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Abstract
The highly charged RNAmolecules, with each phosphate carrying a single negative charge, cannot

fold into well-defined architectures with tertiary interactions, in the absence of ions. For ribozymes,

divalent cations are known to be more efficient than monovalent ions in driving them to a compact

state although often Mg2+ ions are needed for catalytic activity. Therefore, how ions interact with

RNA is relevant in understanding RNA folding. It is often thought that most of the ions are

territorially and non-specifically bound to the RNA, as predicted by the counterion condensation

(CIC) theory. Here, we show using simulations of Azoarcus ribozyme, based on an accurate coarse-

grained Three Site Interaction (TIS) model, with explicit divalent and monovalent cations, that

ion condensation is highly specific and depends on the nucleotide position. The regions with high

coordination between the phosphate groups and the divalent cations are discernible at very low

concentrations when the ribozyme does not form tertiary interactions. Surprisingly, these regions

also contain the secondary structural elements that nucleate subsequently in the self-assembly of

RNA, implying that ion condensation is determined by the architecture of the folded state. These

results are in sharp contrast to interactions of ions (monovalent and divalent) with rigid charged rods

in which ion condensation is uniform and position independent. The differences are explained in

terms of the dramatic non-monotonic shape fluctuations in the ribozyme as it folds with increasing

Mg2+ or Ca2+ concentration.
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INTRODUCTION

RNA molecules are negatively charged polyelectrolytes (PEs) with each molecule carrying

a total charge equal to −Ne where N is the number of nucleotides and e is the elementary

charge. The negative charges are localized on the phosphate groups. Because of the large

electrostatic repulsion between the phosphate groups, RNA can only fold if the effective

charge on the phosphate group is reduced or renormalized, which we know occurs by the

counter ion condensation (CIC) mechanism [1–4]. In this process, described decades ago in

remarkable studies by Oosawa and Manning [1, 2], the condensed ions are localized in an

apparent volume occupied by the PE or any highly charged macroion. As a consequence,

the effective charge on the negatively charged moieties in the PE (or the phosphate groups

in DNA and RNA) is reduced from −e to −βe with β < 1 [1–3]. The renormalized charge

parameter, β, can be calculated for PEs with regular shapes [3]. For example, the condition

for ion condensation for a rod-like macroion is determined by the Manning parameter ξ =

`B/b > 1/|z|, where `B is the Bjerrum length, b is the mean distance between charges on the

polyelectrolyte, and z is the valence of the counterion. The Bjerrum length is the distance

at which the electrostatic energy of two univalent charges is equal to the thermal energy,

`B = e2 (4πε0εkBT )−1, where ε0 is the vacuum permittivity, ε is the dielectric constant of the

solvent, and kBT is the thermal energy. For highly charged rods, ion condensation occurs

when ξ ≥ 1/|z|, with the transition being sharp for long thin rods (high aspect ratio). A

similar condition may be obtained for spherical macroions. In this case ion condensation

does occur with a fraction localized in the vicinity of the sphere, but unlike the situation of

the cylindrical macroion, there is not critical value of the ξ at which counterion condensation

is initiated [3].

There are two implications of these well known aspects of the CIC theory summarized

above that are relevant to the current study. (1) Monovalent ions (|z| = 1) are not as efficient

in charge renormalization as higher valent ions (|z| > 1). Based on this consideration, we

calculated that about 90% of the phosphate charge in Tetrahymena ribozyme is neutralized in

the presence of divalent and trivalent cations [5]. (2) The condensation mechanism depends

critically on the shape of the macroion. As noted above, the theoretical predictions are

different for spheres and rods. Therefore, we expect that the CIC mechanism ought to

be different for RNA, which undergoes substantial shape fluctuations during the ion-driven

2



folding process. The shape of Azoarcus ribozyme that is used as an example here, changes

as the concentration of ions (Mg2+) is increased from a low to a high value. This ribozyme,

and many other RNA molecules, are not spherical even when folded [6]. Moreover, even at

low Mg2+ concentrations, Azoarcus ribozyme does not adopt globally cylindrical structures

although individual helices may be rigid enough to be pictured as small cylinders.

Because of the irregular shapes of RNA molecules at all ion concentrations ion-RNA in-

teractions, which are often thought to involve diffuse ions that are territorially (within a

volume of RNA where the electrostatic potential is substantial) but non-specifically bound

require scrutiny. Motivated by the considerations described above, we answer the following

questions here: How does CIC occur in such molecules whose shapes are not only irregular

but also change as they fold? We are able to quantitatively answer this question because of

the development of an accurate coarse-grained force field, which has been used to quantita-

tively predict the thermodynamic properties of Azoarcus ribozyme and other RNA molecules

[7] in the presence of K+, Mg2+ and Ca2+.

There is an additional reason for undertaking this investigation. The physically appeal-

ing CIC mechanism qualitatively explains RNA folding both from the stability and kinetic

perspective [5]. The mechanism is based on the basic assumption that condensed ions are

diffuse and freely move within the volume surrounding the RNA where the electrostatic

potential is the largest. Indeed, the condition for ion condensation is obtained by assuming

that the mobile but bound ions are in equilibrium with free ions (the chemical potential

of these two species are identical) that explore the region outside the sphere of influence

of the macroion [3]. Such an assumption does qualitatively explain the success of even the

z-dependent folding kinetics of Tetrahymena ribozyme [8, 9]. However, our recent studies

[7] suggest that the assumption of uniform condensation, often made in rationalizing elec-

trostatic effects in RNA, may be qualitatively incorrect. In other words, nucleotide specific

interaction between ions (especially Ca2+ and Mg2+ ions) provide the key in quantitatively

describing charge renormalization in ribozyme folding.

