
Predicting Protein Folding Kinetics via

Temporal Logic Model Checking: Extended
Abstract

Christopher James Langmead⋆ and Sumit Kumar Jha

Department of Computer Science, Carnegie Mellon University

Abstract. We present a novel approach for predicting protein folding
kinetics using techniques from the field of model checking. This represents
the first time model checking has been applied to a problem in the field
of structural biology. The protein’s energy landscape is encoded sym-
bolically using Binary Decision Diagrams and related data structures.
Questions regarding the kinetics of folding are encoded as formulas in the
temporal logic CTL. Model checking algorithms are then used to make
quantitative predictions about the kinetics of folding. We show that our
approach scales to state spaces as large as 1023 when using exact algo-
rithms for model checking. This is at least 14 orders of magnitude larger
than the number of configurations considered by comparable techniques.
Furthermore, our approach scales to state spaces at least as large as 1032

unique configurations when using approximation algorithms for model
checking. We tested our method on 19 test proteins. The quantitative
predictions regarding folding rates for these test proteins are in good
agreement with experimentally measured values, achieving a correlation
coefficient of 0.87.

1 Introduction
In the world of proteins, form usually follows function. Consequently, proteins are
often studied in terms of their atomic-resolution structures. A detailed analysis
of an enzyme’s active site, for example, may reveal the mechanism by which
it catalyzes a given reaction. Protein structures are not static, however, and
conformational changes often play important functional roles. Moreover, large-
scale conformational changes are also associated with a number of diseases, most
notably the prion-related diseases. For these reasons, and others, it is interesting
to study how a given protein moves between conformations. Such examinations
may provide valuable insights into basic biology and pathology, as well as to the
design of therapeutic or preventative interventions for certain classes of disease.

In this paper, we focus on what is typically the largest conformational change
a protein will exhibit — folding. By folding we refer to the act of moving from a
completely denatured form to the so-called native configuration. Unfortunately,
there is no experimental technology that can provide atomic-resolution detail
into the entire process of folding (or any other large-scale conformational change,

⋆ Corresponding author:cjl@cs.cmu.edu

2

for that matter). For this reason, computational methods are used to study
large-scale conformational changes, including folding. Our work builds on prior
research on the protein unfolding problem. In contrast to the well-known pro-
tein folding problem, the unfolding problem assumes that the native structure
is already known. The computational challenge is to find low energy pathways
between the unfolded and folded states. More specifically, we consider the Gō
theory of (un)folding [12] wherein the folding process is driven by the formation
of native contacts between residues (i.e, those present in the native structure).
Non-native interactions are deemed negligible, and are therefore ignored. Obvi-
ously, this is a highly simplified theory of folding. Nevertheless, this theory has
been shown capable of making accurate quantitative predictions regarding the
kinetics of folding (e.g., [1, 8, 11, 16]).

Like previous algorithms for Gō-like theories, our algorithms operate on
finite-state models of the protein’s energy landscape. The primary contribu-
tion of our work lies in the observation that finite-state models of folding can
be formally analyzed using techniques from the field of model checking [10].
Model checking refers to a family of algorithms for automatically verifying dy-
namic properties of concurrent reactive processes. Historically, model checking
has been used to verify the correctness and safety of circuit designs, communi-
cations protocols, device drivers, and other classes of software. More recently,
model checking algorithms have been introduced for analyzing the properties of
stochastic systems. Such model checking algorithms for stochastic systems have
been used in the field of systems biology to verify properties of biochemical and
regulatory networks (e.g., [15]). To our knowledge, however, model checking has
not been applied to any problem within the field of structural biology. This paper
is the first to do so.

