of
observing the correct configuration for a particular residue with
the energy difference between the correct and incorrect states.
It must be determined if realistic energy differences can explain
statistical biases toward the correct configuration for each
residue greater than 0.90, which could explain the folding of
proteins larger than 250 residues (Figure 1).
Before actually computing the values, a crude approximation

is needed of what one may consider “reasonable” from the
point of view of an energetic bias toward the correct state for
each residue. One can arrive at a reasonable estimate of a few
kcal mol−1 as an acceptable energy bias toward the correct
conformation of each residue. This is because the energy scales
of intermolecular interactions are within 1 kcal mol−1 for van
der Waals or weak dipolar interactions and about 10 kcal mol−1

for the formation of one hydrogen bond. Thus, if the energy
bias required for a statistical drive toward the correct states is
less than 10 kcal mol−1, the current kinetic model is physically
acceptable.
Table 1 displays the Ec − Ei values, computed from eq 12 for

various values of α and γ, for a system at T = 309 K (36 °C,
body temperature). The energy differences of correct and
incorrect configurations is obviously zero for zero degeneracy

(γ = 1) and equal probabilities (α = 0.5) at any temperature.
For configurations with zero degeneracy, the energy bias
toward the correct configuration rises from −1.3 kcal mol−1 for
α = 0.9 to −2.8 kcal mol−1 for α = 0.99. Even if the degeneracy
of the incorrect state is much larger than that of the correct
state, the energy bias toward the correct state does not exceed
10 kcal mol−1. As an illustration of reasonable degeneracies, the
number of residue conformers in databases extracted from
protein structures is of the order of 10, with one of them
generally being correct for each residue in each protein. This
provides an estimate of the degeneracy of correct versus
incorrect residue conformations, not implying a major
limitation for the current model of protein folding.
The present model is able to explain the folding kinetics in

the order of seconds to minutes of large proteins. The only
requirement is that the search of the correct conformations for
each residue involves an energy gain of a few kilocalories per
mole. Notably, the size of single-domain proteins in whole
genomes does not exceed 500 residues;1 thus, the present
model is able to explain the size limits of real-life proteins from
the possibility of folding though a locally biased search.
The limitations of this model11 are put in evidence by the

quantitative comparison of the required bias with the actual
enthalpy of folding of some proteins. For example, the enthalpy
of folding of barnase (N = 110 residues) is −12 kcal mol−1,
implying an energy gain per residue of roughly −0.1 kcal mol−1
per residue.11 This is less than the most optimistic estimates
obtained in the previous analysis. Similar conclusions can be
obtained for other proteins, such as ribonuclease (N = 124, ΔH
= −60.3 kcal mol−1 at 25 °C or −0.48 kcal mol−1 per residue)
and myoglobin (N = 153, ΔH = −42 kcal mol−1 at 25 °C or
−0.27 kcal mol−1 per residue).14 Additional suppositions on
protein folding mechanisms are, therefore, required for a
quantitative comparison with experiment, most notably all
kinds of cooperative mechanisms, and the entropic contribution
of the hydrophobic collapse, which reduces the conformational
space for folding by increasing the entropy of the water while
burying the side chains of hydrophobic residues.14

Number of Conformations and the Protein Folding Funnel

Admitting that a major contribution for the folding mechanisms
results from the incremental energy decrease as predicted by
the present model, one can deduce the implied energy
landscape profile.
The total energy of a protein of N residues and Nc residues in

the correct configuration is (eq 13)

= + −E N E N N E( )T c c c i (13)

Using the sensible hypothesis that Ec < Ei, there exists only
one configuration of minimal energy Emin = NEc. Furthermore,
the number of configurations with energy ET, n(ET), depends
on Nc according to the number of combinations of Nc elements
in N positions, that is (eq 14)

= !
! − !

n E
N

N N N
( )

( )T
c c (14)

This is a binomial distribution, which peaks at Nc = N/2
(Figure 2A).
This distribution of number of states and energies can be

represented qualitatively as an energy landscape. The landscape
is represented by an energy ordinate and funnel-like curve
whose width roughly represents the number of configurations

Table 1. Energy Differencesa Favoring the Correct
Configuration per Residue for Different Statistical Bias, α,
and Degeneracies, γ

α γ Ec − Ei, (kcal mol−1)

