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ABSTRACT: Recent advances in simulation and experiment have led to dramatic increases in the quantity and complexity of
produced data, which makes the development of automated analysis tools very important. A powerful approach to analyze
dynamics contained in such data sets is to describe/approximate it by diffusion on a free energy landscape - free energy as a
function of reaction coordinates (RC). For the description to be quantitatively accurate, RCs should be chosen in an optimal
way. Recent theoretical results show that such an optimal RC exists; however, determining it for practical systems is a very
difficult unsolved problem. Here we describe a solution to this problem. We describe an adaptive nonparametric approach to
accurately determine the optimal RC (the committor) for an equilibrium trajectory of a realistic system. In contrast to alternative
approaches, which require a functional form with many parameters to approximate an RC and thus extensive expertise with the
system, the suggested approach is nonparametric and can approximate any RC with high accuracy without system specific
information. To avoid overfitting for a realistically sampled system, the approach performs RC optimization in an adaptive
manner by focusing optimization on less optimized spatiotemporal regions of the RC. The power of the approach is illustrated
on a long equilibrium atomistic folding simulation of HP35 protein. We have determined the optimal folding RC - the
committor, which was confirmed by passing a stringent committor validation test. It allowed us to determine a first quantitatively
accurate protein folding free energy landscape. We have confirmed the recent theoretical results that diffusion on such a free
energy profile can be used to compute exactly the equilibrium flux, the mean first passage times, and the mean transition path
times between any two points on the profile. We have shown that the mean squared displacement along the optimal RC grows
linear with time as for simple diffusion. The free energy profile allowed us to obtain a direct rigorous estimate of the pre-
exponential factor for the folding dynamics.

1. INTRODUCTION

Due to advances in computer hardware and simulation
methodology, it is becoming increasingly easier to generate
large simulation data sets of complex molecular systems, with a
prominent example being the long equilibrium trajectories of
fast folding proteins.1,2 Because of the complexity of dynamics
and high-dimensionality of the resulting trajectories, the
generation of many trajectories per se is not sufficient to
provide full scientific insight. Eventually it becomes necessary
to synthesize the data into as faithful as possible a picture of the
process of interest. Given the growing size and complexity of
simulations, analysis and interpretation of such data are widely
recognized as fundamental bottlenecks in the application of
atomistic simulations.3−6

A fundamental way to analyze a simulation is to determine
the underlying free energy landscape, i.e., the free energy as a

function of one or more reaction coordinates (RCs), collective
variables (CV), or order parameters.1,5,7−10 Generally, one is
interested in finding free energy minima or metastable states,
pathways, transitions states (TS), and free energy barriers. The
major difficulty in such an analysis is the selection of
appropriate RCs. A poorly chosen RC can result in a
misleadingly simple free energy landscape with missing minima
and the absence or underestimation of barriers.3,7 Experience
has shown that RCs chosen based on intuition or using
common methods such as principal component analysis (PCA)
are usually suboptimal. Hence a large number of methods have
been suggested to determine good RCs or CVs in an
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automated and unbiased way.4,8,9,11−17 For recent reviews see
refs 5, 6, 10, and 18.
Optimal RCs are an important class of RCs, which are

selected in an optimal way so that the corresponding diffusive
model can be used to compute some properties of the
dynamics exactly.5 For equilibrium dynamics between two
states (e.g., protein folding) such an optimal RC is known as
the committor or pfold, in the context of protein folding
dynamics. pfold equals the probability to fold before unfolding,
starting from the current position. To define it explicitly,
consider a system where the evolution of probability density
P(X, t) is described by the Fokker−Planck (diffusion) equation
corresponding to the overdamped Langevin equation

∂ ∂ = ∇· ∇β β−X X XP t t e D e P t( , )/ [ ( ) ( ( , ))]X XU U( ) ( )

where X denotes the position in multidimensional config-
uration space, U is the potential energy, D is the diffusion
tensor, β = 1/(kT), k is the Boltzmann constant, and T is
temperature. Given two boundary states A and B, the
committor, q(X), is the solution of the adjoint equation19,20

∇· ∇ =β− X Xe D q[ ( ) ( )] 0XU( )
(1)

with boundary conditions q = 0 for X ∈ ∂A and q = 1 for X ∈
∂B. The committor is thus a complex, high-dimensional
function, which is the solution to the high-dimensional partial
differential equation. It has been determined accurately only for
a small number of low-dimensional model systems.21

Determining the committor for a realistic complex system of
interest is a very difficult unsolved problem. Moreover, in
practice, one needs to determine the committor from a long
equilibrium trajectory, rather than from U(X) and D(X). While
a number of approaches have been suggested to determine the
committor,5 they all have serious drawbacks. In particular,
putative RCs determined for realistic systems cannot pass
proposed committor validation tests.8,22 Here we present a
solution to this important problem. We describe an approach
that accurately determines the committor, so it can pass the
validation tests, and illustrate its performance by analyzing a
long equilibrium protein folding trajectory.

