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Energy functions for proteins
(or biomolecular systems more generally)



Definition and properties



Energy function

« A potential energy function U(x) specifies the
total potential energy of a system of atoms as a
function of all their positions (x)

— For a system with n atoms, x is a vector of length 3n
(x, y, and z coordinates for every atom)

— In the general case, include not only atoms in the
protein but also surrounding atoms (e.g., water)
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Relationship between energy and force

* Force on atom /is given by derivatives of U with
respect to the atom’s coordinates x;, yi, and z;

F(x)=-VU(x)
* At local minima of the energy U, all forces are zero

* The potential energy function U is also called a
force field
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Types of force fields (energy functions)

* A wide variety of force fields are used in atomic-
level modeling of macromolecules

* Physics-based vs. knowledge-based

— Physics-based force fields attempt to model actual
physical forces

— Knowledge-based force fields are based on statistics
about, for example, known protein structures

— Most real force fields are somewhere in between
* Atoms represented

— Most realistic choice is to model all atoms

— Some force fields omit waters and other surrounding
molecules. Some omit certain atoms within the protein.



Molecular mechanics force fields



Molecular mechanics force fields

* Today, we'll focus on molecular mechanics force
fields, which are often used for molecular
simulations

* These are more toward the physics-based, all-
atom end (i.e., the more “realistic” force fields)
— Represent physical forces explicitly
— Typically represent solvent molecules (e.g., water)
explicitly
» We'll revisit the forces acting between atoms and

write down the functional forms typically used to
approximate them



Bond length stretching

* A bonded pair of atoms is effectively connected
by a spring with some preferred (natural) length.
Stretching or compressing it requires energy.

Natural bond
length (bo)

U(b)=k,(b—b,)

Note: A factor of 1/2 is sometimes included in

>

this equation. I'mignoring such constant
factors (they can be folded into kp, or the units). Bond Iength (b) v




Bond angle bending

* Likewise, each bond angle has some natural value.
Increasing or decreasing it requires energy.

Natural bond
angle (6o)
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Torsional angle twisting

* Certain values of each torsional angle are
preferred over others.
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U(g)= qu)’n [1+COS(n¢—¢n)]

Typically n takes on one or a few values between 1 and 6 (particularly 1, 2, 3, 6)



Torsional angle twisting

* Certain values of each torsional angle are
preferred over others.
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Torsional angle (®)

U(g)= quxn [1+COS(n¢—¢n)]

Typically n takes on one or a few values between 1 and 6 (particularly 1, 2, 3, 6)
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Electrostatics interaction
< r >
> ©

* Like charges repel.
4 Repulsive Opposite charges attract.

* Acts between all pairs of
atoms, including those in
different molecules.

* Each atom carries some
“partial charge” (may be
a fraction of an
elementary charge),
which depends on which
atoms it’s connected to
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Energy

van der Waals interaction

‘r‘

e van der Waals forces act
between all pairs of atoms
and do not depend on
charge.

* When two atoms are too
close together, they repel

Repulsive

strongly.

* When two atoms are a bit
further apart, they attract
one another weakly.

™~ Energy is minimal when atoms are

Attractive

“just touching” one another

>
Separation (r)
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Energy

van der Waals interaction

‘r‘

Repulsive

Attractive
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Separation (r)

U(r): 1g g

r r

We can also write this as:

Note: Historically, r12 term was chosen

for computational convenience;
other forms are sometimes used
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A typical molecular mechanics force field
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How are the parameters fit?

« Combination of:
— Quantum mechanical calculations

— EXxperimental data

For example: bo can be estimated from x-ray crystallography,
and Ky from spectroscopy (infrared absorption)

Ub)=K,(b-b,)

* The torsional parameters are usually fit last. They
absorb the “slop.” Fidelity to physics is debatable.

* These force fields are approximations!



What does the energy function tell us
about protein conformation?



The Boltzmann distribution



Relating energy to probability

* Given the potential energy associated with a
particular arrangement of atoms (set of atom

positions), what is the probability that we’ll see
that arrangement of atoms?

* Assumptions:

— System is at constant temperature. Atoms are
constantly jiggling around.

— We watch the system for a really long time (allowing it
to fully equilibrate).



The Boltzmann Distribution

* The Boltzmann distribution relates potential energy to
probability

p(x) o< eXp(_U(%T)

where T is temperature and kg is the Boltzmann constant
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The Boltzmann Distribution

« Key properties:

Energy, U(x)

Higher energy gives lower probability

Exponential relationship: each time probability halves, energy
Increases by a constant

Temperature dependence: at higher temperature, need to
Increase energy more for same probability reduction

p(x) o< eXp(_U(%Tj
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Microstates and macrostates



Protein structure: what we care about

 We don’t really care about the probability that all
the atoms of the protein and all the surrounding
water atoms will be in one precise configuration

* Instead, we care about the probability that protein
atoms will be in some approximate arrangement,
with any arrangement of surrounding water



Energy, U(x)

Protein structure: what we care about

In other words, we wish to compare different sets
(neighborhoods) of atomic arrangements

We define each of these sets as a macrostate
(A, C). Each macrostate includes many
microstates, or specific atom arrangements x.

— Macrostates—also called conformational states—
correspond to wells in the energy landscape
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Probabilities of macro states

* Which has greater probability, A or C?

— C is a deeper well, so the individual atomic
arrangements within it are more likely

— Ais a broader well, so it includes more distinct
individual arrangements
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Energy, U(x)

To get probability of macrostate, sum/integrate over all

At high temperature, P(A) > P(C)

A

Probabilities of macro states
Which has greater probability, A or C?

microstates within it

P(A)= | P(x)e |

xXeA

Position (x)

xeA

exp(_U(% T)dx

At low temperature, P(C) > P(A)

Probability, p(x)
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What does the energy function tell us
about protein conformation?

Free energy



Free energy of a macrostate

« So far we have assigned energies only to
microstates, but it's useful to assign them to
macrostates as well.

* Define the free energy Ga of a macrostate A such

that: G
P(A)= exp(_ %BT)

* This is analogous to Boltzmann distribution formula:

p(x) o< eXp(_U(%T)



Free energy of a macro state

» Define the free energy Ga of a macrostate A such

that:

» Solving for Ga gives:
G,=—k,Tlog,(P(A))

* One can also express free energy in terms of
enthalpy (mean potential energy, H) and entropy
(“disorder”, S):

GA — HA — TSA You’re not responsible for this last equation,
or for the definitions of enthalpy and entropy



So which conformational state will a
protein adopt?

* The one with the minimum free energy

— Wide, shallow wells often win out over narrow, deep
ones

* This depends on temperature

* At room or body temperature, the conformational
state (macrostate) of minimum free energy is
usually very different from the microstate with
minimum potential energy



