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A central goal of protein-folding theory is to predict the stochastic dynamics of transition paths
— the rare trajectories that transit between the folded and unfolded ensembles — using only ther-
modynamic information, such as a low-dimensional equilibrium free-energy landscape. However,
commonly used one-dimensional landscapes typically fall short of this aim, because an empirical
coordinate-dependent diffusion coefficient has to be fit to transition-path trajectory data in order
to reproduce the transition-path dynamics. We show that an alternative, first-principles free-energy
landscape predicts transition-path statistics that agree well with simulations and single-molecule
experiments without requiring dynamical data as an input. This ‘topological configuration’ model
assumes that distinct, native-like substructures assemble on a timescale that is slower than native-
contact formation but faster than the folding of the entire protein. Using only equilibrium simulation
data to determine the free energies of these coarse-grained intermediate states, we predict a broad
distribution of transition-path transit times that agrees well with the transition-path durations ob-
served in simulations. We further show that both the distribution of finite-time displacements on a
one-dimensional order parameter and the ensemble of transition-path trajectories generated by the
model are consistent with the simulated transition paths. These results indicate that a landscape
based on transient folding intermediates, which are often hidden by one-dimensional projections,
can form the basis of a predictive model of protein-folding transition-path dynamics.

I. INTRODUCTION

In studies of complex molecular systems, free-energy
landscapes provide a tractable and intuitive framework
for predicting rare events. Free-energy landscapes are
low-dimensional projections that describe the equilib-
rium distribution of molecular configurations with re-
spect to a small number of collective variables. However,
when appropriately defined, these landscapes can also
be used to predict dynamical properties of equilibrium
or near-equilibrium stochastic trajectories, such as the
relative rates of transitions between macrostates. This
feature, combined with the fact that a variety of com-
putational techniques have been developed for efficiently
calculating free energies without directly simulating rare
events [1], makes free-energy landscapes useful for ratio-
nalizing reaction and phase-transformation mechanisms
in complex systems. Consequently, theories based on
free-energy landscapes are widely applied to problems in
classical [2–4] and non-classical [5, 6] nucleation, phase
separation [7, 8], and protein folding [9–12].
A particularly important problem in protein folding is

the prediction of transition paths between the unfolded
and folded ensembles [13–18]. These trajectories are
both rare and, at an atomistic level, extremely hetero-
geneous, making this problem ideal for landscape-based
theories. One of the most widely adopted approaches
is to model folding as a diffusion process on a smooth,
one-dimensional free-energy landscape [19–25]. Never-
theless, even when using a good reaction coordinate,1

1 In this context, a good reaction coordinate is one that not only
distinguishes the unfolded and folded states, but also takes a
single value for all configurations visited on transition paths that
have an equal probability of reaching either of these macrostates.

one-dimensional landscapes typically have to be cor-
rected empirically to reproduce the dynamical properties
of the actual stochastic folding trajectories [25, 26]. This
correction can be achieved by introducing a position-
dependent diffusion coefficient [27], since the gradient
of the free-energy landscape itself is not sufficient to
predict the relative rates of molecular motions on the
one-dimensional reaction coordinate. The key limita-
tion of this approach is that the transition-path trajec-
tories that we wish to predict are required as input,
either to determine the coordinate-dependence of the
diffusion coefficient [26, 28–30] or to find a projection
for which the apparent diffusive behavior is coordinate-
independent [31, 32]. It is also unclear whether a sin-
gle optimized one-dimensional coordinate can always be
found for large proteins, which may have more compli-
cated or parallel folding pathways [33]. Furthermore, re-
cent single-molecule measurements of folding transition
paths [15, 34] have provided experimental evidence of
the shortcomings of one-dimensional landscapes, as the
folding free-energy barrier inferred by applying a one-
dimensional diffusion model to measured transit-time dis-
tributions is often inconsistent with the landscape deter-
mined directly in the same experiments [35, 36].

In contrast, an optimal free-energy landscape is one
that is capable of predicting the statistical properties of
stochastic transition paths without requiring additional,
empirical kinetic information. To address this problem,
we recently proposed an alternative, first-principles ap-
proach [37] for constructing structure-based free-energy
landscapes to describe protein-folding transition paths.
Based on an analysis of a native-centric ‘Ising-like’
model [38–40], we postulated that the key events along
transition paths coincide with the formation of native-
like loops in the polymer backbone [41]. We therefore
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devised a coarse-graining procedure in which microstates
sharing the same set of native-like loops, but different
sets of native contacts, are grouped into the same ‘topo-
logical configuration.’ Because the loss of entropy due
to loop closure is not compensated until multiple stabi-
lizing native contacts are formed, we further postulated
that these topological configurations are, in general, sep-
arated by free-energy barriers, leading to a separation
of timescales between the formation of individual native
contacts and the assembly of topological configurations.
Consistent with this prediction, we found that topologi-
cal configurations interconvert on much slower timescales
than individual native contacts in atomistic simulations
and that these slower transitions follow roughly Marko-
vian dynamics [37].
In this paper, we show that the topological configura-