Figure 1. Free energy profiles (a, c, e) and ZC,1 profiles (b, d, f) for different RCs. To apply the committor validation test, coordinate r is first
transformed to the committor as a function of this coordinate r → q(r) using the Markov state model formalism.5,27 Then ZC,1(q(r), Δt) profiles are
computed for Δt/Δt0 = 1, 4, 42, ···, 48. The closer ZC,1(q(r), Δt) to NAB = 73 is, the more optimal coordinate r is. For the optimal coordinate or
committor ZC,1(q, Δt) = NAB. For suboptimal coordinates ZC,1(q(r), Δt0) > NAB or −ln ZC,1(q(r), Δt0) < −ln NAB. As Δt increases −ln ZC,1(q(r), Δt)
increases as well and reaches the limiting values of −ln NAB for large Δt. a and b) the Cα root-mean-square deviation from the native structure. c and
d) the fraction of native contacts. e and f) putative RC obtained via the nonparametric optimization after 200 iterations.
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2. METHOD
2.1. Nonparametric Variational Optimization of RCs.

Variational approaches appear to be most promising for RC

optimization.5 A functional form (FF) with many parameters
R(X, αi) is suggested as an approximation to an RC. One
numerically optimizes the parameters αi by optimizing a
particular functional, for example, the probability of being on a
transition path,8,23 the likelihood functional,17 the cut
profiles,9,24,25 or the total squared displacement.22,26 Here we
consider the last one. Given a long equilibrium multidimen-
sional trajectory X(kΔt0), where Δt0 is the trajectory sampling
interval, one computes the reaction coordinate time-series
r(kΔt0) = R(X(kΔt0), αi). Here and below r defines an arbitrary

reaction coordinate, while q is reserved for the committor.
Given two boundary states A and B, the optimal coordinate
between them (the committor) is the one that provides a
minimum to the total squared displacement Δr2 = ∑k[r(kΔt0 +
Δt0) − r(kΔt0)]2, under the constraints that r(k ∈ A) = 0 and
r(k ∈ B) = 1, i.e., the boundary states A and B map to 0 and 1,
respectively. It is straightforward to prove this principle by
assuming that the system dynamics is described by a Markov
state model. The total squared displacement equals Δr2 =
N∑ijPji(Δt)Pi(rj − ri)

2, where Pji(Δt) is the transition
probability matrix from state i to state j after Δt, Pi is the
equilibrium probability, N is the total number of snapshots in
the trajectory, and ri is the position of microstate i on the RC.
Differentiating with respect to rk and assuming the detailed
balance Pji(Δt)Pi = Pij(Δt)Pj, one obtains the following
equation for committor q5,22

∑ Δ − =P t q q( )( ) 0
j

jk j k
(2a)

= =q q0, 1A B (2b)

Note that the assumption that systems dynamics is described by
a Markov state model is used only for the derivation of
equations. One does not need to perform the actual
construction of such a model, which means that this
assumption does not restrict the applicability of the algorithm.
The theoretical minimum value of the functional, attained for

r = q, equals Δq2 = 2NAB,
22 where NAB is the total number of

transitions from state A to B. Thus, if during RC optimization
Δr2/2 reaches NAB, it follows that the putative RC equals the
committor. During optimization of an RC for a finitely sampled
system it is possible to obtain Δr2/2 < NAB, i.e., a value of the
functional that is lower than the theoretical lower bound. In this

Figure 2. Optimization of RC for HP35 double mutant. The free energy profile (a) and ZC,1 profiles (b) for RC r obtained with the nonparametric
approach. While RC r is close to the committor it still deviates from it. The free energy profile (c) and ZC,1 profiles (d) for RC q obtained with the
adaptive nonparametric approach. RC q closely approximates the committor. ZC,1(r, Δt) are computed for Δt/Δt0 = 1, 4, 42,···, 48. Solid black lines
on (b) and (d) show ZC,1(r, Δt0).

Figure 3. a) Two identical copies of the RC are joined into a circle in
order to eliminate boundaries without modifying the RC. The idea is
similar in spirit to the method of images in electrostatics. A and B
denote boundary states, while c, d, e denote some states on the RC.
Numbers show the values of the RC for the boundary states A and B.
b) Schematic representation of the multivalued character of the
optimal RC. Its value increments by 2 every time one goes around the
full circle. It is analogous to a multivalued angle, whose value
increments by 2π, i.e., z ∼ ϕ/π.
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case we say that the putative RC overf its the trajectory. Because
of the usage of many fitting parameters the RC starts to
approximate the statistical noise due to limited sampling rather
than the actual dynamics.
A major weakness of these approaches is that it is difficult to

suggest a good FF approximating the RC. The difficulty
becomes apparent if one remembers that such an RC should be
able to accurately project a few million snapshots of a very high-
dimensional trajectory. In particular, it implies an extensive
knowledge of the system, and that such a FF is likely to be
system specific.
Recently we have suggested a nonparametric approach,

which bypasses the difficult problem of finding an appropriate
FF.12 Since Δr2 depends explicitly only on the RC time-series
r(kΔt0), one may directly optimize the values of r(kΔt0) rather
than the parameters αi of the FF R(X, αi).
However, r(kΔt0) values cannot be varied independently of