In order to fully understand the nature and consequence of ion condensation onto RNA,

we undertook two types of simulations. We first probed the interaction of divalent cations

with small finite-sized rigid rods of different linear charge density, expressed as b = n/L where

n is the total number of charges and L is the cylinder length. It follows that b is the mean

distance between charges. However, in our simulations the distance between the charges
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(b) is a constant. We also investigated the condensation of divalent cations onto Azoarcus

ribozyme using an accurate model introduced recently [7]. By comparing the results of

these two systems, we elaborate on the importance of the architecture of the macroion (rod

versus ribozyme) on the ion condensation mechanism. Our major finding is that the shape

of the RNA matters for counterion condensation. In other words, ion-condensation to RNA

depends exquisitely on the folded RNA architecture, and hence cannot be treated as a non-

specific interaction that is used to understand CIC for macroion with definite simple shapes.

A surprise in our study is that the specificity of ion binding plays a vital role in driving

RNA folding even at very low divalent ion concentrations.

MODEL AND METHODS

Rigid rod simulations: A 5 nm-long rigid cylindrical rod is placed at the center of 15

nm-wide cubic box (Fig. 1a and b). The diameter of the rod is 0.42 nm, which is the size of

the phosphate bead in the coarse grained RNA model described below. Technically, the rod

is constructed by overlapping spheres that are separated by 0.1 nm. The rod is completely

rigid and fixed at the center of the simulation box, whereas ions are allowed to move freely

around the rod. We use periodic boundary conditions. Three different charge densities on

the rod, ρ
1D

= −1, −2, and −5 e nm−1 were simulated, which translates to the constant

separation distance (b) between neighboring charges as 1.0, 0.5, and 0.2 nm, respectively. For

comparison, the Bjerrum length (`B) is 0.73 nm at the simulation temperature, T = 37◦C.

The interactions between the charges on the rod and the ion are the same as in the coarse-

grained RNA-ion model [7]. Ions (K+, Cl−, and Mg2+) are modeled as spheres and interact

with each other and with the charged rod via the excluded volume potential, which is

identical to the one used in the RNA model,

UEx = εij

[(
1.6

rij + 1.6−Dij

)12

− 2

(
1.6

rij + 1.6−Dij

)6

+ 1

]
, rij ≤ Dij (1)

where r is the distance of the two beads, Dij = Ri + Rj and εij =
√
εiεj. The values of

Ri and εi for the ions and the RNA sites are tabulated in Table S1 in the Supplementary

Information (SI). The Ri and ε for the charged rod is the same as the phosphate site in

the RNA model. If rij > Dij then UEX = 0. For any pair of charged beads, the standard
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Coulomb potential is used,

UEle =
qiqj

4πε0εrij
(2)

where qi is the charge of the ith bead. The dielectric constant, ε, is temperature dependent

and is 74 at the simulation temperature T = 37◦C. A series of Langevin dynamics simula-

tions were performed for 2× 107 iteration time steps, in which ion positions are saved every

100 steps. Thus, in total 2× 106 snapshots are used for analyses for each setup.

We ought to emphasize that the results of rigid rod simulations for different purposes

have been reported numerous times in the literature (see for example [10–12]) although new

phenomena continue to be found in [13]. The simulations presented here merely serve as a

control in order to illustrate the dramatically different findings for the Azoarcus ribozyme.

Simulations of group I intron RNA: Because the model and simulation methods of

the ribozyme were described in detail previously [7], we give only a brief description here. We

used a coarse-grained Three Interaction Site (TIS) RNA model that has three interaction

sites, for each nucleotide, corresponding to phosphate, sugar and base moieties [14]. All

the ions are explicitly treated whereas water is modeled implicitly using the temperature-

dependent dielectric constant. We considered concentration of Mg2+ ions in the range from

0 to 30 mM in the presence of either 50 mM or 12 mM of K+ that is typically used in the

Tris buffer [15]. We added an appropriate number of anions (Cl−) to ensure that neutralize

the entire system is charge neutral. We performed a series of Langevin dynamics simulations

at 37◦C in order to efficiently sample conformations of the system containing the ribozyme

and ions [16]. All the simulations were conducted using a periodic-boundary cubic box with

each side being 35 nm.

The crystal structure of Azoarcus group I intron (PDB 1U6B [17], Fig. 1c and d) was used

as the reference structure for the native conformation. For convenience, we assign nucleotide

numbers from 1 through 196 to the sequence, which is conventionally numbered from 12 to

207 in the Azoarcus group I intron literature [17].

Data analyses: To quantify ion condensation onto the RNA and the rigid rod, we

calculated the local ion concentration, a fingerprint of ion interaction with the macroion,

around the ith phosphate (or point charges on the rod) defined as,

c∗i =
1

NAVc

∫ rc

0

ρi(r) 4πr2dr, (3)

5



where ρi(r) is the number of ions per unit volume (number density) of the ion at the distance

r from the ith phosphate, Vc is the spherical volume of radius rc, NA is the Avogadro’s

number to represent c∗i in molar units. We use the Bjerrum length as the cutoff distance,

rc = `B = 0.73 nm because at that distance the favorable Coulomb attraction between a

cation and an anion (z = 1) is kBT .

We also calculated the fluctuations in the local ion concentration as the normalized root-

mean-square deviation from the mean,

∆c∗i =

〈
(c∗i − 〈c∗i 〉)

2〉1/2
〈c∗i 〉

, (4)

where 〈c∗i 〉 is the ensemble average of the local ion concentration around the ith nucleotide.

