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Energy function

• A potential energy function U(x) specifies the 
total potential energy of a system of atoms as a 
function of all their positions (x)  
– For a system with n atoms, x is a vector of length 3n 

(x, y, and z coordinates for every atom) 
– In the general case, include not only atoms in the 

protein but also surrounding atoms (e.g., water)
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Relationship between energy and force

• Force on atom i is given by derivatives of U with 
respect to the atom’s coordinates xi, yi, and zi 

• At local minima of the energy U, all forces are zero 
• The potential energy function U is also called a 

force field

F(x) = −∇U(x)
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Types of force fields (energy functions)

• A wide variety of force fields are used in atomic-
level modeling of macromolecules 

• Physics-based vs. knowledge-based 
– Physics-based force fields attempt to model actual 

physical forces 
– Knowledge-based force fields are based on statistics 

about, for example, known protein structures 
– Most real force fields are somewhere in between 

• Atoms represented 
– Most realistic choice is to model all atoms 
– Some force fields omit waters and other surrounding 

molecules.  Some omit certain atoms within the protein.
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Molecular mechanics force fields

• Today, we’ll focus on molecular mechanics force 
fields, which are often used for molecular 
simulations  

• These are more toward the physics-based, all-
atom end (i.e., the more “realistic” force fields) 
– Represent physical forces explicitly 
– Typically represent solvent molecules (e.g., water) 

explicitly 
• We’ll revisit the forces acting between atoms and 

write down the functional forms typically used to 
approximate them



Bond	length	stretching
• A	bonded	pair	of	atoms	is	effectively	connected	
by	a	spring	with	some	preferred	(natural)	length.		
Stretching	or	compressing	it	requires	energy.
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Bond length (b)

Natural bond  
length (b0)

U (b) = kb b− b0( )2
Note:	A	factor	of	1/2	is	sometimes	included	in	
this	equation.		I’m	ignoring	such	constant	
factors	(they	can	be	folded	into	kb	or	the	units).



Bond	angle	bending

• Likewise,	each	bond	angle	has	some	natural	value.		
Increasing	or	decreasing	it	requires	energy.
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Natural bond  
angle (θ0)

U (θ ) = kθ θ −θ0( )2



Torsional	angle	twisting
• Certain	values	of	each	torsional	angle	are	
preferred	over	others.
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U (φ) = kφ ,n 1+ cos nφ −φn( )⎡⎣ ⎤⎦
n
∑

Typically	n	takes	on	one	or	a	few	values	between	1	and	6	(particularly	1,	2,	3,	6)



Torsional	angle	twisting
• Certain	values	of	each	torsional	angle	are	
preferred	over	others.
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Torsional angle (Φ)U (φ) = kφ ,n 1+ cos nφ −φn( )⎡⎣ ⎤⎦
n
∑

Typically	n	takes	on	one	or	a	few	values	between	1	and	6	(particularly	1,	2,	3,	6)
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Electrostatics	interaction
• Like	charges	repel.		
Opposite	charges	attract.	

• Acts	between	all	pairs	of	
atoms,	including	those	in	
different	molecules.	

• Each	atom	carries	some	
“partial	charge”	(may	be	
a	fraction	of	an	
elementary	charge),	
which	depends	on	which	
atoms	it’s	connected	to
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where	qi	and	qj	are	partial	
charges	on	atoms	i	and	j	



van	der	Waals	interaction
• van	der	Waals	forces	act	
between	all	pairs	of	atoms	
and	do	not	depend	on	
charge.	

• When	two	atoms	are	too	
close	together,	they	repel	
strongly.	

• When	two	atoms	are	a	bit	
further	apart,	they	attract	
one	another	weakly.
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	“just	touching”	one	another



van	der	Waals	interaction
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U r( ) = Aij
r12

−
Bij
r6

We	can	also	write	this	as:

U r( ) = ε r0
r
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Note:	Historically,	r12	term	was	chosen		
for	computational	convenience;		
other	forms	are	sometimes	used



Bonded 
terms

Non-
bonded 
terms

A	typical	molecular	mechanics	force	field	
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How are the parameters fit?

• Combination of: 
– Quantum mechanical calculations 
– Experimental data 

• For example: b0 can be estimated from x-ray crystallography, 
and Kb from spectroscopy (infrared absorption)   

• The torsional parameters are usually fit last.  They 
absorb the “slop.”  Fidelity to physics is debatable. 

• These force fields are approximations!

U (b) = Kb b− b0( )2
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Relating energy to probability

• Given the potential energy associated with a 
particular arrangement of atoms (set of atom 
positions), what is the probability that we’ll see 
that arrangement of atoms? 

• Assumptions: 
– System is at constant temperature.  Atoms are 

constantly jiggling around. 
– We watch the system for a really long time (allowing it 

to fully equilibrate).



The Boltzmann Distribution

• The Boltzmann distribution relates potential energy to 
probability 
 
 
 
 
where T is temperature and kB is the Boltzmann constant

p(x)∝ exp −U x( )
kBT

⎛
⎝⎜

⎞
⎠⎟

E
ne

rg
y,

 U
(x

)

Position (x)

P
ro

ba
bi

lit
y,

 p
(x

)

Position (x)



The Boltzmann Distribution
• Key properties: 

– Higher energy gives lower probability 
– Exponential relationship: each time probability halves, energy 

increases by a constant 
– Temperature dependence: at higher temperature, need to 

increase energy more for same probability reduction 
 
 
  p(x)∝ exp −U x( )

kBT
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What does the energy function tell us 
about protein conformation?

Microstates and macrostates



Protein structure: what we care about
• We don’t really care about the probability that all 

the atoms of the protein and all the surrounding 
water atoms will be in one precise configuration 

• Instead, we care about the probability that protein 
atoms will be in some approximate arrangement, 
with any arrangement of surrounding water



Protein structure: what we care about
• In other words, we wish to compare different sets 

(neighborhoods) of atomic arrangements 
• We define each of these sets as a macrostate  

(A, C).  Each macrostate includes many 
microstates, or specific atom arrangements x. 
– Macrostates—also called conformational states—

correspond to wells in the energy landscape
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Probabilities of macro states

• Which has greater probability, A or C? 
– C is a deeper well, so the individual atomic 

arrangements within it are more likely 
– A is a broader well, so it includes more distinct 

individual arrangements
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Probabilities of macro states
• Which has greater probability, A or C? 
• To get probability of macrostate, sum/integrate over all 

microstates within it 

• At low temperature, P(C) > P(A) 
• At high temperature, P(A) > P(C)

P A( ) = P(x)
x∈A
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What does the energy function tell us 
about protein conformation?

Free energy



Free energy of a macrostate

• So far we have assigned energies only to 
microstates, but it’s useful to assign them to 
macrostates as well. 

• Define the free energy GA of a macrostate A such 
that: 

• This is analogous to Boltzmann distribution formula:

p(x)∝ exp −U x( )
kBT
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Free energy of a macro state
• Define the free energy GA of a macrostate A such 

that: 

• Solving for GA gives: 

• One can also express free energy in terms of 
enthalpy (mean potential energy, H) and entropy 
(“disorder”, S):

P(A) = exp −GA
kBT( )

GA = −kBT loge P(A)( )

GA = HA −TSA You’re not responsible for this last equation, 
or for the definitions of enthalpy and entropy



So which conformational state will a 
protein adopt?

• The one with the minimum free energy 
– Wide, shallow wells often win out over narrow, deep 

ones 
• This depends on temperature 
• At room or body temperature, the conformational 

state (macrostate) of minimum free energy is 
usually very different from the microstate with 
minimum potential energy