each other,12 because points close in the original multidimen-
sional space should have close projections (R(X) is a
continuous function), i.e., if X(iΔt0) ∼ X(jΔt0), then r(iΔt0)
∼ r(jΔt0). To vary r(kΔt0) in an appropriate, concerted way,
one improves r(kΔt0) in the following iterative manner:
r′(kΔt0) = f(r(kΔt0), y(kΔt0)), where r′(kΔt0) is the updated
values of the RC time-series, y(kΔt0) is the time-series of a
randomly chosen coordinate of the original multidimensional
space X, and f(x, y) is a low degree polynomial. If the system
obeys some symmetry (e.g., the rotational and translational
symmetries for biomolecules), then the RC should obey the
same symmetry. A simple way to ensure this is to use as y(kΔt)
collective variables that respect the symmetry. For analysis of
protein dynamics, one can use distance time-series between
randomly chosen pairs of atoms. Another possibility is to use
time-series of sin or cos of a randomly selected dihedral angle.
The flowchart of the algorithm is provided in Figure 7 in the
Appendix.
The idea has been successfully tested on an extensively

sampled 50 dimensional model system, with a trajectory of 106

steps containing 989 transitions (NAB).
12 After 9100 iterations

Δr2/2 reached 988.9. Continuation of the optimization for
100000 iterations in total insignificantly decreased Δr2/2 to
986.5, indicating that no notable overfitting is possible and that
the putative RC should be very close to the committor, which
was confirmed by applying the committor validation tests.22,27

The optimization has improved the seed RC, even though the
difference between the corresponding free energy profiles at the
top of the TS was only 0.05 kT, i.e., the approach is very
sensitive.
However, it is not always possible in practice to perform an

extensive sampling of a system of interest. A typical example is
the simulation of protein folding, where it is very computa-
tionally expensive to obtain a handful of folding−unfolding
events.1,2 In this case the direct application of the simple
approach described above leads to Δr2/2 ≪ NAB, which is an
indication of severe overfitting. Here we describe the approach,
which allowed us to determine the optimal RC or committor
for a typical realistic system of interest, namely the atomistic
folding trajectory of a double mutant of HP35.
Briefly, the idea is as follows. As we show below, an RC is

likely to be optimized in a nonuniform manner: it is easier to
optimize TSs rather than free energy minima. Consequently,
some parts of the RC may be optimized more than others. For
an extensively sampled system, where overfitting is not possible,
this does not present a problem. As some, more optimized

parts of the RC reach their optimal values, they cannot be
improved further, and the only way to decrease the functional is
to optimize the suboptimal parts of the RC. For a system with
limited sampling, where overfitting is possible, one needs to
find a way to make the optimization uniform and stop it as soon
as all the parts of the RC are optimal. Using the protein folding
trajectory as an example, we first describe how one can detect
the time scales and the regions of the putative RC which are
most suboptimal. Then we describe how one can improve
uniformity of optimization by focusing on these suboptimal
regions and time scales.

2.2. Identification of Suboptimal Spatiotemporal
Regions. Suboptimal spatiotemporal regions can be detected
by using ZC,1(r, Δt) cut-profiles, an important quantity for RC
analysis, which can be straightforwardly computed from RC
time-series r(kΔt0) and whose properties we briefly summarize
below (more details are provided in the Appendix).5,22 The
integral ∫ ZC,1(r, Δt) dr equals Δr2(Δt)/2, hence ZC,1(r, Δt) can
be interpreted as a position dependent density of the Δr2(Δt)/
2 functional. To optimize the entire RC one needs to minimize
the average of ZC,1(r, Δt), and to optimize the RC in a
particular region one needs to minimize ZC,1(r, Δt) in that
region. For a suboptimal RC, ZC,1(r, Δt) values generally
decrease to the limiting value of NAB, as Δt increases. The larger
the difference between ZC,1(r, Δt1) and ZC,1(r, Δt2) the less
optimal the RC around r. For the optimal RC or the committor
ZC,1(q, Δt) = NAB, which can be used as a committor validation
test.27 Thus, our aim is to determine an RC time-series r(kΔt0),
such that −ln ZC,1(r, Δt) ≈ − ln NAB up to statistical
uncertainty, roughly estimated as N1/ 2 AB .
We consider a long equilibrium folding−unfolding trajectory

of HP35 Nle/Nle double mutant consisting of 1509392
snapshots at 380 K.28 The boundary states are defined using
rather stringent criteria to ensure that only the configurations
from the respective basins are obtained: node B in the native
state is defined by the Cα root-mean-square deviation (rmsd)
from the native 2f4k pdb structure29 smaller than 1.0 Å, and
node A in the denatured state is defined by the Cα rmsd greater
than 10.5 Å (Figure 1a). The total number of transitions
between these nodes, determined from the trajectory, is NAB =
73.
Figure 1 shows the free energy profiles and ZC,1 profiles (the

committor validation test) for two popular conventional RCs,
the rmsd and the fraction of native contacts (Q),30 and
compares them with the putative RC obtained with the
nonparametric approach starting from the coordinate initialized
to zero. ZC,1 profiles show that the conventional RCs are far
from being optimal and are worse than the putative RC already
after 200 iterations. The FEP F(r) (Figure 1e) shows the main
transition state (TS) barrier separating the denatured and
native states and that the native state contains two basins.
After 33700 iterations Δr2/2 has reached the stopping value