Thus, c∗i − 〈c∗i 〉 is an instantaneous deviation from the ensemble average. The average ion

concentration is,

〈c∗〉 =
1

N

N∑
i=1

〈c∗i 〉 , (5)

where N is the number of nucleotides. Note that the upper bar indicates an average over

the sequence, whereas the bracket indicates the ensemble average. The extent of deviation

of ion concentration fluctuation from 〈c∗〉 along the sequence was calculated using,

σ2 =
1

N

N∑
i=1

(
〈c∗i 〉 − 〈c∗〉

)2
. (6)

In the results section, for simplicity, we omit the brackets for the ensemble average. Thus,

all quantities are averaged over an ensemble of configurations in the system (ions and the

charged RNA or the rod) unless otherwise stated.

For charged rods, we also computed the total charge per unit length due to contributions

from each ionic species. The effective charge densities around the rod was calculated as the

amount of accumulated charge per unit length for the ion species m,

Qm(R) = zm

∫ R

0

ρm(R′)2πR′ dR′, (7)

where ρm(R) is the number density of species m at the radial distance R from the axis of

the cylinder, and zm is its valence. Note that Q can be computed for each ion Mg2+, K+,

and Cl− independently. Finally, the total effective charge per unit length is the sum of the

rod charge and contributions from those ions,

QT(R) = ρ
1D

+QMg2+(R) +QK+(R) +QCl−(R). (8)
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Note that we use R for the radial distance from the center of the rods in the cylindrical

coordinate, whereas r is for the distance from the point charges on the rod in the spherical

coordinate (see Fig. 1a).

RESULTS

Charged cylindrical rods: We first describe condensation of ions onto charged rods

with varying spacing between fixed charges, b = −e/ρ
1D
, where ρ

1D
is the charge density of

the rod. Based on the CIC theory, we expect that ions should condense uniformly along

the rod. The condition for condensation in the CIC theory is that ξ > 1/|z|, where z is the

valence of the ion species. In the absence of multivalent salt, ξ > 1 and thus we expect

ions should condense on rods when ρ
1D

= −5 e/nm (ξ = 3.6) and ρ
1D

= −2 e/nm (ξ = 1.5)

among the three values of charge densities we examine here. This expectation is borne out

in the simulations even though the aspect ratio (≈ 11.9) is relatively small. In Fig. 2(a-c),

the cumulative charges, Q (Eq. 7), around the rod are plotted for each ion species and the

net charge. The condensation of monovalent ions appears as a sharp increase in QK+ around

the vicinity of the rod (R ∼ 5 nm), with a subsequent reduction of the net negative charge

at longer distances (thick lines in gray). The amount of condensation is larger for the rod

with ρ
1D

= −5 e/nm than for one with ρ
1D

= −2 e/nm. In the case of the lowest charge

density (−1 e/nm corresponding ξ = 0.7 ), condensation is not observed as predicted by the

CIC theory (Fig. 2c).

The condition for condensation, ξ > 1/|z|, also implies that the charged rod must be

surrounded to a greater degree by Mg2+ than K+. This prediction is also borne out in the

simulations. In Fig. 2 (d and e), Mg2+ ions condense in the immediate vicinity of the rods

taking over the role of K+ in the charge renormalization. The replacement of K+ by Mg2+

in the vicinity of the rod is expected based on the counterion release mechanism (leads to an

entropy of the whole system increase), which is another well known consequence of the CIC

theory. The condensation of cations, and the subsequent net reduction of negative charge

on the rod, are more efficient in the presence of Mg2+ than when z = 1 (compare panels (a)

and (d) in Fig. 2). Since the condensation condition for Mg2+ is ξ > 0.5, a distinct increase

of QMg2+ is visible even at the lowest density case, ρ
1D

= −1 e/nm (ξ = 0.7 ) albeit the

extent of condensation is not as great as found in the two rod systems with higher density
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(Fig. 2f).

The results quoted above using the control simulations are entirely in accord with the

CIC theory predictions. The extremely close correspondence between the CIC theory and

simulations for charged rods motivated us to make several assessments of ion condensation

phenomena in ribozyme folding, in which we use the same explicit-ion model. In order to

make quantitative comparisons between the rod and RNA folding simulations, we need to

device a quantity to precisely measure the ion condensation. The radial distributions in the

cylindrical coordinate is not suitable for flexible RNA chains whose the persistence length

(1 ∼ 2 nm for a single strand) and the Debye screening length (1.3 nm in the simulation

conditions) are similar. With this in mind, we defined a local ion concentrations (c∗) and

the associated fluctuations (Eqs. 3-4) in the spherical coordinate for each point charge. The

results of the rod simulations in terms of c∗ are shown in Fig. 3 (a and b) for the three rod

charge densities in the presence of 5 mM MgCl2 and 50 mM KCl. It is clear that the density

of condensed ions around the charges in the rod is uniform; there is no position dependence

along the rod. From panels (c) and (d) in Fig. 3, the fluctuation in c∗ is the lowest in the

case of Mg2+ condensed for the highest charge density rod. Both by lowering the linear

charge density and reducing the valence of cations (Mg2+ → K+) make the condensed state

is less favorable, thus increasing the magnitude of charge fluctuations. These quantitative

descriptions for the charged rods set the stage for analyzing the completely contrasting

behavior in ion-ribozyme interactions.