tion model accurately describes the stochastic dynamics
of transition-path trajectories. By estimating the free
energies of the predicted topological configurations us-
ing equilibrium all-atom simulation snapshots [42], we
apply this model to generate an ensemble of transition
paths in terms of transitions between coarse-grained, par-
tially folded states. First, we show that the distribu-
tion of transit times predicted by this approach is much
closer to the distribution of simulated transit times than
that predicted by a model of diffusion on a smooth one-
dimensional landscape. Second, we demonstrate that the
distribution of simulated finite-time displacements on a
one-dimensional order parameter can be rationalized by
the topological configuration model. Lastly, we use a hid-
den Markov framework to show that the predicted sepa-
ration of timescales generates an ensemble of transition
paths that is consistent with the simulated folding trajec-
tories. Overall, these results indicate that a free-energy
landscape defined on the basis of transient, native-like in-
termediates can predict protein-folding transition paths
without requiring post hoc corrections to the transition-
path dynamics.

II. THEORY

A. Definition of a topological configuration

The central principle of the topological configura-
tion model [37] is a separation between three different
timescales: a relatively fast timescale associated with
native-contact formation, a slower timescale on which
substantial portions of native structure assemble, and a
slowest timescale on which the entire protein folds. The
timescale separation for these processes has been well es-
tablished experimentally, with measurements reporting
single-contact formation on timescales of approximately
10 ns [43], native-like loop formation on timescales of
100 ns–1µs [44], and the folding of proteins with approx-
imately 100 residues or more on timescales of 100µs or
longer [45]. It is also well established that the entropy–
enthalpy compensation of protein folding is imperfect,
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FIG. 1. Definition of topological configurations for the protein
Ubiquitin. (a) A map of the residue–residue native contacts
determined from a crystal structure (PDB ID: 1ubq). Sub-
structures, comprising sets of at least six adjacent native con-
tacts, are colored and labeled. Native contacts that are not
part of any substructure are shown in gray. (b) A schematic
topological configuration free-energy landscape showing a sin-
gle pathway between the completely unfolded, ‘∅,’ and na-
tive, ‘abcdefg,’ configurations. These configurations are sepa-
rated by free-energy barriers and thus interconvert on a slower
timescale than the formation of individual native contacts.
Selected configurations are illustrated below, where stretches
of disordered residues are indicated by dashed lines.

meaning that while a small number of native contacts is
rarely sufficient to counter the associated loss of configu-
rational entropy completely, the formation of subsequent
native contacts tends to be more thermodynamically fa-
vorable [46, 47]. This general feature, which is respon-
sible for the overall free-energy barrier that determines
the slowest timescale of protein folding, also gives rise to
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many smaller barriers on folding transition paths. In par-
ticular, the entropic penalty associated with the closure
of a single native-like loop typically results in a small yet
significant free-energy barrier, which in turn leads to a
dynamical timescale that is slower than the average rate
of native-contact formation but faster than the rate at
which the entire protein folds.
By identifying native loops and considering all per-

mutations of the order in which they can form, we can
construct a free-energy landscape that captures this key
intermediate timescale. We previously demonstrated [37]
how this analysis could be applied to a structure-based,
‘Ising-like’ model based on the pioneering work of Eaton
and colleagues [38, 48, 49]. In that work, we calculated
the free-energy barriers between configurations in the
structure-based model to support the predicted separa-
tion of timescales. We also provided indirect evidence of
intermediate barriers in an all-atom model by analyzing
the dwell times associated with the predicted topological
configurations in all-atom simulations.
As in Ref. 37, we shall focus on the protein Ubiquitin in

order to test the topological configuration model’s ability
to predict transition-path dynamics. In the contact map
shown in Figure 1a, individual ‘substructures’ comprise
native contacts that are adjacent2 in the contact map.
Topological configurations are defined as combinations
of one or more substructures, including any additional
native contacts between the residues that comprise these
substructures. As shown in the schematic Figure 1b, we
can then construct a free-energy landscape in the dis-
crete space of topological configurations. Transitions are
allowed between configurations that differ by a single sub-
structure (and thus a single native-like loop closure). It
is important to note that each topological configuration
is not a rigid structure but rather an ensemble of mi-
crostates, in which different sets of native contacts are
present but the same set of substructures (and, conse-
quently, native-like loops) are represented. Furthermore,
due to the predicted separation of timescales, the fluc-
tuations in native-contact formation within a topological
configuration are typically much faster than the transi-
tions between configurations.

B. Estimation of topological configuration free
energies from Molecular Dynamics simulations

In this paper, our goal is to evaluate the predictions
of a free-energy landscape constructed solely from ther-
modynamic data. For this purpose, we analyzed snap-
shots from all-atom Molecular Dynamics (MD) simula-
tions [42], which were conducted under conditions where
a total of ten unbiased, reversible folding and unfolding

2 Two contacts are adjacent if each residue in the first contact is an
immediate neighbor of one of the residues in the second contact;
for example (i, j) is adjacent to (i, j + 1) and (i + 1, j + 1).