of NAB. Figures 2a-b show the FEP and the ZC,1(r, Δt) profiles,
respectively. As one can see ZC,1 shows relatively large
variations, especially in the regions around the free energy
minima, i.e., the difference between −ln ZC,1(r, Δt) and −ln
NAB is significantly larger than ≈N1/ 2 0.08AB . It means that
while the putative RC is close to the committor (cf. Figure 1), it
still deviates from it. This is due to the following reasons. First,
variability of ZC,1(r, Δt0) along r indicates that the RC is
optimized in a nonuniform way. It is well optimized in the TS
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region, where ZC,1(r, Δt0) is constant, and much less so around
the minima.
Consider an analytical equation for the committor along a

single coordinate: dq/dx ∼ D(x) exp[F(x)/kT]. Assuming that
D(x) is relatively constant, the equation shows that regions
with high free energy (barriers) get exponentially magnified
compared to the regions with low free energy (minima). When
one tries to update the RC using a low degree polynomial r′ =
f(r, y), it is difficult to simultaneously update the entire RC on
two very different scales. Increasing the polynomial degree
might help; however, a more efficient solution is to update the
segments with vastly different scales separately. For example
one may use different low degree polynomials for different
segments. Second, the fact that −ln ZC,1(r, Δt0) is higher than
the other −ln ZC,1(r, Δt) around the TS indicates that the latter
are less optimized than the former, e.g., the RC is optimized in
a temporally nonuniform way.
2.3. Improving Spatial Uniformity. To identify such less

and more optimized spatiotemporal segments in an automatic
way, i.e., without user intervention, we suggest the following
procedure. During optimization the variability of ZC,1(r, Δt) is
monitored to determine the regions of RC which are less
optimized. Namely, the larger the difference between −ln
ZC,1(r, Δt′) and −ln ZC,1(r, Δt) for some Δt′ > Δt the less
optimal is the coordinate in the region around r. One finds such
Δt′ > Δt, for which the nonuniformity of the distance between

the profiles ξ
ξ

r
r

max ( )
min ( )

r

r
is the largest, where ξ(r) = ZC,1(r, Δt)/

ZC,1(r, Δt′). Then segments where ξ(r) > (1−0.02)maxr ξ(r)
are considered to be less optimized. The less and more
optimized segments of the RC are updated using different
polynomials of higher and lower degree, respectively. Here we
used polynomials of fifth and second degree. A polynomial of
lower, fourth, degree was not sufficiently flexible to improve
suboptimal regions. One can also just update the less optimized
segments while keeping the rest of the RC fixed. This simple
procedure improves the spatial uniformity of optimization.
2.4. Improving Temporal Uniformity. Temporal uni-

formity can be improved by optimizing the RC with longer
sampling intervals. However, one cannot simply optimize Δr2 =
∑k[r(kΔt + Δt) − r(kΔt)]2, with, e.g., Δt = 2Δt0. The optimal
RC corresponding to Δt > Δt0 differs from that corresponding
to Δt = Δt0.22 An intuitive way to understand the difference is
to note that when a trajectory is observed with a longer
sampling interval, one may miss the events when the system
visits a boundary node and quickly comes back, thus
underestimating the probability to end up at the boundary.
More formally, if the RC ri satisfies eq 2a for Δt = Δt0, then it is
straightforward to show that ri satisfies the same equation for
Δt = kΔt0, where Pji(kΔt) = Pk(Δt)ji. However, the equation is
not satisfied by the boundary nodes, which satisfy eq 2b. In
particular, eq 2a means that the average displacement from
every point is zero, and for a boundary point it is not true: all
points are either smaller or larger than it.
One way to overcome this problem is to eliminate

boundaries without modifying the RC by joining two identical
copies of the RC into a circle as shown in Figure 3a.31,32 When
at states A or B, the system can follow either of the RC copies
with equal probability. Then the average displacement from
points A and B is zero due to symmetry, i.e., eq 2a is valid for all
points. The optimal RC (the solution of eq 1 or eq 2a) on a
circle is a multivalued function.31 For example, consider
diffusion on a circle with constant U(ϕ) and D(ϕ), where ϕ

is the angle. Eq 1 reads ∂2q/∂ϕ2 = 0, with the solution q = ϕ/π,
meaning q is multivalued similar to ϕ: after making the full
circle q is incremented by 2 (2 RCs of length 1).
In practice this multivalued RC on a circle, denoted by z

(Figure 3b), is constructed from single valued RC r as follows.
Consider a circle with a perimeter of 2 (radius 1/π) with
coordinate z along the perimeter (Figure 3a). States A and B
correspond to points with angle ϕ = π and ϕ = 0,
correspondingly (Figure 3a). The points divide the circle into
two segments: lower half γ0 for ϕ ∈ [−π: 0], where z(r) = r and
upper half γ1 for ϕ ∈ [0: π], where z(r) = 2 − r. These points,
correspondingly, divide the multivalued RC into different
segments or branches zm (Figure 3b). For each segment zm one
has the following correspondence: zm(r) = m + r for even m =
2l i.e., for segments on γ0, and zm(r) = m + 1 − r for odd m = 2l
+ 1 i.e., for segments on γ1. The segment number time-series
m(kΔt0) is determined from seed RC time-series r(kΔt0) as
follows. Whenever the trajectory visits a boundary node, it
selects with equal probability which of the two adjoint segments
it will follow. For example, when the trajectory, currently on
segment z0, visits node B, it selects with equal probability z0 or
z1, if it visits node A, it selects between z0 and z−1. Once
determined, m(kΔt0) are kept fixed during optimization (the
boundary states snapshots do note move), only r(kΔt0) can
change. Such constructed multivalued function z satisfies eq 2a
for any value of Δt, and thus one can optimize Δz2(Δt) =
∑k[zm(kΔt+Δt)(r(kΔt + Δt)) − zm(kΔt)(r(kΔt))]2 for any value of
Δt. Note that Δz2(Δt0) = Δr2(Δt0).