[Mg2+]-dependent folding of Azoarcus ribozyme: Before proceeding to examine the

roles of ions in RNA folding, we summarize briefly the [Mg2+]-dependent folding of the

Azoarcus ribozyme, which has been investigated in a previous study using an elaborate ver-

sion of the TIS model [7]. The folding process of the ribozyme (Fig. 1) strongly depends

on the concentration of Mg2+. In Fig. 4a, the dependence of the radius of gyration (Rg) on

[Mg2+] is shown in gray lines for two different conditions of monovalent salt concentration,

[K+] = 12 and 50 mM. The global compaction of the RNA appears as a single transition

in Rg occurring at Cm ≈ 1.5 mM, where we designate Cm as the midpoint concentration of

[Mg2+] separating the folded and unfolded states. Comparison of 12 mM K+ simulation data

and SAXS experiments at the equivalent condition [15] (squares in Fig. 4) shows excellent

agreement, thus establishing that our model captures monovalent- and divalent-ion depen-

dence of folding of Azoarcus ribozyme (for additional details see [7]). In the rest part of this
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paper, we report detailed analyses of ion distributions around the RNA. Comparison with

interaction of divalent ions with highly charged rods illustrates the importance of ribozyme

architecture on ion–RNA interactions.

Radial profiles of ion condensation: We calculated the density profiles of each ion

species around phosphate, ρi(r), where r is the distance from the phosphate of the ith

nucleotide. We also computed the profiles of phosphate–phosphate distance, which can be

used to trace the compaction of the ribozyme. The ensemble-averaged profiles, for given

Mg2+ concentration, are shown in Fig. 5. From the profiles of the phosphate (gray dotted

lines in Fig. 5), we can track the folding of the ribozyme as follows. The peaks at r ≈ 0.55

nm is roughly the distance between two consecutive phosphates, and the smaller second peak

corresponds to the location of the second nearest-neighbor phosphates. The amplitudes of

these two peaks do not show significant change as [Mg2+] increases. However, the folding

process can be discerned by the increase in ρ
P
(r) in the range 0.7 < r < 0.9 nm (red arrows

in Fig. 5). At low [Mg2+], there is practically no density in ρ in this range (ρ(r) ≈ 0). As

[Mg2+] increases, we find that the amplitude increases, which shows that Mg2+ facilitates

the approach of non-neighboring phosphates. The increase in ρ(r) in this range coincides

with the compaction of the ribozyme and subsequent folding as shown in Fig. 4(a).

In the absence of Mg2+, K+ cations are condensed around the ribozyme, regardless of

the monovalent salt concentration, [KCl] = 12 mM or 50 mM (Figs. 5a and S1a). Under

these conditions with [Mg2+] = 0, all tertiary interactions are disrupted but helices, except

P3 and P7, form secondary structures (Fig. 1c). Thus, K+ cations must be condensed

around the vicinity of phosphates to balance the electrostatic repulsion between negative

charges on the phosphates. The distance to condensed K+, r ≈ 0.4 nm, is closer than

the neighboring phosphate. In the presence of Mg2+, ρ(r) for K+ decreases dramatically

as the Mg2+ concentration increases (Fig. 5 b-d). This shows, rather vividly, that K+ ions

condensed around RNA are replaced with Mg2+ ions because divalent cations screen negative

charges on RNA more efficiently than monovalent cations. By replacing two K+ ions by one

Mg2+, there is a net gain in translational entropy of the ions. This is the counterion release

mechanism predicted by the CIC theory.

Fingerprint of local ion concentration c∗i : In order to examine the relationship

between ion condensation and Mg2+-driven RNA folding, we calculated the local ion con-
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centration of the ith nucleotide c∗i (Eq. 3). The cutoff distance to define the local volume

is chosen to be the Bjerrum length, rc = 0.73 nm. The range of this distance covers the

peaks in the radial distributions of both K+ and Mg2+ (Fig. 5). Accordingly, c∗i is expected

to capture the amount of ion atmosphere around each nucleotide, and such a fingerprint is

dependent on the architecture of the folded state of the RNA. The overall ion condensation

of the entire molecule, c∗, is calculated as the average of the local ion concentration along

the RNA sequence (Eq. 5, see Models and Methods).

The changes in c∗ as a function of [Mg2+] is shown in Fig. 4(b). As noted previously,

more K+ cations condense at lower Mg2+ than at higher Mg2+ concentrations. Indeed, c∗K+

monotonically decreases as [Mg2+] increases (green lines). The folding midpoint of Mg2+

concentration is around 1.5 mM. Above the midpoint, Mg2+ ions are more dominantly found

in the vicinity of the RNA than K+. c∗Mg2+ does not vary significantly as a function of K+

concentrations for the entire range of [Mg2+] (Fig. 4b, solid line for [K+] = 50 mM and dotted

line for 12 mM). The sharp increase in c∗Mg2+ is well correlated with the global compaction

of the ribozyme, that is evident as the decrease in Rg in Fig. 4(a).

Ion condensation is site-specific: In Fig. 4c, we show variances, σ2, of the local ion

concentration over the RNA sequence (Eq. 6). This quantity indicates how much of each ion

species are localized at particular positions along the sequence for each solution condition.

As Mg2+ concentration increases, σ2 for K+monotonically decreases, although it is much

smaller compared to divalent cations for the entire range of [Mg2+]. This means that Mg2+

ions tend to be localized at specific positions more than K+ ions. In particular, σ2 for

Mg2+ sharply increases reaching a maximum around [Mg2+] ≈ 3 mM. This is because Mg2+

ions are preferentially localized to specific places, which are, surprisingly, determined by

the tertiary structure of the ribozyme. Beyond the midpoint Cm, the value of σ2 decreases

modestly because the specific sites of higher phosphate densities are being occupied by

existing localized Mg2+. The newly added Mg2+ ions start contributing to lessen the gap

between specific and other non-specific sites.