There are three primary advantages of a model-checking approach to study-
ing protein folding pathways: First, model checking algorithms compute over
symbolic representations of finite state models, not explicit representations. The
computational complexity of model checking algorithms is polynomial in the size
of the encoding of the finite-state model. Thus, if a given finite-state model can
be compressed, extremely large state spaces can be considered. Unfortunately,
finding a minimal encoding for an arbitrary finite-state model is NP-hard. How-
ever, good heuristics for finding compact encodings exist. For example, model
checking algorithms have been able to verify properties of systems having more
than 1020 states since 1990 [7], and have been applied to systems with as many
as 10120 states [5, 6]. In this paper, we show that using exact algorithms for
model checking, energy landscapes with as many as 1023 states are tractable.
This is at least 14 orders of magnitude larger than has been attempted by com-
parable algorithms for studying protein folding pathways. We also show that
energy landscapes with at least 1032 states are tractable when using approxima-
tion algorithms for model checking. Second, model checking relies on formulas in
a temporal logic to express precise queries about the behavior of the finite-state
model. Temporal logics are very expressive and can be used to ask many ques-
tions of interest to protein folding. Third, model checking algorithms are exact;

3

they are not simply a means for sampling or simulating the behavior of a system.
There are, however, finite-state models that are too large for traditional model
checking algorithms. For these, we use an algorithm for performing approximate
model checking [19] which provides a guarantee on the quality of the computed
result.

The organization of this paper is as follows: In Section 2, we define our
model of protein folding. In Section 3, we briefly discuss model checking, and
demonstrate how to encode the protein folding problem in a form suitable for
model checking. In Section 4, we report the results of applying our method to
19 proteins and show that our quantitative predictions of folding rates are well-
correlated with experimental values. We conclude with a discussion of ongoing
work in applying model checking to the study of protein folding pathways.

2 A Simplified Model of Protein (Un)Folding
In this section we describe our model of protein folding; it is identical to that
used in [16] and very similar to those reported elsewhere [1, 8, 11].

The thermodynamics of folding is governed by the Gibbs free-energy: ∆G =
∆E − T∆S. Here, E is the energy (in kcal mole−1) of inter-residue interactions
(e.g., hydrogen bonds, hydrophobic interactions, etc), S is the configurational
entropy (in kcal mole−1 K−1), and T is the absolute temperature (in Kelvin).
Free energy is a balance between the stabilizing contributions of inter-residue
interactions and the destabilizing contributions due to the loss of configurational
entropy as the protein folds.

Definitions: Let P = 〈a1, a2, ..., an〉 be a protein with n amino acids (aka
residues) and m atoms. Let C ⊂ R

3m be the set of possible configurations/embeddings
of P such that each Ci ∈ C is consistent with the laws of physics. Let CF ∈ C
be the native configuration of P as determined by, say, X-ray crystallography.
Following [16] we define a contact as two non-hydrogen atoms from two different
residues that are within 4 Å of each other1. Contacts between residues (i, i± 1)
and (i, i± 2) are ignored because they tend to be present in every configuration
of P . A contact map, M, is an n×n matrix where element M(i, j) is the number
of contacts between residues i and j. We define a separate contact strength map,
MS , that is the same size as M but whose elements are obtained by mapping
the elements of M as follows: 1-5 contacts 7→ 1; 6-10 contacts 7→ 2; 11-15 con-
tacts 7→ 3; 16-20 contacts 7→ 4. Intuitively, MS classifies contacts as being weak,
medium, strong, or very strong.

The Gō theory assumes that folding is driven by the formation of the native
contacts, and that non-native interactions are negligible. Therefore, the state
space of the protein can be modeled using a binary string, B ∈ {0, 1}n. Here,
B(i) is 0 if the ith residue is completely unfolded and 1 if it is folded. There
is an entropic penalty for each 1 in B which must be compensated for by the
stabilizing energies of the native contacts. In particular, if B(i) = B(j) = 1, then
we assume that the contacts between residues i and j (if any) are formed, and
that the energy of that interaction can be used to offset the entropic penalty.

1 1 Å = 10−10m.