2.5. Adaptive Nonparametric Optimization. The ideas
described above are combined into a simple optimization
algorithm. Starting with RC initialized to zero, one iteratively
improves the RC by nonparametrically minimizing Δz2(Δt),
using polynomials of fifth and second degrees for less and more
optimized segments of the RC, respectively. Every 5 iterations
ZC,1 profiles are scanned to identify these segments. The
sampling interval Δt is changed randomly every 50 iterations as
Δt = 2[10η]Δt0, where η is a uniformly distributed random
number and [···] denotes an integer part. For Δt > Δt0
optimization continues while Δz2(Δt)/2 > 1.15NAB, while for
Δt0 it continues while Δz2(Δt0)/2 > NAB. The flowchart of the
algorithm is provided in Figure 8 in the Appendix. Figures 2c-d
show the results obtained with the approach (cf. Figure 1). The
variability of ln ZC,1 is uniformly decreased; it is roughly
bounded by ±0.08, which means that we are close to the
inherent statistical noise, and further improvement of the
results makes little sense.

3. RESULTS
3.1. The FEP as a Function of the Optimal RC. Using the

committor for the analysis and description of the folding
dynamics may not be very convenient as the diffusion
coefficient varies significantly along the coordinate D(q) =
JAB/Peq(q) = ZH(q)

−1NAB/Δt, where Peq(q) is the equilibrium
probability or ZH(q) is the corresponding histogram density
computed from q(kΔt0).

5,19,20,22 It is more convenient to use a
“natural” coordinate, which we denote as q ̃, where the diffusion
coefficient is constant D(q ̃) = 1 and that is related to the
committor by the following monotonous transformation dq ̃/dq
= D(q)−1/2.24 Since the transformation is monotonous, the new
coordinate is as good as the committor for the description of
the dynamics. Figure 4 shows the free energy profile F(q ̃) as a
function of q ̃. Note that D(q ̃) = 1 in units where time is
measured in timesteps of 0.2 ns.
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The free energy profile F(q ̃) is relatively smooth in the
denatured state (D) and the TS, while the native state (N) has
many deep minima and high barriers. It is consistent with
experimental observations that the native state has many
conformational substates.33 The substates differ structurally
only locally. The high barriers are likely due to the compact
structure of the native state: to perform any local conforma-
tional change, the protein needs to partially unfold first.
A single reaction coordinate does not show multiple

pathways explicitly. However, if free energy basins that belong
to different pathways do not overlap, they can serve as

fingerprints to distinguish different pathways. For example,
there is a clear separation between distributions of residence
times on each transition path in the deep basin defined by |q−
0.863| < 0.0002 (Figure 5). About 29 of a total of 146 pathways

Figure 4. FEP of HP35: F(q ̃), where q ̃ is the optimal RC or the
committor rescaled so that the diffusion coefficient is constant, D(q ̃) =
1.

Figure 5. Cumulative distribution of residence times tres in the basin q
= 0.863 for different transition paths (symbols). The distribution can
be accurately approximated by a sum of two exponents with two very
different time scales 117e−τ/0.00778 + 29e−τ/51.3 (line), which suggests
two different pathways.

Table 1. Comparison of the Dynamical Quantities Computed from the Diffusive Model and Directly from the Trajectorya

q̃(a) q̃(b) Nab mfptab mfptba mtptab

0 84.5 73 (0.1%) 3034 (0.1%) 1101 (−0.1%) 234 (−4%)
1.7 83 75 (2%) 3032 (−3%) 1102 (−2%) 208 (−8%)
17 68 89 (3%) 2547 (−3%) 962 (−3%) 66 (−13%)
36.5 58.6 115 (8%) 2072 (−7%) 750 (−7%) 10.7 (−1%)
38 55 127 (12%) 1959 (−11%) 712 (−11%) 7.8 (−13%)

aThe numbers show the latter, while percentages in the brackets show the relative difference between the two. Times are given in ns.

Figure 6. MSD of various RCs as a function of time: ⟨Δz2⟩ is shown
by blue squares, ⟨Δq2⟩ is shown by red circles, the MSD of the fraction
of native contacts is shown by yellow crosses, and the MSD of the Cα

rmsd from the native structure is shown by green x’s. The line shows
the diffusive dependence 2NABΔt/(NΔt0). For small Δt, when the
system does not yet feel the boundaries, ⟨Δq2⟩ ∼ Δt.