Fig. 6 shows the distributions of the local ion concentration along the RNA sequence.

This figure shows that all non-zero value of Mg2+ condensation is highly specific. The

extent of condensation depends on the nucleotide. Even at the lowest [Mg2+] = 0.4 mM

(much less than Cm) there is a significant density of Mg2+ around i ≈ 115, which covers the

triple helix (TH) of Azoarcus ribozyme. A clear implication is that Mg2+ binding is highly
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specific. More importantly, charge neutralization resulting in β < 1, occurs at the lowest

[Mg2+] not uniformly, as predicted by the CIC theory, but occurs in a manner that initiates

folding. This would mean that different regions of this ribozyme order at somewhat distinct

Mg2+ concentration, as illustrated previously (see Fig. 2b in [7]). In other words, there is

a distribution of [Mg2+] at which different domains achieve native structure with Cm being

the mean reported by calculating of inferring a given folding order parameter.

In the absence or at low Mg2+ concentrations, the amount of condensed K+ depends sig-

nificantly on positions along the RNA sequence. At low Mg2+ concentrations, the ribozyme

is unfolded with some helices intact. To see if there is any relationship between K+ conden-

sation and such residual structure, we compare the distribution of c∗ with the fraction of

secondary structure formation in Fig. 7(a). The profile of condensed K+ (green in Fig. 7a)

has several characteristic minima that correspond to loops in the stem-loop structures of P2,

P5, P6, P8 and P9. This indicates that the distribution of K+ reflects the shape of RNA

that is mostly due to residual secondary structures at low [Mg2+].

At high Mg2+ concentration ([Mg2+] > 1.5 mM), the localization of condensed Mg2+ ions

depends on the tertiary structures of the RNA (Fig. 6c and d). The local concentration

of Mg2+ correlates with the local density of phosphates (compare blue and gray lines in

Fig. 7b). Under such conditions, all the native secondary structures are formed with almost

unit probability, but we do not find any secondary-structure dependence of condensed Mg2+.

The relationship between ion condensation and local density of phosphates is vividly

illustrated in Fig. 8(a, b). At low [Mg2+], the ribozyme is mostly unfolded, predominantly

containing only secondary structures. Because there is no stable tertiary interactions, c∗P
values are small (Fig. 8a, horizontal axis. c∗P ≈ 3M). Accordingly, c∗ for Mg2+ are relatively

low and K+ are predominantly condensed. However, there are six nucleotides that have

higher c∗ for both P and Mg2+ (see the rectangle of c∗P > 3.5 M and c∗Mg2+ > 0.5 M in

Fig. 8a). We identified all those nucleotides to be ones involving the central triple helix

(TH) formation; nucleotides 39, 40 and from 113 to 116. In accordance with the previous

study [7], TH starts to form around [Mg2+] = 0.4 mM (< Cm). The data in Fig. 8 indicates

that there are Mg2+ ions specifically bound to the sites around TH. In contrast, at high

[Mg2+], the entire ribozyme is folded and c∗P can be as high as ∼7 M depending on the local

architecture (Fig. 8b). The amount of condensed Mg2+ is well correlated with the local

concentration of phosphates. There is a weak anti-correlation between K+ condensation and
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local phosphate concentration.

Fluctuations of condensed ions: RNA folding is a stochastic process driven by ther-

mal fluctuations and the solution conditions. Consequently, it would be interesting to see

how these condensed ions fluctuates at different stages of folding. In Fig. S3, normalized

fluctuations of the local ion concentrations, ∆c∗ (Eq. 4), for each nucleotide are shown for

the several solution conditions. Below or around the midpoint Mg2+ concentration, where

the ribozyme folding is not completed, fluctuations of condensed K+ ions and Mg2+ have

similar position dependence. This correlation is more clearly seen in the logarithm plot of

∆c∗Mg vs ∆c∗K in Fig. 8(c). Comparing Figs. 6 and S3, we also find that nucleotide positions

that have high c∗ values also have small ∆c∗. This indicates that the specific positions,

where more ions are condensed, bind those ions also more tightly. Once the ions reach the

“equilibrium” positions, they tend to be localized.

The correlation between the fluctuations of ∆c∗Mg and ∆c∗K changes dramatically after the

midpoint, [Mg2+] > 1.5 mM (Fig. S3d and e). There is anti-correlation between log ∆c∗Mg

and log ∆c∗K (Fig. 8d). As discussed in previous sections, there are specific positions where

more Mg2+ ions are condensed (Fig. 6) beyond the midpoint of [Mg2+]. At these positions,

there are less fluctuations in c∗Mg (smaller ∆c∗Mg) but higher fluctuations in c∗K (larger ∆c∗K),

reflecting strong condensation of Mg2+.

Ion condensation in Calcium-driven folding: We have hitherto focused on the

condensation of K+ in the absence and presence of Mg2+, and the condensation of Mg2+

itself. It is known that Ca2+ could also facilitate Azoarcus ribozyme folding although the

folded state is not catalytically active and is modestly less compact than it is in the presence

of Mg2+ [7, 15]. We repeated the same analyses in the case of Ca2+-dependent folding instead

of Mg2+. Both average local concentration (c∗) and its variance (σ2) show similar trends as

the case of Mg2+ (Fig. 4b and c). At higher solution concentration ([Mg/Ca2+] & 1 mM),

the amount of condensation given by c∗ is slightly less in the case of Ca2+.