4

000

(0)

001

(2)

010

(-1)

100

(2)

011

(-1)

101

(2)

110

(2)

111

(-2)

0

1
B1

B2

B3

2 -1 -2

0

0

0
1

11

1

0

0

Fig. 1. (Left) A toy example of the protein folding model. This finite-state model
corresponds to a 3-residue protein. The state variables and the energy (in parens) are
placed inside each node. The state labeled 000 is the unfolded state; the state labeled
111 is the folded state. In our experiments, we considered proteins with between 16
and 107 residues. (Right) A MTBDD of the function mapping the states of the model
on the left to their respective energies. Each level of the MTBDD corresponds to one of
the three bits/resiudes (B1,B2,B3), and each path from the root to a leaf maps one (or
more) states to an energy. Notice that the MTBDD is smaller than a complete binary
tree encoding the same function from states to energies.

Under the model, there are 2n possible states. Let BU be the bit string
containing all 0’s, and let BF be the bit string of all 1’s. BU and BF correspond
to the unfolded and folded states, respectively. Every other bit string corresponds
to a partially folded state. Each state can be mapped to its free energy as follows:

G(B) =
n

∑

i

n
∑

j>i

MS(i, j)B(i)B(j)α − T
n

∑

i

B(i)β (1)

where α is the strength of a single contact and β is the entropic penalty for folding
a single residue 2. The Boltzmann factor (i.e., weight) for any given configuration
is a function of its energy, the gas constant (R) and the temperature, T; it is
given by: w(B) = exp (−G(B)/RT). Since we are only interested in changes in
free energy (i.e., ∆G), we arbitrarily set G(BU) = 0.

A protein’s energy landscape is constructed by applying Eq. 1 to every pos-
sible configuration. In this paper, it can be thought of as an n-dimensional dis-
crete function. Computationally, our task is to find a low-energy path (or a set
of paths) between BU and BF in the energy landscape. Thus, we must define a
set of allowable transitions. Under the model, state s can only transition to those
states that are similar. In practice, this means that transition are only allowed
between pairs of states whose bit vector representations have small Hamming
distance. In this paper, we allow transitions between pairs of states with Ham-
ming distance 1. A toy example of the model for a 3-residue protein is shown in
Figure 1-A.

2.1 Kinetics

The reaction kinetics of folding are described in terms of an energy profile along
a chosen reaction coordinate. A reaction coordinate is a projection of the en-
ergy landscape onto a lower-dimensional surface. Given an appropriately chosen
reaction coordinate, one can make quantitative predictions regarding the rate

2 See [16] for more details on contact energies and entropic penalties.

5

Path length

Fig. 2. Energy profile for FKBP-12, as computed by our method.

of folding from the energy profile. There are a number of potentially relevant
reaction coordinates from which to chose when studying protein folding includ-
ing radius of gyration, solvent accessible area, number of folded residues, and so
forth. Following Muñoz and Eaton [16], we will use the number of folded residues
(i.e., the number of 1’s in B) as our reaction coordinate.

For each position 0 ≤ k ≤ n, there are
(

n
k

)

binary strings, each with its own
energy. Let Bk = {B ∈ {0, 1}n |

∑n
i=1

B(i) = k} be the set of bit strings with k
1’s and n− k 0’s. The Boltzman-weighted total energy for each position k along
the reaction coordinate is Gk = −RT ln(

∑

b∈Bk
w(b)). The energy profile for

FKBP-12 is shown in Figure 2. In theory, it is possible to construct the energy
profile by explicitly enumerating all 2n binary strings. In practice, it is common
to sample from the set of possible configurations. The algorithms reported in [1,
8, 11, 16], for example, operate on state spaces ranging in size from 104 to 109

configurations. In contrast, we seek to consider the entire space of binary strings
by adopting symbolic techniques from the field of model checking.

We note that because the Boltzmann weight of a configuration is exponen-
tially related to the negative energy of its configuration, we can compute an
upper bound for each Gk by considering only the smallest-energy configurations
for each k. It is these low-energy configurations we identify via model checking.
Specifically, we seek to find the energy of the lowest-energy configuration for
each k.3 We will denote the lowest energy as G̃k.