transition paths of Ubiquitin were observed. To calculate
the free energy associated with each predicted topological
configuration, we first classified all simulation snapshots,
recorded at 1 ns intervals, according to which substruc-
tures are present. In each snapshot, we found all na-
tive residue–residue contacts in which at least one pair
of heavy atoms is less than 4.5 Å apart. We then con-
sidered a substructure to be formed if at least six of its
native contacts were present in the largest structured re-
gion, i.e., the largest connected component of the graph
of native residue–residue contacts in a simulation snap-
shot. As demonstrated in Ref. 37, this definition prevents
contacts with extremely brief lifetimes (on the order of
1 ns) from influencing the identification of substructures.
Free energy differences between pairs of configurations
(i, j) were estimated according to the relative frequen-
cies of the classified snapshots,

∆Fij = −kBT log (Ni/Nj) , (1)

where Ni is the total number of snapshots assigned to
configuration i, kB is the Boltzmann constant, and T is
the absolute temperature. For comparison with theories
based on one-dimensional free-energy landscapes, we also
calculated the free-energy landscape as a function of the
number of native heavy-atom contacts [50] using a 4.5 Å
cutoff distance,

F (x) = −kBT logN(x) + const., (2)

where N(x) is the total number of snapshots in which
the number of native contacts falls in the range
[x−∆x/2, x+∆x/2). This one-dimensional free-energy
landscape is shown in Figure 2a, where the bin width ∆x
is taken to be 4 native contacts.
The central object of the topological configuration

model is the rate matrix T for transitions between topo-
logical configurations. Ideally, one should determine the
transition rates either from the free-energy barriers or the
mean first passage times between configurations, but ac-
curate calculations of this type are not possible given the
available simulation data. Instead, we simply assumed a
symmetric form that enforces detailed balance for the for-
ward and backward rates between configurations i and j,

Tij = k0 exp

(

−
∆Fji

2kBT

)

i 6= j, (3)

for pairs of configurations (i, j) that differ by the addition
or removal of a single substructure; the diagonal elements
of the matrix are then Tii = −

∑

j 6=i Tij . The prefactor k0
is the same for all transitions and is left as an adjustable
parameter that scales all barrier heights between con-
figurations equivalently. However, due to the assumed
separation of timescales, we know that k0 should be slow
compared to the average rate of native-contact forma-
tion. Then, given the matrix T , it is straightforward to
calculate the overall folding rate, kfold; the committor
associated with each configuration i, pfold,i; the proba-
bility of finding a trajectory in a specific configuration
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FIG. 2. Comparison of the topological configuration and one-
dimensional (1-d) free-energy landscapes. (a) Projections of
the free-energy surfaces onto the number of native contacts.
Selected curves corresponding to distinct topological config-
urations (solid colored lines) are labeled; the 1-d projection
F (x), with bin width ∆x = 4 native contacts, is shown by the
dashed black line. (b) The unimodal projections of the topo-
logical configurations onto the number of native contacts can
be characterized by Gaussian distributions with the indicated
means (squares) and standard deviations (error bars). The
dotted lines indicate allowed transitions between configura-
tions that differ by exactly one substructure. (c) The com-
mittors, pfold, associated with each configuration (squares),
projected onto the number of native contacts. Selected config-
urations are labeled, and the predicted folding fluxes through
the network of states are indicated by the widths of the gray
lines; fluxes less than 5% have been omitted. For comparison,
the dashed black line shows pfold(x) predicted by the 1-d land-
scape, where the vertical dotted lines indicate the boundaries
of the transition-path region, xA and xB. In all panels, the
configurations are colored according to their estimated free
energies, Fi = −kBT logNi, with blue and red indicating low
and high free energies, respectively.

i on a transition path, mAB
i ; and the folding fluxes be-

tween adjacent states i and j, fAB
ij , using transition-path

theory [51]. These quantities will be used throughout
our analysis. We shall show that, despite not undertak-
ing detailed calculations of the individual barrier heights,
this model produces remarkably accurate transition-path
statistics. Furthermore, alternative choices for the form
of the rates given in Eq. (3), such as a Metropolis func-
tion [52], do not change the qualitative nature of our
results. We also note that all timescales determined di-
rectly from the atomistic simulations are accelerated rel-
ative to experiments, in part due to the elevated temper-
ature at which the simulations were conducted [42].

C. General properties of topological configuration
free-energy landscapes

In addition to a separation of timescales, our previ-
ous analysis [37] of this model made two general pre-
dictions that hold up when comparing with simulation
data. First, the Boltzmann-weighted ensemble of mi-
crostates associated with each topological configuration
is predicted to be unimodal when projected onto a one-
dimensional coordinate. For example, the free energy
as a function of the number of native contacts is uni-
modal for all topological configurations, as shown by
the labeled colored curves in Figure 2a, suggesting that
there are no significant free-energy barriers between mi-
crostates within each configuration. Consequently, it is
reasonable to approximate the projection of each config-
uration onto this order parameter using a Gaussian dis-
tribution with the estimated mean, 〈x〉i, and variance,
〈x2〉i − 〈x〉2i , where the subscripts indicate averages over
all snapshots classified as topological configuration i, as
shown in Figure 2b. This approximation will be used in
the discussion of hidden Markov modeling below.
Second, in the case of proteins such as Ubiquitin with