Fig. S4 shows the sequence dependence of the local concentration (c∗) and fluctuation

(∆c∗) in the case of Ca2+. Comparing them with Fig. 6 and S2, the condensation profiles of

Ca2+ and K+ bear remarkable resemblances to the Mg2+ case. At the highest concentration

([Mg/Ca2+] = 30 mM), the local concentration of Ca2+ has the same peak positions as Mg2+,

but has ∼20 % lower values. Comparison of the fingerprint of ion concentration profiles
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between Mg2+ and Ca2+ clearly illustrates the efficacy of Mg2+ of creating a compact and

functionally competent ribozyme.

DISCUSSION

The central result of this study is that the nature of ion condensation onto Azoarcus ri-

bozyme differs drastically from theoretical predictions for regularly shaped polyanions. For

example, the CIC theory shows that ions condense uniformly onto highly charged rods. The

positively charged ions are localized at the position of the charges on the rod. In sharp

contrast, in Azoarcus ribozyme, and presumably other RNA molecules as well, the conden-

sation is highly non-uniform and nucleotide specific and critically depends on the structure

of the RNA. We note in passing that the prevailing view in much of the RNA literature is

that most of the ions are uniformly condensed onto RNA although crystal structures have

shown that there are site specific localization of Mg2+. A natural explanation of our finding

is that the electrostatic potential around the phosphate groups is non-uniform but in the

folded structure with tertiary interactions contains pockets of high negative potentials. Con-

sequently, ions are specifically drawn, with higher probability, to regions of large negative

electrostatic potential with smaller ions approaching these regions easily. Indeed, this was

first shown in our previous study using coarse-grained and atomic detailed simulations (see

Fig. S11 in [7]). However, what is surprising in this study is that the ions sense these regions

even at low divalent ion concentrations, when there is no tertiary interaction present.

Link to the shape fluctuations in the ribozyme: The non-uniformity and site spe-

cific ion-RNA interactions can be succinctly illustrated by considering the ion concentration

dependent changes in the shape parameters, asphericity ∆ (0 ≤ ∆ ≤ 1) and prolateness S

(−0.25 ≤ S ≤ 2) [18, 19], which are readily computed from the inertia tensor that is related

to the square of the radius of gyration. For reference, it is worth pointing out both ∆ and S

are unity for rods, whereas ∆ = S = 0 for spheres. For long self-avoiding polymers numerical

results show that ∆ = 0.55 and S = 0.92 (a prolate ellipsoid) [20]. In contrast to the values

of the shape parameters for rods, the changes in 〈∆〉 and 〈S〉 as a function of [Mg2+] for

the ribozyme, at the two values of K+ concentration, exhibit unusual non-monotonic depen-

dence, which is not reflected in Rg (inset in Fig. 9). This figure also shows the distributions

P (∆) and P (S) at three Mg2+ concentrations. Surprisingly, the widths of P (∆) and P (S),
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which depend non-monotonically on [Mg2+], are relatively large. Therefore, the ribozyme

fluctuations are substantial. Two comments are worth making: (1) The values of ∆ and S

depend greatly on the K+ concentration, which is also reflected in the Rg as a function of

Mg2+ concentration. (2) The minimum in 〈∆〉 and 〈S〉 at [Mg2+] ≈ 1.5 mM, the midpoint

of the folding transition, where the ribozyme almost resembles a sphere is interesting. At

high and low Mg2+ concentrations, the values of 〈∆〉 show that globally the ribozyme may

be pictured as a prolate ellipsoid. It also implies that this ribozyme and others are not as

densely packed as proteins [6] . The irregular shape presented to the ions leads to the high

specificity of ion–RNA interactions. It is likely that this finding would apply to any RNA

molecules whose shape has grooves and whose surface is not regular. It is most interesting

that there is a calculable fingerprint for ion-RNA interactions that is a reflection of the

folded structure. A clear implication is that, even at very low ion concentration, binding

is highly specific. This interpretation differs from the usual assertion that the stability of

RNA is determined largely by diffuse divalent cations [21].

Flexible polyelectrolytes: Just as is the case for RNA, which does adopt a well-

defined folded structure at high ion concentrations, the shapes of flexible PEs are also highly

variable. Therefore, it follows that the CIC theory should not be quantitative in predicting

the nature of ion condensation. Indeed, early simulations showed [22] that ion condensation

is non-uniform in the presence of divalent and trivalent cations for PEs in poor solvents.

Indeed, in certain cases the divalent cations and the monomers are packed as in a crystalline

arrangement, which would be inconsistent with the CIC theory. Using theory, Muthukumar

[23] has shown that, even in monovalent salts (z=1), the condensation process in flexible PEs

is non-uniform and could be understood by the variations in the local dielectric mismatch.

A more recent simulation study [24] has also arrived at the conclusion that the condensation

of monovalent ions depends crucially on the shape of the PE. In particular, they showed that

non-uniform condensation is determined by the molecular topology. Thus, the conclusion

that shapes determine ion condensation holds for both synthetic PEs and RNA. The latter

has additional features (for example stacking interactions and hydrogen bonding), which

make RNA different from a synthetic. In particular, the ion-induced shape changes in PEs

are not as spectacular as they are in RNA.
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CONCLUSION

The Oosawa-Manning theory of ion condensation, which assumes that there is an equilib-

rium between bound and free ions, is the basis of our understanding of many thermodynamics

properties of highly charged polyelectrolytes. As shown multiple times previously and in the

simulations here the predictions of the CIC theory are quantitatively correct if the charged

polyelectrolytes adopt regular shapes, such as rods and spheres. This is not the case in

RNA, which although is a polyanion, does not adopt a simple shape but undergoes large

conformational transitions as it folds. Our simulations of Azoarcus ribozyme in the presence

of Mg2+ or Ca2+ in a buffer containing K+ ions show that ion binding is highly specific.

