
DECONVOLVING RNA BASE PAIRING SIGNALS

TORIN GREENWOOD AND CHRISTINE E. HEITSCH

Abstract. The structure of an RNA sequence encodes information about its biological function.
A sequence is typically predicted to fold to a single minimum free energy conformation. But, an in-
creasing number of RNA molecules are now known to fold into multiple stable structures. Discrete
optimization methods are commonly used to predict foldings, and adding experimental data as
auxiliary information improves prediction accuracy when there is a single dominant conformation.
In this paper, we analyze the outputs of existing structural prediction models when they receive
auxiliary data derived from a mixture of structures. Under a binary model of auxiliary data, we
find that current structural prediction methods typically favor distributions with one dominant
structure, and hence cannot guarantee accurate reconstruction of multimodal distributions. Ad-
ditionally, we analyze empirical distributions of auxiliary data used in current prediction models.
We show that even when the structures in a distribution are known in advance, it is difficult to
determine the weightings of the structures using auxiliary data. RNA secondary structure and
thermodynamic optimization with auxiliary data and method of moments estimators

1. Introduction

The combinatorial arrangement of RNA base pairings encodes functional information. However,
it is difficult to determine the structure of an RNA sequence experimentally. Instead, discrete
optimization methods are used to predict the most probable folding for an RNA sequence. Because
three-dimensional structures can contain complicated bonding relationships between nucleotides,
optimization methods instead search for two-dimensional approximations, called secondary struc-
tures, that still contain important functional information. A popular class of prediction algorithms
(including Zuker and Stiegler (1981) and Ding et al. (2004)) assign energies to every potential
structure into which a structure can fold. To do so, the algorithms use the Nearest Neighbor Ther-
modynamical Model from Mathews et al. (1999) and Mathews and Turner (2006). The energies can
be used to define a Boltzmann distribution on all potential structures. Then, dynamic programming
algorithms introduced in Zuker and Stiegler (1981) can find the minimum free energy structure,
which is the most probable structure in the Boltzmann distribution. Another class of prediction
algorithms uses stochastic context-free grammars (SCFGs) to generate structures through recur-
sive rules with probabilities attached to each rule, like the grammars in Eddy and Durbin (1994)
and Sakakibara et al. (1994). In this case, the structure with the highest probability of occurring
becomes the predicted structure.

Unfortunately, none of these methods have perfect accuracy on their own. To improve these
methods, auxiliary experimental data can be incorporated. Through chemical footprinting experi-
ments, every nucleotide in a folded RNA sequence can be assigned a reactivity score. Ideally, the
reactivity would be 0 for paired nucleotides and a positive constant A for unpaired nucleotides, but
for a variety of experimental reasons, the reactivity signal less clear. Several competing methods
of incorporating this noisy data into the thermodynamic prediction model have been proposed, as
in Deigan et al. (2009), Zarringhalam et al. (2012), and Quarrier et al. (2010), and the data can
also be incorporated into SCFGs. As described in Deigan et al. (2009), when auxiliary data is
included, the prediction accuracy of these methods is high enough to recover important structural
information about wide classes of RNA sequences.
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Figure 1. Each diagram represents a potential secondary structure for the same
RNA sequence, with dots representing nucleotides and arcs representing bonds. Al-
though all three structures have similarities in gray, the colored regions represent
critical differences. In our modelling simulation, current structural prediction meth-
ods cannot devolve a 50/50 mixture of the left and right structures. Instead, they
inaccurately guess that the ensemble of structures is comprised of nearly 100% the
middle structure.

Instead of looking at RNA sequences with one dominant conformation, our goal is to investigate
how well existing prediction algorithms are able to predict multimodal distributions when the aux-
iliary data is derived from a mixture of structural signals. An increasing number of RNA molecules
are now known to fold into multiple stable structures, as described in Rogers and Heitsch (2014).
In Leonard et al. (2013), the authors uncovered evidence of multimodal structural distributions.
We will find shortcomings of existing prediction methods in identifying multimodal distributions,
and we will identify improvements that are necessary in the auxiliary biological data in order to
accurately predict the weightings of structures in a multimodal structural signal.

2. Challenges in identifying multimodal distributions: an empirical study

In this section, we look at empirical evidence illustrating the challenges in identifying multimodal
distributions of RNA secondary structures. Because there is not yet biological data from multimodal
distributions of structures, we will simulate biological data in this section by using distributions
from Sükösd et al. (2013) that were derived from biological data. The problems in these empirical
simulations will guide the intuition behind the more general results we derive later. Background
information on RNA folding is saved until Section 4.