little structural symmetry, the free energies of the various
topological configurations are relatively heterogeneous,
which results in a small number of high-probability
transition paths through the network. By applying
transition-path theory [51] to the rate matrix T , we cal-
culated pfold for each configuration and the folding flux
between configurations on transition paths. Figure 2c
shows that there is a nearly one-to-one correspondence
between the predicted pfold and the number of native
contacts when we consider only those configurations that
are likely to be visited on transition paths, even though
this order parameter played no role in the transition-path
theory calculations. This observation is consistent with
the fact that the number of native contacts is a good
reaction coordinate for identifying the ensemble of tran-
sition states, where pfold = 1/2, from simulated Ubiquitin
transition paths [50]. However, knowing the location of
the transition state on an order parameter is, in general,
not sufficient to predict the transition-path dynamics. In
addition, any one-dimensional projection almost invari-
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ably hides some of the intermediate free-energy barriers
on transition paths that play an important role in the
transition-path dynamics [53, 54].

III. STATISTICAL ANALYSES

A. Distribution of transition-path transit times

As an initial test of the model, we examined the pre-
dicted distribution of transit times between the unfolded
and folded ensembles. For two-state proteins, transit
times are orders of magnitude smaller than the charac-
teristic waiting time until a folding or unfolding event
occurs [13, 15, 55, 56]. Nevertheless, recent advances in
single-molecule experiments [15, 34] have made it pos-
sible to measure these brief trajectories. Although ex-
perimental measurements have confirmed that the dis-
tribution of transit times has an exponential tail as ex-
pected for stochastic barrier-crossing processes, the shape
of the distribution generally disagrees with the predic-
tions of one-dimensional landscape theories [34–36]. In
particular, the measured distributions are typically much
broader than expected for a one-dimensional landscape
with a harmonic barrier.
To compare the predictions of the one-dimensional

(1-d) and topological configuration models, we used ki-
netic Monte Carlo (kMC) simulations [57] to sample tran-
sition paths between absorbing states of a rate matrix,
T . We first calculated the distribution of transit times
for the 1-d native-contacts landscape shown in Figure 2a.
To this end, we discretized this landscape between the
unfolded and folded free-energy minima into 150 bins
(such that ∆x = 4 native contacts) and constructed a
tri-diagonal transition matrix, T

1-d. We assumed the
symmetric form

T 1-d
(x,x±∆x) = k0 exp

[

−
F (x±∆x)− F (x)

2kBT

]

, (4)

with T 1-d
(x,x) = −[T 1-d

(x,x−∆x)+ T 1-d
(x,x+∆x)]. Because the

transit times are inversely proportional to the transition-
matrix prefactor k0, transit-time distributions for differ-
ent models can be compared by scaling tAB according to
the mean transit time, 〈tAB〉. In this way we can see
that the predicted distribution of transit times, p(tAB),
between the folded and unfolded free-energy minima xA

and xB (Figure 2c) is relatively narrow, with a coefficient
of variation of 0.39 and an exponential tail (Figure 3a).
Alternatively, we can fit the decay constant of the ex-
ponential tail, ω−1, in order to compare with the the-
oretical distribution for 1-d harmonic barrier crossings,
P harm
AB (ωt; ∆F †) [58], where the shape parameter ∆F †

is the height of the barrier (Figure 3b). The simulated
distribution of 1-d transit times agrees well with this har-
monic prediction using the barrier height ∆F † = 5.37kT
determined directly from the empirical 1-d landscape
(Figure 2a), despite the fact that this landscape is not
perfectly harmonic.
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FIG. 3. Distributions of transition-path transit times, p(tAB),
for the models of Ubiquitin folding shown in Figure 2. (a) The
distributions calculated via kinetic Monte Carlo simulations
of the 1-d native contacts landscape model, the topological
configuration model, and the quasi-one-dimensional minimum
free-energy path through the topological configuration net-
work. To compare the shapes of the distributions, all transit
times are scaled according to the mean transit time, 〈tAB〉, for
each model. Also shown are the ten transit times observed in
all-atom MD simulations. (b) The same three distributions
were fit to the theoretical distribution for a harmonic barrier,
P harm

AB , in order to estimate the decay constant, ω−1, of the ex-
ponential tail. The transit-time distribution calculated from
the empirical 1-d landscape agrees well with the theoretical
distribution using the empirical barrier height, 5.37kT , while
the distribution calculated from the topological configuration
model can only be fit by P harm

AB if we set the shape parameter
∆F † equal to a much lower barrier height of 0.43kT .