Given the value of G̃k for all 0 ≤ k ≤ n, there are a number of ways to predict
folding rates. Under a transition-state theory, for example, the folding rate, k ∝
k0 exp(−∆G‡/RT) where k0 is a constant and ∆G‡ = argmaxk G̃k − G̃0. In this
paper, we use a more accurate way to predict the folding rate in terms of the
rate of decay of the average number of folded residues starting from the folded
state [16].

3 Model Checking
The field of model checking was born from a need to formally verify the cor-
rectness of hardware designs. Since its inception in 1981, it has expanded to en-

3 It may be noted that our technique can be used to identify c lowest-energy config-
urations, for arbitrary integer c. For ease of presentation, we only consider the case
of c=1 in this paper.

6

compass a wide range of techniques for formally verifying finite-state transition
systems, including those with stochastic behavior. Model checking algorithms
are simultaneously theoretically very interesting and very useful in practice.
Significantly, they have become the preferred method for formal verification in
industrial settings over traditional verification methods like theorem proving,
which often need guidance from an expert human user. A complete discussion
of model checking theory and practice is beyond the scope of this paper. The
interested reader is directed to [10] for a detailed treatment of the subject.

3.1 Modeling Concurrent Systems

Let AP be a set of atomic propositions. An atomic proposition, a, is a Boolean
predicate referring to some property of the system. A Kripke strucutre, M , over
AP is a tuple, M = (S, S0, R, L). Here, S is a finite set of states, S0 ⊆ S
is the set of initial states, R ⊆ S × S is a total transition relation between
states, and L : S 7→ 2AP is a labeling function that labels each state with the
set of atomic propositions that are true in that state. Variations on the basic
Kripke structure exist. For example, if the system is stochastic, then we replace
the transition relation, R, with a stochastic transition matrix, T where element
T (i, j) contains either a transition rates (for continuous-time Markov models) or
a transition probability (for discrete-time Markov models).

Application to Energy Landscapes The Kripke structure used in this paper
closely follows the model of protein folding described in Section 2. The set of
states, S, is isomorphic to the set of n-bit binary strings. The set of initial states,
S0, corresponds to (BU). The transition relation, R, allows transitions between
pairs of states whose bit-vector representations have Hamming distance 1.

The labeling function, L, maps each state to an energy and works as follows:
Recall that Bk is the set of bit strings where k bits are 1 and n−k bits are 0. In
this paper, our atomic propositions are generally of the form: “is the minimum
energy of B ∈ Bk = c?”. An interesting property of proteins is that that the
energies of folding are bounded to a relatively small, constant-size range. In
particular, the difference between G(BU) and G(BF) is generally 1 to 10 kcal
mol−1. The energy barrier which separates the unfolded and folded states is
also typically 10 kcal mol−1 or smaller at room temperature. Indeed, the energy
barrier must be small, or else folding won’t occur. Thus, the domain of possible
energies is, in effect, bounded by a constant of around 20 kcal mol−1. This range
is not related to the size of the protein. The set of possible states, on the other
hand, is exponential in the size of the protein. Due to the discrete nature of
our energy function and the fixed precision of the parameters α and β in Eq.
1, we can then apply the pigeonhole principle and conclude that the number of
unique energy values is also constant. This will ultimately lead to a very efficient
representation of the labeling function, as discussed in the next section.

In summary, assuming a Gō-like model of folding, we have shown that a
protein’s energy landscape can be encoded as a Kripke structure. In the model
checking literature, Kripke structures are not represented explicitly, but rather
symbolically. In the next section we discuss techniques for representing Kripke
structures symbolically.