Figure 7. Flowchart outlines the nonparametric RC optimization
algorithm. The algorithm computes the putative RC time-series
r(kΔt0). * points that belong to the boundary states A and B are
initialized to 0 and 1, respectively. They do not change during RC
optimization.
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belong to the second distribution with much longer mean
residence times. It suggests that this basin is an intermediate
state, that belongs to a minor pathway.
3.2. The Diffusive Model Reproduces Important

Dynamical Quantities. The profile F(q) with the diffusion
coefficient D(q) or F(q ̃) and D(q ̃) define a diffusive model of
the dynamics projected on the committor. According to the
theory this model should provide a rather accurate description
of folding dynamics of the protein.5,19,20,22 In particular, the
following important dynamical quantities can be computed
exactly: the equilibrium flux JAB = NAB/(NΔt0) where N is the
total number of trajectory snapshots, the mean first passage
times (mfpt), and the mean transition path times (mtpt). Also,
the mean squared displacement grows linearly with time as for
simple diffusive motion.
The quantities were computed as5

∫ ∫= ̃
̃

= ̃
̃ Δ̃

̃

̃

̃

− ̃N
dq

Z q
dq

D q t
1

( ) e ( )AB q A

q B

C q A

q B

F q( )

( )

,1 ( )

( )

( )
0 (3)

∫=
Δ

− = ⟨ − ⟩
N t
N

dqP q q q Jmfpt ( )(1 ) 1 /AB
AB

eq AB
0

0

1

(4)

∫=
Δ

− = ⟨ − ⟩
N t
N

dqP q q q q q Jmtpt ( ) (1 ) (1 ) /AB
AB

eq AB
0

0

1

(5)

By selecting two points a and b (a < b) on the committor q,
one can define two new boundary states: A′ contains all the
points with q < a, and B′ contains all the points with b < q. The
optimal RC for the new boundary states can be obtained by
simple rescaling of the original RC:5 q′ = (q − a)/(b − a) for a
< q < b; q′ = 0 for q < a; and q′ = 1 for b < q. Hence, the
equilibrium flux, the mfpt, and the mtpt can be computed
exactly between any two such states.
Table 1 compares these quantities computed from the

diffusive model using eqs 3−5 and directly from the trajectory
for different boundary states along the RC. We selected the
original boundary states and free energy minima. The relative
differences are around the expected statistical error for q of 8%.
The differences can be reduced even further, if one removes
non-negligible systematic bias due to the finite value of the
trajectory sampling interval Δt0 (see Appendix, Table 3).
Figure 6 shows the mean squared displacement (MSD) as a

function of time computed for different RCs. The MSD of the
multivalued optimal RC (z) follows a simple diffusive law, i.e., it
grows linearly with time ⟨Δz2⟩ = 2NABΔt/(NΔt0). The MSD of
q follows that of z for small Δt, when the system does not yet
feel the boundaries, and approaches the limiting value for large
Δt. The MSD of the other two popular suboptimal RCs, the
fraction of native contacts and the Cα rmsd from the native
structure, shows subdiffusive behavior: ⟨Δr2⟩ ∼ Δtα with α ∼
0.45 and α ∼ 0.35, respectively. This illustrates that one of the
reasons that the dynamics of various protein degrees of
freedom is subdifusive is because these degrees are not optimal
RCs.5,22,34−36

3.3. The Pre-Exponential Factor. A fundamental problem
in the analysis of protein folding dynamics, and an active area of
research, is the determination of the free energy barrier ΔF and
the pre-exponential factor k0, which are related to the folding
rate as kf = k0e

−ΔF/kT. Direct determination of these quantities
from experiment has been hampered by very limited spatial and
temporal resolution. The situation has significantly improved

recently37−40 e.g., one can now directly estimate the transition
path times by counting single photons. However, the
interpretation of the experiments still assumes a particular
shape of the folding free energy landscape, which cannot be
established in a direct manner. In this sense, the following
quote from Yang and Gruebele41 summarizes the experimental
situation: “Without sufficient knowledge of the critical reaction
coordinate for describing the motion represented by ν+ [here
k0] it is impossible to relate experimentally determined folding
rates rigorously to computed free energy barriers.”.
Having determined the optimal RC q ̃ and the corresponding

FEP F(q ̃), which provide a quantitative description of the
folding dynamics, we are now in a position to rigorously
determine these quantities in a direct manner. We first note
that to uniquely determine the height of the barrier, which is
not invariant to monotonous transformations of RC (compare
F(q) with F(q ̃)), one needs to impose the constraint that the
diffusion coefficient is constant. We estimate k0 in three
different ways. Taking the folding barrier of 4kT (Figure 4) and
kf
−1 = τf = 3054 ns (Table 1) one finds k0

−1 = 55 ns.
Applying the harmonic approximation to the Kramer’s

equation for the mfpt and assuming that the curvature at the
denatured state and the unfolding basin are approximately
equal, one can derive the following estimate k0

−1 = 2πτcorr, where
τcorr = kT/(Dω)2 is the autocorrelation decay time at the TS.42

The TS is approximated by a parabola with (ω2/2)/kT = 0.023,
leading to k0

−1 = 27 ns.
Assuming diffusive dynamics over the parabolic TS (with the

barrier height over 2kT), Szabo derived the following relation
between the mtpt and k0

43

π τ= γ−k e kmtpt (2 ) ln[2 ln( )]f0
1

0 (6)

where γ = 0.577 is Euler’s constant. Taking points with q ̃ = 38
and q ̃ = 55 or q ̃ = 36.5 and q ̃ = 58.6 as boundaries for
computing the mtpt (Table 1) one finds k0

−1 = 18 ns or k0
−1 = 24

ns, respectively. For boundaries at q ̃ = 17 and q ̃ = 68 or q ̃ = 1.7
and q ̃ = 83 one finds k0

−1 = 186 ns or k0
−1 = 888 ns, respectively.