We then repeated these calculations using the topo-
logical configuration rate matrix defined in Eq. (3). The
resulting distribution of transit times (Figure 3a) also has
an exponential tail, but is substantially broader, with a
coefficient of variation of 0.91. We find that the distri-
bution of transit times obtained from the MD simula-
tions, which has a coefficient of variation of 1.21± 0.45,
is considerably closer to the distribution derived from the
topological configuration model than the distribution de-
rived from the 1-d model. (The maximum likelihood ra-
tio for the two models given the ten MD transit times
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FIG. 4. Distributions of transition-path transit times for two
one-dimensional toy landscapes. (a) The two toy free-energy
landscapes, with a single harmonic barrier [blue empty circles;
F (x) ∝ A cos(2πx/151)] and five intermediate barriers [red
filled circles; F (x) ∝ A cos(2πx/151) + 2kT cos(10πx/151)],
respectively. The maximum barrier height and number of dis-
crete states were chosen to match the empirical 1-d landscape
shown in Figure 2a for each toy landscape. Coarse-graining
(CG) the intermediate-barrier landscape by calculating the
mean first passage times between local free-energy minima
results in the six-state model shown by red empty squares.
(b) The transit-time distributions for the two toy landscapes,
with all times scaled by the mean transit time, 〈tAB〉, for
each model. The single-barrier landscape has a transit-time
distribution that is narrower than the theoretical prediction,
P harm

AB , for this barrier height (black dashed line), while the
intermediate-barrier transit-time distribution and its coarse-
grained approximation are significantly broader.

is 1019). When comparing the transit-time distribution
predicted by the topological configuration model with the
harmonic prediction P harm

AB (ωt; ∆F †), the best fit is ob-
tained with a shape parameter ∆F † that corresponds to
a one-dimensional landscape with a 0.43kT barrier (Fig-
ure 3b). Interestingly, this order-of-magnitude difference
between the actual barrier height3 and that returned by
a fit to the harmonic theory is reminiscent of the discrep-
ancy found in experimental measurements [34].

3 Note that the barrier on the minimum free-energy path through
the topological configuration network is also greater than 5kT .

The striking difference between the shapes of these
transit-time distributions is primarily a consequence of
the intermediate barrier crossings, as opposed to the mul-
tidimensionality of the network model. For example, by
simulating transition paths that only traverse the quasi-
one-dimensional minimum free-energy path through the
configuration network, we obtained a similar distribution
of transit times (Figure 3). To explore this reasoning
further, we constructed two toy 1-d landscapes with the
same barrier height and number of bins as in the em-
pirical 1-d landscape (Figure 4a). In the first landscape,
the single barrier is, to a good approximation, harmonic,
while in the second landscape, there are five interme-
diate barriers. We then computed T

1-d using Eq. (4)
and simulated the transition paths for these toy models
via kMC. As expected, the presence of the intermediate
barriers significantly broadens the transit-time distribu-
tion, resulting in a coefficient of variation of 0.47 for the
intermediate-barrier landscape versus 0.36 for the single-
barrier toy landscape (Figure 4b). It is also possible to
coarse-grain the dynamics over the intermediate-barrier
toy landscape by calculating the mean first passage times
between the local free-energy minima (Figure 4a). Simu-
lating the transition paths for this coarse-grained model
results in a good agreement with the full intermediate-
barrier toy landscape (Figure 4b). Although the differ-
ence between the transit-time distributions for these par-
ticular toy models is smaller than that shown in Figure 3,
this comparison clearly demonstrates that the presence
of intermediate barriers on the transition paths tends to
broaden the distribution of transit times.

B. Distribution of finite-time displacements on a
one-dimensional order parameter

As a second statistical test, we examined distributions
of finite-time displacements on a one-dimensional order
parameter. Using the number of native contacts as the
order parameter, we measured displacements, ∆x, given
a lag time ∆t on all transition-path trajectories in the
atomistic MD simulations. We considered lag times rang-
ing from 1 ns, which is longer than the typical time re-
quired for the formation of a single native contact, to
∼ 100 ns, which is much shorter than the mean transit
time, 2.43µs, observed in the MD simulations. After
verifying that Ubiquitin transition paths exhibit subdif-
fusive motion over this range of lag times [59], meaning
that 〈[∆x(∆t)]2〉 ∝ (∆t)p with p < 1, we sought to deter-
mine whether, for a given lag time, the distribution of fre-
quent, small displacements is predictive of larger jumps.
By averaging over all MD transition-path trajectories and
removing the net directional motion, (xB − xA)/tAB, we
find that the vast majority of displacements, for which
|∆x| ≤ 2

√

〈∆x(∆t)2〉, are well described by Gaussian
distributions over the entire range of lag times. However,
larger displacements are much more frequent than pre-
dicted by the tails of the Gaussian distributions, regard-
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path ensemble. (a) The distribution of displacements ∆x after
a lag time ∆t observed in all-atom MD transition paths. The
distributions are centered, such that 〈∆x〉 = 0, and scaled by
the root-mean-squared displacement at each lag time. The
frequent small displacements are well described by a Gaus-
sian distribution with a unit standard deviation (black dashed
line); however, larger displacements are much more frequent
than predicted by the tails of this Gaussian distribution. Col-
ors correspond to the lag time, in units of nanoseconds, as
shown by the scale bar on the right. (b) The predicted dis-
tribution of displacements corresponding to transitions be-

tween configurations in the topological configuration model
(dotted lines) is broader than a Gaussian distribution fit to
the transition-path-ensemble-averaged fluctuations within in-
dividual configurations, leading to similar fat-tailed behavior.
The lag times are scaled by the slowest timescale of the MD
simulations, (kMD

fold)
−1, for comparison with panel a. (c–d) Dis-

tributions calculated from kinetic Monte Carlo simulations of
transition paths on the two toy landscapes shown in Figure 4a.
Only the intermediate-barrier landscape (panel d) reproduces
the fat-tailed behavior observed in the MD simulations.

less of the lag time. This ‘fat-tailed’ behavior is shown
in Figure 5a, where the distribution for each lag time is
scaled according to its root-mean-squared displacement
and compared to a unit Gaussian distribution indicated
by the black dashed line.