7

3.2 Symbolic Encodings of Kripke Structures
The basis for symbolic encodings of Kripke structures, which ultimately fa-
cilitated industrial applications of model checking, is the reduced ordered Bi-
nary Decision Diagrams (BDDs) introduced by Bryant [4]. BDDs are directed
acyclic graphs that symbolically and compactly represent binary functions, f :
{0, 1}n 7→ {0, 1}. While the idea of using decision trees to represent boolean
formulae arose directly from Shannon’s expansion for Boolean functions, two
key extensions made to it were the use of a fixed variable ordering and the
sharing of sub-graphs. The first extension made the data structure canonical
while the second one allowed for compression in its storage. A third extension,
also introduced in [4], is the development of an algorithm for applying Boolean
operators to pairs of BDDs, as well as an algorithm for composing the BDD
representations of pairs of functions. Briefly, if f and g are Boolean functions,
the algorithms implementing operators apply(f ,g,op) and compose(f ,g) com-
pute directly on the BDD representations of the functions in time proportional
to O(|f ||g|), where |f | is the size of the BDD encoding f . BDDs can be general-
ized to Multi-terminal BDDs (MTBDD) [9], which encode discrete, real-valued
functions of the form f : {0, 1}n 7→ R. Significantly, MTBDDs can be used to
encode real-valued vectors and matrices, and algorithms exist for performing
matrix addition and multiplication over MTBDDs [9]. These algorithms play an
important role in several model checking algorithms for stochastic systems [3].

Application to Energy Landscapes As previously mentioned, we can en-
code energy landscapes using Kripke structures. It follows, therefore, that en-
ergy landscapes can be encoded symbolically using a combination of BDDs and
MTBDDs. In particular, the transition relation, R, and the labeling function, L,
can be encoded using BDDs and MTBDDs, respectively.

In practice, the construction of the BDDs and MTBDDs is done automati-
cally from a high-level language describing the finite-state system and its behav-
ior. Here, we use the specification formalism of reactive modules [2] as provided
in the model checking tool prism [13]. Briefly, each residue is modeled as a
separate two-state process (i.e., folded or unfolded). Residues change state asyn-
chronously, and only one residue is allowed to change at any given time (thereby
enforcing the Hamming-distance rule). The set of possible states of the system
corresponds exactly to the set of n-bit strings. The set of allowable transitions is
ultimately encoded as a BDD and the labeling function is encoded as a MTBDD
(Fig 1-B).

3.3 Temporal Logics
Temporal logic is a formalism for describing behaviors in finite-state systems.
They have been used since 1977 to reason about the properties of concurrent
programs [18]. There are a number of different temporal logics from which to
chose, and different logics have different expressive powers. In this paper, we use
a small subset of the Computation Tree Logic (CTL). CTL formulae can express
properties of computation trees. The root of a computation tree corresponds to
the set of initial states (i.e., S0) and the rest of the (infinite) tree corresponds
to all possible paths from the root. A complete discussion of CTL and temporal

8

logics is beyond the scope of this paper. The interested reader is directed to [10]
for more information.

The syntax of CTL is given by the following minimal grammar:

φ ::= a | true | (¬φ) | (φ1 ∨ φ2) | EXφ | E[φ1Uφ2]

Here, a ∈ AP , is an atomic proposition (e.g., “does state s have energy c?”);
“true” is a Boolean constant; ¬ and ∨ are the normal logical operators; E is
the existential path quantifier (i.e., “there exists some path from the root in the
computation tree”); and X and U are temporal operators corresponding to the
notions of “in the next state” and “until”, respectively. Given these, additional
operators can be derived. For example, “false” can be derived from “¬true” and
the universal quantifier, AXφ, can be defined as ¬EX¬φ.

Given some path π = 〈π[0], π[1], . . . 〉 through the computation tree, the
semantics of a CTL formula are defined recursively:

π |= a iff a ∈ L(π[0])
π |= true, ∀π
π |= ¬φ iff π 6|= φ
π |= φ1 ∨ φ2 iff π |= φ1 or π |= φ2

π |= EXφ iff π[1] |= φ
π |= E[φ1Uφ2] iff ∃i ≥ 0, π[i] |= φ2 ∧ ∀j < i, π[j] |= φ1

Here, the notation“π |= α” means that π satisfies α.