Here, we investigate distributions involving two potential secondary structures, R and S, for the
same RNA sequence. Each nucleotide in an RNA sequence’s secondary structure is either paired
to one other nucleotide, or is unpaired, as shown in the examples in Figure 1.

Consider two sequences of auxiliary data corresponding to each of these structures, labelled
{Mi}ni=1 for structure R and {Ni}ni=1 for structure S. To model data coming from a mixture
of 100p% of R and 100(1 − p)% of S, with p ∈ [0, 1], we use a linear interpolation of the data,
{pMi + (1 − p)Ni}ni=1. Then, for various values of p, we examine the distribution of structures
produced by existing prediction models as they receive interpolated data. We will refer to this as
an S → R interpolation. To gain insight into these distributions, we look at what happens for two
specific RNA structures for the RNA sequence VcQrr3. This is a small RNA molecule from the
quorum-sensing pathway in the bacterium, Vibrio cholerae, studied in Lenz et al. (2004) and Tu
and Bassler (2007). Later, in Rogers and Heitsch (2014), the authors found that this sequence can
fold into several low-energy conformations, as illustrated below in Figure 3. We will look at the
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Figure 2. Here, we generate a sample of 1000 structures by using the dominant
structural prediction method and the auxiliary sequence pM1+(1−p)M2, for various
percentages p from structure W2.

structures that will be labelled W3, W1, and W2, which are illustrated from left to right in Figure
1. Consider when the corresponding auxiliary sequences M and N are randomly generated using
structures W3 and W2 and the empirical distributions derived in Sükösd et al. (2013). Using this
data for different values of p and the dominant NNTM prediction model described in Section 5.1,
we produced 1000 structures for each value of p between 0 and 1, incremented by 0.05. Although
the distributions were accurate for p = 0 and p = 1, a problem occurred for p = 0.5: instead of
producing a distribution of structures where W2 and W3 represented roughly half of the distribution,
the algorithm produced a distribution that was nearly 100% comprised of a third structure, labelled
W1. This indicates that the standard model can have trouble identifying multimodal distributions
of structures.

To gain more insight into the problems identifying multimodal distributions, we consider two
more interpolations, illustrated in Figure 2. Now, we count the frequencies of competing structures
in samples generated using mixed auxiliary data. In a W5 → W2 interpolation, we see that when
25% of the data comes from structure W2, the structural prediction model already produces a
distribution that is composed nearly entirely of W2, and W5 is not represented. With this as
motivation, we define the crossover point of an S → R interpolation to be the value of p where R
and S occur with equal probability in a distribution. In this example, the crossover point is below
p = 0.1, and thus is highly uncentered. We ask whether it is possible to reparametrize current
models to make crossover points closer to 0.5.

Besides the fact that crossover points may be far from 0.5, another issue is whether the struc-
tures that contribute to mixed auxiliary data can be identified reliably. With this in mind, let the
crossover window be the range of p values for which R and S both occur in at least 20% of the
distribution. Crossover windows must span a large range of p values, or the multimodal distribu-
tion will not be precisely identifiable. Ideally, a crossover window would have length about 0.6,
corresponding to the range p = 0.2 to p = 0.8 where the mixed data includes at least a 20% contri-
bution from each structure’s data. The W5 → W2 interpolation indicates that crossover windows
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can be very short. Also, the W3 → W2 interpolation data in Figure 2 shows another problem:
a third structure, W1, has dominated much of the interpolation, and it is no longer evident that
the SHAPE data was derived from structures W2 and W3. Typically, the greater the number of
structural differences between R and S, the greater the number of unexpected structures appearing
in an interpolation.

One purpose of this paper is to see that the problems identified in this section are common to both
the dominant Deigan structural prediction model and other current structural prediction models.
In particular, we will use a binary model of auxiliary data to analyze multimodal distributions,
and we will find classes of structures where crossover points are uncentered and crossover windows
are narrow. Then, because of the problems with inputting auxiliary data into existing prediction
models, we will also investigate distributions for auxiliary data separately. In particular, we look
at whether it is possible to recover p when R, S, and the distributions of auxiliary data are known
in advance. We will find that it is difficult to recover p with current auxiliary data distributions.
However, with a slight modification of the distributions, recovering p becomes viable.