Surprisingly, the specificity of binding depends on the folded structure of the RNA. In other

words, in this ribozyme with a complex fold, the charge neutralization of phosphates does

not occur uniformly as predicted by CIC theory for rod-like macroions. There are specific

regions where condensation occurs, even at very low concentrations of the divalent cations.

Although we have arrived at this unexpected finding using simulations of one ribozyme, we

expect that the main conclusion should be applicable for other RNA molecules.

We conclude with the following additional comments. (1) We find, perhaps not surpris-

ingly, that monovalent ions unbind (termed as counterion release process) when RNA is

titrated with divalent ions (Fig. 6). This validates one of the predictions of the CIC theory.

The release of K+, however, occurs from specific nucleotide locations on the RNA, which

is not anticipated in the CIC theory. (2) It is unclear to us if our findings, especially the

exquisite specificity of the predicted nucleotide-dependent binding of ions to RNA, could be

tested in experiments because of the highly correlated and many-body nature of ion con-

densation. Multi color FRET experiments may be used to label regions of high affinity for

divalent cations. The conformational changes as a consequence of ion binding and unbinding

at these location could be used, most likely in conjunction with simulations, to determine

the architecture dependent interaction of ions with RNA. (3) Our results show that charge

renormalization of phosphates, as might be surmised by the diffuse binding picture of ion-

RNA interactions, but occurs in a highly heterogeneous manner. The fingerprints of ion

localization show that the extent of charge neutralization depends on the nucleotide posi-

tion – finding that has to be incorporated in calculating free energy changes of RNA as it

folds. (4) The clear implication of our results is that even when using coarse grained models
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ions should be modeled explicitly to reflect their sizes and charge densities. However, it is

possible that electrostatic interactions due to monovalent ions can be accounted for by using

effective interactions [25]. But in order to obtain accurate thermodynamics of RNA folding

divalent ions have to be explicitly modeled [7, 26]
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Figure 1. Schematic of charged rods and the Azoarcus ribozyme. (a) The dimensions of the rod,

with aspect ratio 11.9, and positions of charges (in red) are illustrated. The diameter of the rod

is 0.42 nm, which is the same as the diameter of the phosphate group in the coarse-grained RNA

model. Negative charges are placed at regular interval with spacing that gives charge densities; −1.0

e/nm (left), −2.0 e/nm (middle), and −5.0 e/nm (right). R is the radial distance in the cylindrical

coordinate, whereas r represents the distance from the point charge to a position in space in the

spherical coordinate. (b) A snapshot of the rod simulations. Ions are colored in blue for Mg2+,

green for K+, and pink for Cl-. (c, d) The secondary (c) and tertiary (d) structures of Azoarcus

group I intron ribozyme (PDB 1U6B [17]). The location of the triple helix (TH) is indicated on

the secondary structure. The color codes in both the structures are the same.
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Figure 2. Comparison of the condensed ion species on charged rods with linear densities, ρ1D =

−5 e/nm (top panels), −2 e/nm (middle) and −1 e/nm (bottom) in the absence (a-c) and presence

(d-f) of Mg2+. The cumulative charges per unit length Q (Eq. 7) is plotted as a function of R for

contribution from each ionic species (annotated in the top panels). The total cumulative charge,

QT(R) (thick gray line), is the sum of charges of the rod and surrounding ions (Eq. 8). The solution

conditions are indicated on the top. The ranges of exclusion by the volume interactions (Eq. 1),

Rr + RK = 0.48 nm for K+, and Rr + RMg = 0.29 nm for Mg2+, are indicated by arrows in the

bottom panels (Rr, RK , RMg are radii of the rod, K+, and Mg2+, respectively).
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Figure 3. Condensation of Mg2+ (a, c) and K+ (b, d) for the three rods with differing charge

density, ρ1D , (Fig. 1a) in 5 mM Mg2+ and 50 mM K+ buffer. (a, b) Local ion concentrations of

(a) Mg2+ and (b) K+. (c, d) Normalized fluctuations (Eq. 4) of the local ion concentrations of (c)

Mg2+ and (d) K+ at the same condition as in (a) and (b). The positions of negative charges on

the three rods are indicated at the bottom. In order to avoid end effects, only the middle region of

the rod (−1.1 nm ≤ z ≤ 1.1 nm) was used in the analysis.
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Figure 4. Ribozyme folding and ion condensation as a function of Mg2+ concentration. (a) Average

radius of gyration (Rg) as a function of concentration of Mg2+, that indicates the global compaction

around the midpoint of [Mg2+] ∼ 1.5 mM. Squares are experimentally measured Rg in a Tris buffer

containing 12 mM K+ taken from [15]. (b) [Mg2+]-dependence of local ion concentrations averaged

over the nucleotide sequence, c∗, for K+, Mg2+ and Ca2+. (c) Variances in the concentrations along

the RNA sequence, σ2.
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Figure 5. Radial profiles of ion distributions around the ribozyme, ρ(r), for Mg2+, K+, Cl−, and

phosphate (P) at various Mg2+ concentrations: (a) 0, (b) 0.4 mM, (c) 1.5 mM, and (d) 4.0 mM.