This unusual feature is naturally predicted by the
timescale separation in the topological configuration

model, since the distribution of one-dimensional displace-
ments is narrower for fluctuations within a configura-
tion than for transitions from one configuration to an-
other. To illustrate this idea, we compare the expected
displacement associated with a step between configura-
tions, 〈(σ2

i + σ2
j )

1/2〉, with the average size of a fluctu-

ation within a configuration, 〈σ2
i 〉, where the averages

are taken over all configurations and weighted by mAB
i ,

the probability of finding a transition-path trajectory
in any configuration i (Figure 5b). The contribution
from transitions between configurations, shown by col-
ored dotted lines in Figure 5b, increases with the lag
time, since the probability of moving from configuration
i to j within a finite time ∆t is given by the matrix expo-
nential [exp(∆tT )]ij . As a result of these larger displace-
ments, the tails of the distribution are always outside of
the unit Gaussian distribution, suggesting that the fat-
tailed behavior observed in the MD simulation-derived
distributions is also indicative of relatively rare interme-
diate barrier crossings.
To test this hypothesis, we analyzed the distribu-

tions of finite-time displacements obtained from simu-
lated transition paths over the two toy landscapes shown
in Figure 4a. By scaling the distributions according
to their root-mean-squared displacements and compar-
ing with a unit Gaussian distribution (Figure 5c,d), we
find that only the landscape with intermediate barriers
results in a qualitatively similar fat-tailed distribution.
The single-barrier toy landscape, by contrast, results in
large displacements being less frequent than predicted
by a Gaussian distribution. We therefore conclude that
the relative enrichment of large displacements within lag
times of a few tens of nanoseconds is a likely consequence
of intermediate barrier crossings in the MD-simulated
transition paths.

C. Likelihood comparison between predicted and
simulated transition-path trajectories

Finally, we tested whether the transition-path trajecto-
ries observed in the MD simulations, when projected onto
a one-dimensional coordinate, are representative of the
transition-path ensembles predicted by the topological
configuration model. To do so, we treated this stochas-
tic process as a hidden Markov model with a discrete
state space of topological configurations. In this model,
transition paths traverse the discrete state space in accor-
dance with the rate matrix T , but we assume that we can
only observe the instantaneous projection of each state
s onto the 1-d coordinate x. With the exception of the
transition-matrix prefactor k0, both the transition proba-
bilities between states and the topological configuration-
dependent probabilities of observing a given number of
native contacts, p(x|s), are completely determined by
quantities calculated from the equilibrium MD simula-
tion data. We first removed all configurations in the
topological configuration network that are not likely to
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be visited on transition paths (less than 1% of predicted
folding flux) to guard against overfitting. We then used
the standard Viterbi algorithm [60, 61] to determine the
unique sequence of configurations, {sl}, that maximizes
the log likelihood of the observed time series {xl} for each
transition-path trajectory,

〈logL〉 = n−1
n
∑

l=1

log
[

p(xl|sl)(e
∆tT )sl−1,sl

]

, (5)

where the index l runs over all consecutive snapshots on
each transition path, and we have normalized the log
likelihood to remove the trivial dependence on the total
trajectory length n.
A representative maximum likelihood fit, using the

fixed transition rates and emission probabilities defined
in Eq. (3) and Figure 2b, respectively, is shown in Fig-
ure 6a, where the apparent separation of timescales be-
tween high-frequency oscillations and slower, step-like
behavior can be easily discerned by eye. Furthermore,
the log likelihood of most probable path, 〈logLmax〉, is
only weakly dependent on the transition-matrix prefac-
tor, k0. (Figure 6b). Analyzing one frame per nanosec-
ond, the maximum of 〈logLmax〉 is found at a value of
k0 that results in a predicted folding rate, kfold, of ap-
proximately 1× 10−6 frames. Importantly, this folding
rate agrees well with the empirical folding rate that we
calculated directly from the mean waiting times between
folding and unfolding transitions in the full MD trajec-
tories, kMD

fold ≃ 1.3ms−1 (Figure 6b,inset).
We then performed an analogous hidden Markov anal-

ysis for the 1-d landscape model with a constant diffusion
coefficient. In this case, the discrete states {x̄} are bins
of width ∆x, the rate matrix is given by Eq. (4), and
the Gaussian emissions p(x|s = x̄) are assumed to have
a standard deviation of ∆x. For example, a represen-
tative maximum likelihood fit, assuming a bin width of
∆x = 16 native contacts, is shown in Figure 6a. Unlike
the topological configuration model, we find that the log
likelihood of the most probable path in the 1-d model
is strongly dependent on the transition-matrix prefac-
tor, k0. Furthermore, the maximum with respect to k0
corresponds to a folding rate that is orders of magnitude
greater than that determined from MD simulations. This
means that, in order to generate a transition path with
the observed high frequency fluctuations on the empiri-
cal 1-d landscape, k0 has to be tuned to a point where
the predicted rates of folding and unfolding events are
unrealistically fast. The topological configuration model
does not suffer from this contradiction, since the sepa-
ration of timescales between the fast motions within a
topological configuration and slower transitions between
configurations is an intrinsic feature of the model.
To ensure a fair comparison between these models, we

calculated the expected values of the log likelihood for
transition paths generated directly by both models,