As one notes the estimate strongly depends on the choice of
the boundaries.
We argue that the correct choice of boundaries is q ̃ = 38 and

q ̃ = 55 or q ̃ = 36.5 and q ̃ = 58.6. Inside these boundaries the
free energy profile is (approximately) parabolic, and thus the
assumptions used to derive eq 6 are satisfied. While the
boundaries are closer to the TS than to the minima of the
denatured and native states, the mfpt between them captures
65% of the folding time. In other words, eq 6 is rather accurate,
if applied to the parabolic part of the TS.
FEPs along suboptimal RCs are rather smooth with no

apparent barriers in the native basin (see, e.g., Figures 1c and
e), which may lead one to the erroneous conclusions that an
estimate based on eq 6 is valid for boundaries taken far from
the TS, e.g., at the bottoms of the basins. The diffusive model
cannot be used for a quantitative description of the dynamics
projected on such an RC, because the projected dynamics is
subdiffusive. For example, the difference between the mtpt
computed from the diffusive model and from the trajectory for
the number of native contacts RC (Figure 1c) is 1145%.

4. CONCLUDING DISCUSSION

We have presented an approach to determine the optimal RC
or committor for realistic systems with limited sampling. The
approach is nonparametric and can approximate any RC with
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high accuracy. It can be readily applied to any system, avoiding
prior analyses required to suggest a good system-specific
functional form approximating the RC. In order to optimize the
RC in a uniform manner we introduced adaptive optimization
over different spatiotemporal regions, which required the
introduction of a multivalued RC.
The approach was applied to the equilibrium folding

trajectory of the HP35 double mutant. The determined RC
closely approximates the committor as was validated by the
optimality criterion − ZC,1 is constant up to the expected
statistical noise. We have demonstrated that important
dynamical properties - the equilibrium flux, the mean first
passage times, and the mean transition path times between any
two regions on the RC can be computed exactly, up to
statistical uncertainty. The mean squared displacement of the
optimal RC grows linearly with time as for simple diffusion. We
emphasize that no fitting of the parameters of the diffusive
models was employed and that an accurate description is
achieved at the trajectory time scale of 0.2 ns. Using this RC we
obtained a direct rigorous estimate for the pre-exponential
factor of k0

−1 ∼ 30 ns.
To determine the optimal RC one needs to specify the

boundary states A and B, which is often done by using order
parameters, e.g., the root-mean-square deviation from the
native structure here. However, such a definition may lead to

poor results in more complex systems, where conventional
order parameters may not be sensitive enough. One possibility
to properly define boundary states in such systems is to use
dominant eigenvectors, determined by the nonparametric
approach.12 While the process of nonparametric optimization
of eigenvectors is not stable, its initial stable phase could be
sufficient to define the boundary states.
The problem of finding an optimal RC for the description of

complex dynamics is not unique to protein folding or molecular
dynamics in general. Consider, for example, the problem of
accurate description, monitoring and prognosis of disease
dynamics. We assume that disease dynamics should be
described stochastically, e.g., due to inherent randomness or
coarse grained/incomplete description. In that case the best
coordinate that describes the progress of the disease (the best
biomarker) between two end states, e.g., healthy and abnormal,
is the committor.5,26 In particular, it should accurately predict
the odds of positive outcome and the mean time to achieve
that. The proposed approach can be used to construct such a
coordinate from an ensemble of patient trajectories in an
automated way without any disease specific information.

■ APPENDIX

Properties of ZC,1(r, Δt)
Given a long RC time-series r(kΔt0), ZC,1(r′, Δt) equals half the
total length the trajectory makes, when it transits through a
point r′ on the RC

∑′ Δ = | Δ + Δ − Δ |
′

Z r t r t k t r k t( , ) 1/2 ( ) ( )C
k

r

,1
(7)

where ∑k
r′ denotes the sum over such k when r′ is between r(Δt +

kΔt) and r (kΔt). This quantity can be computed by
considering every timestep Δt = Δt0 of the time-series, every
second timestep Δt = 2Δt0, third, and so forth.
If the RC satisfies eq 2a, then ZC,1(r, Δt0) = const.22 If RC

satisfies 2a, then it satisfies 2a with Pij(2Δt0) = ∑kPik(Δt0)
Pkj(Δt0) and ZC,1(r, 2Δt0) = ZC,1(r, Δt0) = const, and so forth.22

Boundary nodes satisfy eq 2b rather than eq 2a, and if
transitions over r′ visit boundary nodes, then ZC,1(r′, Δt > Δt0)
≠ ZC,1(r′, Δt0). To overcome this problem at the boundaries, a
special counting method using the ensemble of transition path
segments has been suggested which restores driftlessness at
boundaries and makes ZC,1 constant everywhere.