0.5 1 0
0.9 1 −1.3
0.95 1 −1.7
0.99 1 −2.8
0.95 2 −2.4
0.95 10 −3.2
0.95 100 −4.6
0.95 1000 −6.1
0.95 100 000 −8.9

aHere, T = 309 K. For a characteristic configuration transition time of
1 ns, an α = 0.95 folds a protein of 500 residues in nearly 1 min.
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for each energy. Within the present model, this figure resembles
an inverted binomial distribution (Figure 2B).
This funnel-like figure is the typical representation of the

protein folding energy funnel. Without the simplifications
introduced in the present two-state model (for which, for
instance, every correct residue configuration has the same
energy and every incorrect residue configuration has the same
energy), the funnel would look like a roughed landscape with
an average bias toward the minimum energy (Figure 2C). This
figure, thus, means that the protein folding energy landscape,
from which realistic folding times can be expected, is that for
which small perturbations in the structure favor the native state
by providing small but steady gains in energy every time a
correct contact is formed. At the same time, the narrowing of
the funnel upon folding represents an entropic penalty resulting
from the small number of configurations that represent the
functional form of the protein. For real proteins, for which the
landscape is rugged (Figure 2C), there may be significant
entropic barriers that might slow down the folding, as the
protein might be trapped in local minima. Physically, these
minima result from the formation of enthalpically favorable
non-native (“wrong”) contacts, such as non-native hydrophobic
contacts or hydrogen bonds. Examples of such barriers to
downhill folding exist even for small proteins.15

The entropy of the unfolded states can be quantified in this
model. The calculation involves the statistical thermodynamic
definition of entropy and might be introduced to advanced
undergraduate or graduate students in chemistry. The number
of conformations, for each total energy ET, was already given by
eq 14. The entropy of the folded state is, in this model, zero
because it is represented by only one configuration. Therefore,
the entropy of an unfolded state of Nc correct residues in a
sequence of N residues, relative to the native state, is (eq 15)

= !
! − !

S R
N

N N N
ln

( )c c (15)

Of course the entropy increases with the increasing number
of incorrect configurations, to a maximum at N/2. This
maximum entropy loss is computed from eq 15 to be of the
order of 0.15 kcal mol−1 K−1 for a 100-residue sequence, which
is of the order of, for example, the ribonuclease (124 residues)
folding entropy loss of 0.20 kcal mol−1 K−1.14 Other proteins,
such as myoglobin (154 residues) display much lower entropic
penalties on folding (−0.095 kcal mol−1 K−1),14 such that the
estimates from the model agree only very qualitatively with
experimental data. The solvent entropy is certainly one of the

important factors that should be included to reduce this
discrepancy.

Additional Discussion

Part of the limitations of the model presented here results from
the fact that there is no correlation between the current
conformation of the protein (that is, the current sequence of
correct and incorrect conformations) and the conformation in
the proceeding step. Physically, this would mean that the
structure jumps from one conformation to another in the
energy landscape, only with greater probability for config-
urations with a greater number of residues in correct
configurations. Of course, this is not very physically sensible,
and it would be expected, in reality, that the conformation of a
protein in a given time is correlated to the conformations
assumed previously. Therefore, instead of jumping within
uncorrelated conformations, the trajectory of configurations is
continuous and can be imagined to be a path in the energy
landscape. The process of folding, then, can be viewed as the
diffusion of a particle in the energy landscape, following a
trajectory that is biased toward the minimum energy.16,17 To
understand the kinetics of folding of a real protein completely,
one must know the ensemble of trajectories that lead from
denatured states to the folded state. This picture is different
from what is usually imagined for simple chemical reactions, for
which only a few possible reaction coordinates are relevant.
Following each of these trajectories to obtain the actual

folding paths for any single protein is a major challenge, which
has recently started to be accessed by computational
techniques, such as molecular dynamics (MD) simulations.
Some of the most promising simulations use massively parallel
distributed computing, meaning that people around the world
can contribute and interact with state-of-the art research in this
area by running the simulations on personal computers (The
Folding@Home project).18 This strategy is particularly suited
for the study of multiple folding paths, as discussed above. At
the same time, the project provides an interesting platform for
science education and dissemination. The results of these
efforts support the energy landscape picture in the sense that
even for small proteins with fast folding rates, the mechanisms
of folding appear to be heterogeneous.18,19

■ CONCLUSIONS

Here, a simplified derivation of the solution of the paradox of
protein folding was discussed in a form that can be easily
introduced to chemistry and biology students with some
background in thermodynamics. The derivation was based on
simple, but sensible, assumptions on the stability of the

Figure 2. Visualizing the protein folding energy landscape. (A) The binomial model has a single configuration with minimum energy and peaks at N/
2. (B) Schematic representation of the energy landscape, displaying an increased number of configurations with increasing energy. (C) General
schematic representation of the protein folding energy landscape, or protein folding funnel, which is deduced from the present analysis and implies
realistic protein folding kinetics (adapted from ref 15).
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functional structure and allowed for a comprehensive
discussion of the nature of the movements and interaction
energies at a molecular level. This proved to be a fruitful
introduction on the construction of a physical model of a
biochemical phenomenon, particularly for undergraduate and
graduate students in molecular biology. The validity of the
model can be addressed by comparison with experimental
thermodynamic data on protein folding, and the incomplete-
ness of the model can also be discussed for the introduction of
more sophisticated theories. Variations of the present model
were provided by other authors in the scientific literature for
the introduction of more advanced topics,11 and these can
follow the present discussion in advanced graduate courses,
particularly for chemists and physicists.

■ ASSOCIATED CONTENT
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Questions that can be used for student assessment or to
stimulate discussions in classroom. This material is available via
the Internet at http://pubs.acs.org.
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