〈logL〉model =
∑

s

mAB
s log

[

〈p(x|s)〉〈(e∆tT )s′,s〉
]

, (6)
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FIG. 6. Comparison of transition-path trajectories from
atomistic MD simulations and trajectories generated by theo-
retical models. (a) The maximum-likelihood transition paths
(red solid lines) through the discrete states of the topolog-
ical configuration and 1-d landscape models given a repre-
sentative MD transition-path trajectory, projected onto the
number of native contacts, x (blue lines). For the topological
configuration model, the expected fluctuations (i.e., the stan-
dard deviations of the Gaussian approximations in Figure 2b)
within the most probable states are shown by red dashed lines.
(b) The dependence of the per-frame log likelihood of the most
probable sequence of states on the transition-matrix prefac-
tor, k0. This rate is scaled by the folding rate predicted by the
model, kfold, for comparison with the estimated MD folding
rate, kMD

fold (black dashed line). The maximum of 〈logLmax〉
for the topological configuration model coincides with the MD
folding rate (inset). (c) Comparison between the log likeli-
hood of the most probable sequence of states and the expected
log likelihood for each model, 〈logL〉model (see text). When
fitting to the 1-d model, the agreement between these quan-
tities depends strongly on the spatial coarse-graining, ∆x, of
the landscape and temporal averaging of the MD transition-
path trajectories over time windows of width ∆t. Error bars
indicate the standard error of the mean.
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where the expectation values for the emission and
transition probabilities are 〈p(x|s)〉 ≡

∫∞

−∞
p(x|s)2dx and

〈[exp(∆tT )]s′,s〉 ≡
∑

s′{[exp(∆tT )]s′,s}
2, respectively, in

each state s. Fixing k0 to match the MD folding rate,
Figure 6c shows that the log likelihood of the most prob-
able path determined by fitting the MD data is consis-
tent with the expected log likelihood for the ensemble
of transition paths generated by the topological config-
uration model. This result is independent of temporal
coarse-graining, i.e., down-sampling the trajectory x(t)
by averaging over a moving window of width ∆t. By
contrast, temporal coarse-graining has a significant effect
on the difference between the best-fit and expected log
likelihoods for the 1-d landscape model when k0 is fixed
according to the MD folding rate, since increasing ∆t
preferentially removes high frequency fluctuations. This
difference is also sensitive to the landscape bin width ∆x,
since increasing ∆x reduces the number of distinct states
and consequently slows the rate of transitions between
adjacent states. As a result, increasing the bin width re-
sults in an effective separation of timescales on the 1-d
landscape, albeit without a first-principles justification.
Only by introducing a separation of timescales through a
post hoc combination of temporal coarse-graining of the
trajectories and spatial coarse-graining of the 1-d land-
scape is it possible for the 1-d model to generate transi-
tion paths that are consistent with those observed in the
MD simulations (Figure 6c).
In conclusion, this hidden Markov analysis highlights

the importance of a separation of timescales for reproduc-
ing the transition-path trajectories observed in atomistic
MD simulations. In particular, the co-occurrence of fast
fluctuations in the number of native contacts and infre-
quent folding events is naturally captured by the topo-
logical configuration model, as seen by the agreement
between the log likelihoods of the fitted and predicted
transition-path trajectory ensembles. One-dimensional
landscape models that lack an intermediate timescale,
by contrast, require that the trajectories observed in MD
simulations be smoothed substantially in order to con-
form to the predicted transition-path dynamics.

IV. DISCUSSION

We have shown that a theoretical model of protein fold-
ing, which emphasizes an intermediate timescale associ-
ated with transitions between distinct configurations of
partial native structure, accurately predicts multiple sta-
tistical properties of the stochastic dynamics of folding
transition paths. By using equilibrium simulation data to
construct an approximate rate matrix for transitions be-
tween topological configurations, we demonstrated that
the transition-path ensembles generated by this model
have broad transit-time distributions that are consistent
with both all-atom simulations and experimental obser-
vations. We then showed that the non-Gaussian distri-
butions of finite-time displacements that are predicted

by this model qualitatively match all-atom simulation
results. Lastly, we demonstrated that this model can
reconcile rapid local fluctuations on a one-dimensional
order parameter with a slow overall rate of folding, two
seemingly contradictory features that are simultaneously
observed in simulated transition-path trajectories. Most
importantly, all predictions of the topological configura-
tion model were made without the use of any dynamical
information.