Application to Protein Folding Clearly, CTL formulas can express a rich set
of properties concerning reachability (e.g., “will the protein end up in a particular
configuration?”) and/or the logical ordering of events (e.g., “will the second
residue fold before the first one?”). Numerous extensions to CTL exist which
facilitate questions regarding explicit timings (e.g., “will the protein fold within
t milliseconds?”) or likelihoods (e.g., “what is the probability that the protein
folds within t milliseconds?”). In this paper, we only consider CTL formulas of
the following form: let akc ∈ AP be an atomic proposition that asks “does the
state s have k folded residues and have energy c?”, the CTL formula E[true U a]
asks “Is there a path from S0 to some other state, s ∈ S, such that s |= a?”
To find the minimum energy state for fixed k, we can perform a binary search
over different values of c.4 Recall, that we argued that the range of energies
is bounded by a constant and that the number of unique energy values is also
constant. Therefore, the cost of the binary search is O(1).

3.4 Model Checking Algorithms

Having defined a Kripke structure and the CTL formula, we can then use existing
model checking algorithms for verifying the formula, given a symbolic encoding
of the Kripke structure. A model checking algorithm takes a Kripke structure,

4 In our experiments, we make use of extensions to CTL provided in the tool prism
[13] that allows one to ask for the minimum energy value directly. Therefore, we do
not perform an explicit binary search.

9

M = (S, S0, R, L), and a temporal logic formula, φ, and finds the set of states
in S that satisfy φ: {s ∈ S | M, s |= φ}. The complexity of model checking
algorithms varies with the temporal logic and the operators used. For the types
of formulas used in this paper (i.e., E[φ1Uφ2]), an explicit state model checking
algorithm requires time linear in the size of the finite-state model and in the
length of the formula ([10] p 35-36).

Of course, for very large state spaces, even linear time is unacceptable. Sym-

bolic model checking algorithms operate directly on BDD/MTBDD encodings of
the Kripke structure and CTL formula. Briefly, the temporal operators of CTL
can be characterized in terms of fixpoints. Let P(S) be the powerset of S. A
set S′ ⊆ S is a fixpoint of a function τ : P(S) 7→ P(S) if τ(S′) = S′. Symbolic
model checking algorithms define an appropriate function, based on the formula,
and then iteratively find the fixpoint of the function. This is done using set op-
erations that operate directly on BDDs/MTBDDs. The fixpoint of the function
corresponds exactly to {s ∈ S | M, s |= φ}. The interested reader is encouraged
to read [10], ch. 6 for more details.

Explicit-state and symbolic model checking algorithms are exact. There are
also approximation algorithms for model checking algorithms (e.g., [19]), which
employ sampling techniques and hypothesis testing. Such algorithms provide
guarantees, in terms of the probability of the property being true, and can scale
to much larger state spaces. These do not use BDDs/MTBDDs, but rather op-
erate on the high-level language description of the finite-state model (see Sec.
3.2). We explored the use of both exact and approximate algorithms for model
checking in our experiments.

4 Experiments and Results

We replicated the experiments of Muñoz and Eaton [16] who made predictions on
19 proteins5 The largest protein in that set, FKBP-12 (PDB id 1FKB), has 107
residues. Muñoz and Eaton consider state spaces in the range of size O(103) to
O(109) states. In contrast, we have successfully performed exact model checking
on state spaces of size 276 ≈ 1023 using 2GB of memory on a single processor
of a 4-node cluster. The time taken for these experiments is shown in Table
1. For proteins up to 74 residues, the longest runtime was under 30 minutes.
Then, there is a jump to almost 7 hours for a 76-residue protein. The increase in
time is due to thrashing of virtual memory. In general, the computation time is
dominated by the time to construct the MTBDD. The actual cost of performing
the model checking is under 90 seconds. Both load time and model checking time
are correlated with the length of the protein for proteins up to 74 residues, with
a correlations of 0.77 and 0.78, respectively, (p = .02). However, these are not
monotonically related to length. No significant correlations between load times,
model checking time and actual folding rates were observed.