The concentration of K+ is 50 mM. Appropriate amount of Cl− were added to the solution for the

electroneutrality. Note that the scale for ρ
Mg2+

and ρP (left axis) is 10 times greater than ρ
K+ and

ρ
Cl− (right axis). It should be pointed out that the density profile for K+ decreases substantially

as [Mg2+] increases. The red arrows indicate the amplitude of non-neighboring phosphates. The

results in 50 mM KCl are shown in Fig. S1 in the SI. The density profiles for Mg2+ and P are

roughly independent of the K+ concentration.
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Figure 6. Fingerprint of ion coordination expressed as a local ion concentrations, c∗i (i is the

nucleotide position), for Mg2+ (blue) and K+ (green). The local ion concentrations are calculated

as the molarity of ions in the vicinity of each nucleotide (r ≤ `B = 0.73 nm). The peaks with

varying heights at different nucleotides positions as ribozyme folds reflects the architecture of the

folded state. Most importantly, c∗ is not uniform but varies dramatically along the nucleotides,

which is very different from what is found for charged rods (see Fig. 3a). The results at 50 mM K+

are shown in Fig. S2 in the SI.

24



Figure 7. Relationship between K+ condensation and residual structure. The fraction of secondary

structure formation is shown on top as bars for each nucleotide. (a) At 0.4 mM Mg2+, the profile of

condensed K+ (green) has several characteristic minima that correspond to loops in the stem-loop

structures of P2, P5, P6, P8 and P9 (indicated by vertical black lines). See Fig. 1 for the structures.

(b) At 4.0 mM Mg2+, the profile of condensed Mg2+ correlates with the profile of phosphate (gray

dashed). Such a correlation does not exist at low Mg2+ concentration. The secondary structures

(various colored bars on top) are nearly fully formed.
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Figure 8. (a, b) Correlation between local ion concentrations of phosphate (c∗P) and the cations

(c∗m) where m is either K+ or Mg2+. Each data point represents one nucleotide. There are 195

such data points in each panel. The solution conditions are (a) [Mg2+] = 0.4 mM, and (b) 4 mM,

both in 50 mM KCl. In (a), the data points at c∗P > 3.5 M correspond nucleotides 39, 40, and

113-116 (inside the dotted rectangle), that are involving the tertiary helix. (c, d) Correlations of

fluctuations, ∆c∗, between Mg2+ and K+ at (c) [Mg2+] = 0.4 mM and (d) 4.0 mM in 50 mM KCl.
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Figure 9. Probability distributions of shape parameters, (a) asphericity ∆ and (b) prolateness S,

for the Azoarcus ribozyme at three Mg2+ concentrations, 0 mM (dotted green), 1.5 mM (dashed

orange), and 4 mM (solid blue). If the shape is a perfect sphere then ∆ = S = 0, whereas a perfect

rod corresponds to ∆ = S = 1. The inset show the average values of 〈∆〉 and 〈S〉 as a function of

[Mg2+] at [K+] = 12 mM (dotted line) and 50 mM (solid line). The values of 〈∆〉 and 〈S〉 in the

folded states are 0.24 and 0.17, respectively. Globally the shape of this ribozyme corresponds to a

prolate ellipsoid.
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SUPPORTING INFORMATION FOR “ION CONDENSATION ONTORIBOZYME

IS SITE-SPECIFIC AND FOLD-DEPENDENT”

Figure S1: Radial profiles of local ion concentration, ρ(r), for Mg2+, K+, Cl−, and phos-

phate (P) at [K+] = 12 mM and various [Mg2+]: (a) 0, (b) 0.4 mM, (c) 1.5 mM, (d) 4.0

mM, and (e) 30 mM. (f) The profile at [K+] = 50 mM and [Mg2+] = 30 mM. Appropriate

amount of Cl− were added to the solution for the electroneutrality. Note that the scale for

ρ
Mg2+

and ρP (left axis) is 10 times greater than ρ
K+ and ρ

Cl− (right axis).
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Figure S2: Local ion concentrations, c∗i (i is the nucleotide position), for Mg2+ (blue) and

K+ (green) at [K+] = 12 mM and various [Mg2+]: (a) 0, (b) 0.4 mM, (c) 1.5 mM, (d) 4.0

mM, and (e) 30 mM. (f) The profile at [K+] = 50 mM and [Mg2+] = 30 mM.
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Figure S3: Normalized fluctuations of local ion concentrations, ∆c∗ (Eq. 4), for Mg2+

(dotted blue) and K+ (solid green), in 12 mM KCl (left column; a–e) and 50 mM KCl (right

column; f–j).
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Figure S4: Sequence dependence of the local ion concentration (left column, c∗) and its

fluctuations (right column, ∆c∗) in the presence of Ca2+ ions instead of Mg2+. The concen-

tration of Ca2+ is labeled in each panel. [KCl] is fixed at 50 mM.
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Table S1: Parameters for excluded volume and electrostatic interactions.

Bead type Ri/nm ∗ εi/kcal mol−1 zi/e

Phosphate 0.21 0.2 -1

Rod charge 0.21 0.2 -1

Sugar 0.29 0.2 0

Base A 0.28 0.2 0

Base G 0.30 0.2 0

Base C 0.27 0.2 0

Base U 0.27 0.2 0

Mg2+ 0.08 0.9 2

Ca2+ 0.17 0.5 2

Cl− 0.19 0.3 -1

K+ 0.27 0.0003 1
∗ If both interacting sites are RNA sites, we take Ri +Rj = 0.32 nm.
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