The intermediate timescale in the topological configu-
ration model is predicted to arise due to local free-energy
barriers that separate transient states with distinct sets
of native-like loops [37]. In this work, we assumed that
the rates of transitions between states could be approxi-
mated using a simple formula that satisfies detailed bal-
ance. However, a more accurate approach would involve
the calculation of the rates between adjacent topological
configurations in the all-atom model. Such an approach
might benefit from recent advances in Markov state mod-
eling [62, 63], although, in this application, the definitions
of the states would be assumed a priori on the basis
of the native structure. Nevertheless, it is remarkable
that we are able to obtain qualitatively accurate results
for a variety of statistical tests using a highly simplified
Markov model and the estimated free energies of the pre-
dicted topological configurations. This success indicates
that the statistical analyses that we considered depend
to a greater extent on the presence of intermediate bar-
riers than on their precise heights, provided that these
barriers are comparable to the thermal energy (& kBT )
and are thus kinetically relevant. Generalizing beyond
Ubiquitin, we anticipate that accounting for this inter-
mediate timescale is likely to be especially important in
the context of large proteins, which tend to have com-
plicated native topologies. Transition-path analyses of
small, ultrafast-folding proteins [64], by contrast, are less
likely to benefit from the coarse-graining strategy de-
scribed here, since these proteins typically contain only
one or two native-state loops whose formation dominates
the overall folding rate. The lower probability of encoun-
tering substantial free-energy barriers on folding transi-
tion paths, which are needed to assume approximately
Markovian transitions between intermediate configura-
tions, suggests that models of diffusion over a single har-
monic barrier may be more appropriate in these partic-
ular cases.

To compare our approach with commonly used one-
dimensional models, we assumed a projection onto the
number of native contacts and a constant diffusion coef-
ficient. The number of native contacts has been shown
to be a good reaction coordinate in the sense that, for
many small proteins, it can be used to locate the tran-
sition state from transition-path trajectories with high
probability [50]. The results presented here are not in-
consistent with this notion of a good reaction coordinate
when a single pathway through the network of topolog-
ical configurations dominates, as shown by the similar-
ity between the committors predicted by the two mod-
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els. Furthermore, if one were to account for coordinate-
dependent diffusion, it is likely that these two approaches
would lead to similar predictions for the transition-path
dynamics, since existing methods for fitting coordinate-
dependent diffusion coefficients often reveal the existence
of intermediate barriers that were hidden by the projec-
tion onto the original reaction coordinate [31]. However,
to carry out such an analysis, dynamical information is
always required in some form [25], meaning that the un-
derlying landscape is not, by itself, truly predictive.
The topological configuration model that we have ex-

amined here differs in a number of important ways from
alternative models of folding intermediates that have
been proposed previously. Unlike the early hierarchical
model of Ptitsyn [65] and the more recent ‘foldon’ hy-
pothesis [66], the assembly of native-like intermediates
need not lead to a more negative free energy at every
step. At the same time, we have not assumed that the
free energy decreases only upon incorporation of the final
native-like substructure, as proposed in a recent ‘volcano’
model of folding [67]. By contrast, the highest point on
the minimum free-energy path through the network of
topological configurations is determined by the free en-
ergies of the various configurations and the barriers be-
tween them, which depend, in turn, on the temperature
and solvent conditions [37]. The topological configura-
tion model also suggests a natural definition of a folding
pathway [68] at the level of topological configurations
while allowing for alternative, yet less probable, path-
ways.
Finally, this theoretical analysis has a number of

implications for experimental investigations of protein-
folding transition paths. The transit-time and finite-
time displacement distributions that we have discussed
can now be measured directly in single-molecule ex-
periments. However, to distinguish between alterna-
tive theoretical models, it would be most useful to an-
alyze high-resolution experimental transition-path mea-
surements using hidden Markov models in order to detect
and characterize transient folding intermediates. Using
established non-parametric methods [69, 70], it should
be possible to assess both the number of distinct tran-
sient states and any separation of timescales objectively.
Furthermore, by combining such analyses with structure-
based models, like the type discussed here, it should be
possible to extract more detailed information regarding

the underlying free-energy landscape from these mea-
surements. In this way, continued advances in single-
molecule measurements can be used to improve predic-
tive landscape-based models of protein-folding transi-
tion paths, in particular for large proteins with complex
native-state topologies.

V. CONCLUSION

We have shown that the introduction of an interme-
diate timescale, which is faster than native-contact for-
mation but slower than the typical time for folding an
entire protein, can qualitatively alter the statistics of
protein-folding transition paths. We proposed that this
intermediate timescale is associated with the assembly of
native-like loops, and we used this principle to build a
coarse-grained free-energy landscape for Ubiquitin from
equilibrium atomistic simulation data. Without rely-
ing on any dynamical information from simulations, we
showed that this model predicts distributions of transit
times and finite-time displacements that are consistent
with simulated transition paths, but differ qualitatively
from the predictions of a one-dimensional model of dif-
fusion on an empirical free-energy landscape. We also
used a hidden Markov analysis to demonstrate that this
model generates transition paths that agree with both
the dynamics and kinetics inferred from reversible fold-
ing simulations. Our results suggest that the analysis of
single-molecule transition-path trajectories may be im-
proved by accounting for intermediate free-energy barri-
ers, which are a fundamental aspect of the complexity of
folding large biomolecules.
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