22 Alternatively
one can combine two identical copies of the RC into a circle in
order to eliminate boundaries,31,32 as described in the main text
(Figure 3). In this case the RC is a multivalued function,
denoted as z. Below, for brevity, ZC,1(r′, Δt) denotes the ZC,1
profile as a function of the original RC r, while ZC,1(z′) denotes
a different ZC,1 profile as a function of the multivalued RC z.
Analogously eq 7, given time-series z(kΔt0), ZC,1(z′, Δt), equals
half the total length the trajectory makes, when it transits
through a point z′ on the RC

∑′ Δ = | Δ + Δ − Δ |
′

Z z t z t k t z k t( , ) 1/2 ( ) ( )C
k

z

,1
(8)

where ∑k
z′ denotes the sum over such k when z′ is between z(Δt +

kΔt) and z(kΔt). ZC,1(r′, Δt) is obtained by summing up over
all segments or branches zm(r′) of the multivalued function z,
i.e., by projecting z back to r:

Figure 8. Flowchart outlines the adaptive nonparametric RC
optimization algorithm. The algorithm computes the putative RC
time-series r(kΔt0). * points that belong to the boundary states A and
B are initialized to 0 and 1, respectively. They do not change during
RC optimization. # for Δt = Δt0 the condition is Δz2(Δt0)/2 > NAB.
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∑′ Δ = ′ ΔZ r t Z z r t( , ) ( ( ), )C
m

C m,1 ,1
(9)

For the optimal RC or the committor such computed ZC,1(r′,
Δt) = NAB is constant, i.e., is independent of r′ and Δt for Δt
much less than the trajectory length.
In the limit of very small Δt, ZC,1(r, Δt) = ZH(r)D(r)Δt,

where ZH(r) ∼ e−F(r)/kT is the density of trajectory points
around r, F is the free energy, and D is the diffusion coefficient
(5). The relation can be used to determine the diffusion
coefficient for arbitrary RC. For very large Δt, ZC,1(r, Δt) =
NAB. Since for the committor coordinate ZC,1(q, Δt) is constant
for all Δt and thus is equal to NAB, one can determine the
diffusion coefficient along the committor as D(q) =
ZH(q)

−1NAB/Δt.
Integrating eq 7 one obtains ∫ ZC,1(r, Δt)dr = ∑k[r(kΔt +

Δt) − r(kΔt)]2/2, hence ZC,1(r, Δt) can be considered as the
local average density of Δr2/2. Difference between two profiles
ZC,1(r, 2Δt) and ZC,1(r, Δt), averaged over some local region, is
proportional to Δr2(2Δt) − Δr2(Δt) ∼ ⟨(r(t + Δt) − r(t))(r(t)
− r(t − Δt))⟩, the correlation between successive displace-
ments. Which means that the closer ZC,1(r, Δt) profiles for
different Δt, the closer the correlation is to zero. For the
optimal RC or the committor, ZC,1(q, Δt) is constant for all Δt,
and the correlation is zero. If ZC,1(r, Δt) < ZC,1(r, Δt0) for Δt >
Δt0, then the correlation is negative and the dynamics is
subdiffusive. The larger the difference, the more negative are
correlations and the more suboptimal is the coordinate. If,
alternatively, ZC,1(r, Δt) > ZC,1(r, Δt0), then the correlation is
positive and the dynamics is superdiffusive.

Removing Systematic Bias Due to Finite Value of the
Trajectory Sampling Interval Δt0
Table 1 compares dynamical quantities determined using the
diffusive model with that computed directly from the atomistic
trajectory. Equations for the equilibrium flux, the mfpt, and the
mtpt (eqs 3−5) were derived assuming that the dynamics is
observed with infinitely high temporal resolution. In practice,
however, the trajectory is saved with a finite sampling interval
Δt0, which means that some of the events, when the system
quickly visits a boundary state and comes back, can be missed.
This may lead to systematic underestimation of the number of
transitions NAB and overestimation of the mfpt and the mtpt.
An accurate way, which removes this systematic bias, is to
compare the estimates for the same value of Δt0. One may
either compare eqs 3−5 with the results obtained directly from
trajectory in the limit of Δt0 → 0, or one may simulate diffusive
dynamics on the free energy profile F(q ̃) and determine the
equilibrium flux, the mfpt, and the mtpt, when observed with
the sampling interval of Δt0. We followed the second option.
Diffusive dynamics on the free energy profile F(q ̃) was
simulated using MC with diffusion coefficient D(q ̃) = 1 and a
timestep of 0.001Δt0. The simulation length was chosen to be

much longer than the original trajectory, so that statistical
errors are negligible. Table 2 compares the dynamical quantities
computed with sampling intervals Δt0 and 0.001Δt0. One can
see that, indeed, the systematic differences due to the finite
sampling interval are non-negligible and comparable to the
differences shown in Table 1.
Table 3 compares the dynamical quantities computed by

simulating diffusion on the free energy profile F(q ̃) with that

computed directly from the original atomistic trajectory, both
with sampling interval Δt0. The differences are now smaller in
comparison to the corresponding differences in Table 1.
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