5 The PDB ids of the 19 proteins are: 1APS, 1COA, 1CSP, 1FKB, 1FNF, 1HDN,
1LMB, 1MJC, 1NYF, 1PBA, 1PGB, 1PKS, 1SHG, 1SRL, 1TEN, 1URN, 2ABD,
2AIT, 2PTL.

10 Correlation between predicted and experimental folding rates (k)

Experimental log10(k)

P
re

d
ic

te
d

 l
o

g
1

0
(k

)

Fig. 3. Scatter plot of log predicted (y-axis) and actual (x-axis) folding rates. The
correlation coefficient is 0.87, p ≪ 0.001

We were not able to perform exact model checking on proteins larger than
76-residues on a 2GB machine due to memory limitations. For this reason, we
also ran experiments with an approximation algorithm for model checking [19].
These all completed in under 11 minutes. The time to perform approximate
model checking is strongly correlated with protein length (R = 0.97, p ≪ 0.001).
The largest state space we considered using the approximation algorithm has
2107 ≈ 1032 states.

Figure 2 shows one sample energy profile computed using model checking for
the protein FKBP-12. Using the technique described in [16] for transforming the
free-energy profile into a quantitative prediction of folding time, we predicted
the folding times for each of the 19 proteins. The correlations between the log-
arithms of the predicted folding rates and the experimentally measured values
[14] are shown in Figure 3. The correlation coefficient between predicted and ex-
perimental values is 0.87. By comparison, Muñoz and Eaton achieve correlation
coefficients between 0.83 and 0.87 on the same proteins, depending on which
approximation was used. Plaxco and co-workers developed a simple method for
predicting folding rates based on contact order (a length-normalized average se-
quential distance between contacting residues) [17]. Their correlation coefficient
on 18 of the 19 proteins studied in this paper was 0.64. The mean absolute error
of our predictions is 1.55. In comparison, the mean errors reported for two dif-
ferent techniques on a similar, but not identical, set of proteins in [8] was 2.77
and 3.42, respectively.

5 Conclusions and Future Work
We have presented an approach to predict the rate of folding using techniques
from the field of model checking. We believe this paper represents the first appli-
cation of model checking to a problem in structural biology. The key advantages
of this approach are that it scales to extremely large state spaces and that it is ex-
act. In terms of accuracy, our predictions of folding rate are well-correlated with
experimentally determined values. However, it remains to be seen whether such
levels of accuracy can be obtained when analyzing significantly larger proteins.

11MTBDD Build MC Time Approximate MC

PDB Id Residues Time (seconds) (seconds) Time (seconds)

1PGB 16 0.269 0.027 29.39
1SRL 56 313.546 18.083 188.69
1SHG 57 452.684 34.767 194.48
1NYF 58 712.788 64.882 195.41
1COA 64 1331.58 110.99 226.80
1CSP 67 973.664 6.57 248.75
1MJC 69 1963.879 86.139 267.32
2AIT 74 1753.331 85.205 318.15
1PKS 76 24647.21 10.55 319.61
2PTL 78 - - 328.98
1PBA 81 - - 335.82
1HDN 85 - - 388.19
2ABD 86 - - 378.94
1LMB 87 - - 373.36
1TEN 90 - - 415.54
1FNF 91 - - 447.37
1URN 96 - - 485.32
1APS 98 - - 511.56
1FKB 107 - - 611.59

Table 1. Performance Statistics. MC = model checking. Column 3 indicates
whether exact or approximate model checking was used. MTBDD build times are
only relevant to exact MC because approximate MC does not use MTBDDs. The ap-
proximation error bound was set to 1% of the energy for these experiments. Due to
memory limitations (2GB), exact model checking was performed only on proteins up
to 76 residues.

There are numerous extensions to this work that we intend to pursue. First,
we have only begun to explore the kinds of queries that can be encoded in
temporal logics. Second, a more thorough analysis of the relationship between
the answers obtained via exact and approximate model checking is necessary.
Finally, our model does not actually include any stochastic behavior. We have
developed stochastic variants of our model of folding and we intend on applying
model checking algorithms for stochastic systems to these. A comparison between
the stochastic and non-stochastic techniques is planned.

Acknowledgments
We thank Dr. Edmund Clarke for helpful discussions on this topic. This research was

supported by a U.S. Department of Energy Career Award (DE-FG02-05ER25696), and

a Pittsburgh Life-Sciences Greenhouse Young Pioneer Award to C.J.L.

References

1. E. Alm and D. Baker. Prediction of protein-folding mechanisms from free-energy
landscapes derived from native structures. Proc. Natl. Acad. Sci., 96(20):11305–
11310, 1999.

12

2. R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design:
An International Journal, 15(1):7–48, 1999.

3. C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan.
Symbolic model checking for probabilistic processes. In Proc. 24th International
Colloquium on Automata, Languages and Programming (ICALP’97), pages 430–
440, 1997.

4. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986.

5. J. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned
transition relations. Proc. 1991 Conf. on VLSI, pages 49–58, 1991.

6. J. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic model
checking for sequential circuit verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 3(4):401–424, 1993.

7. J. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Proc. Fifth Ann. IEEE Symposium on
Logic in Computer Science, pages 428–439, 1990.

8. T. H. Chiang, M. S. Apaydin, D. L. Brutlag, D. Hsu, and J. C. Latombe. Predicting
Experimental Quantities in Protein Folding Kinetics using Stochastic Roadmap
Simulation. Proceedings of the 2006 ACM International Conference on Research
in Computational Molecular Biology (RECOMB), pages 410–424, 2006.

9. E. Clarke, M. Fujita, P. C. McGeer, J.-Y. Yang, and X. Zhao. Multi-terminal binary
decision diagrams: An efficient datastructure for matrix representation. IWLS ’93
International Workshop on Logic Synthesis, 1993.

10. E. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge,
MA, 1999.

11. S. O. Garbuzynskiy, A. V. Finkelstein, and O. V. Galzitskaya. Outlining folding
nuclei in globular proteins. J. Mol. Biol., 336:509–525, 2004.

12. N. Gō and H. Taketomi. Studies on protein folding, unfolding and fluctuations
by computer simulation. IV. Hydrophobic interactions. Int J Pept Protein Res,
13(5):447–461, 1979.

13. A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for auto-
matic verification of probabilistic systems. In H. Hermanns and J. Palsberg, editors,
Proc. 12th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’06), volume 3920, pages 441–444, 2006.

14. S. Jackson. How do small single-domain proteins fold? Fold. Des., 3(4):R81–R91,
1998.

15. M. Kwiatkowska, G. Norman, D. Parker, O. Tymchyshyn, J. Heath, and E. Gaffney.
Simulation and verification for computational modelling of signalling pathways.
pages 1666–1675, 2006.

16. Munoz, V. and Eaton, W. A. A simple model for calculating the kinetics of protein
folding from three-dimensional structures. Proc. Natl. Acad. Sci., 96(20):11311–
11316, 1999.

17. K. W. Plaxco, K. T. Simon, and D. Baker. Contact order, transition state place-
ment and the refolding rates of single domain proteins. J. Mol. Biol., 277(4):985–
994, 1998.

18. A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE.
Foundations of Computer Science (FOCS), pages 46–57, 1977.

19. H. L. S. Younes and R. G. Simmons. Probabilistic verification of discrete event
systems using acceptance sampling. In Proceedings of the 14th International Con-
ference on Computer Aided Verification, volume 2404, pages 223–235, Copenhagen,
Denmark, July 2002. Springer.