3. Preliminary Results

Before delving into the details of the various models for secondary structure prediction, we
examine a simple model. The purpose of this section is to illustrate both the types of results we
will find for the other models, as well as the proof techniques. Additionally, we will summarize
some of our results about biological auxiliary data.

3.1. Uncentered crossover points and short crossover windows. The empirically-derived
auxiliary data distributions from Sükösd et al. (2013) have large variances, and make the analysis
of existing prediction models difficult. In order to remove such variability, we generate noiseless
auxiliary data signals for structures by assigning a 0 to any paired nucleotide, and assigning 1
to any unpaired nucleotide. For any structure Sj with n nucleotides, let Pj := {Pj,i}ni=1 be the
binary auxiliary sequence corresponding to the structure. Then, we consider mixtures of the binary
auxiliary data, defined by pPj + (1 − p)Pk, and we call the corresponding interpolation a binary
Sk → Sj interpolation.

Below, we will input these mixed binary auxiliary sequences into several different existing struc-
tural prediction models, and analyze the crossover points and crossover windows for each. The
particular type of data used in the models is called SHAPE data, described in Section 4.2 below.
This data can be incorporated into energy-based models to create new SHAPE-directed energies
for each structure. Consider a binary S2 → S1 interpolation. Then, regardless of the model, the
SHAPE-directed energies depend on only a few features of the structures themselves. First, the
models rely on the energies of S1 and S2 before the auxiliary data is considered. Second, the
models depend on the total number of pairings in each structure. Accordingly, let [#bp](S1) be
the number of nucleotides in base pairs in S1. Finally, the models depend on the number of pair-
ings in S1 that are not in S2, and the number pairings in S2 that are not in S1. Thus, we let
[#bp](S1 − S2) be the number of paired nucleotides in S1 that are unpaired in S2. Also, we let
[#bp](S1∆S2) = [#bp](S1 − S2) + [#bp](S2 − S1).

Here, we look at a simple energy model for RNA structures in order to illustrate the types
of results and methods used to analyze prediction models. The Nussinov-Jacobson energy model,
based on the algorithm from Nussinov and Jacobson (1980) and analyzed in Clote (2005) and Clote
et al. (2007), assigns energies to structures by totaling the number of base pairs in the structure.
Thus, the structure with the most base pairs is considered optimal. With this in mind, we define
the energy of structure S given SHAPE sequence M as:

(1) ENJ(S|M) = −[#bp](S) +
n∑

i=1

C|xi −Mi|,
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where C > 0 is a model parameter, and xi is 1 if the ith nucleotide of S is unpaired, or 0 if it
is paired. The SHAPE penalty is motivated by the Zarringhalam model from Zarringhalam et al.
(2012), analyzed further later. With the Nussinov-Jacobson SHAPE-directed energy model defined,
we have the following result about crossover points:

Theorem 1. In the Nussinov-Jacobson SHAPE-directed energy model, the crossover point in a
binary S2 → S1 interpolation is given by

p∗ =
1

2
+

1

2C
− [#bp](S1 − S2)

C[#bp](S1∆S2)
.

In particular, for all C ≤ 5 and all structures S1 and S2 where [#bp](S1−S2) = 0, we have p∗ ≥ 0.6.

It will not be possible to find an explicit formula for crossover points for the other models.
However, we will repeatedly find that crossover points cannot always be centered near p = 0.5.
The condition that [#bp](S1 − S2) = 0 is the scenario where S1 has all the pairings in S2, plus
potentially more. In this model, C = 1 is always a large enough parameter value to guarantee that
the model prefers S1 when given P1 and prefers S2 when given P2. Thus, a value of C = 5 is quite
large, and the fact that crossover points can be uncentered for a large class of interpolations when
C ≤ 5 indicates that the model cannot reasonably guarantee centered crossover points.

Theorem 1. Here, we must analyze the penalties of the form C|xi −Mi| in Equation (1). Each
nucleotide counted in [#bp](S1−S2) contributes C(1−p) to the energy of S1 because the nucleotide
is paired in S1 (so xi = 0), and the SHAPE value at this nucleotide is (1 − p), because S2 has an
unpaired nucleotide here. Similarly, each nucleotide counted in [#bp](S2 − S1) also contributes
C(1− p) because xi = 1 and the SHAPE value is p. Thus,

ENJ(S1|pP1 + (1− p)P2) =

− [#bp](S1) + [#bp](S1 − S2)C(1− p) + [#bp](S2 − S1)C(1− p).

A similar equation holds for S2, and the crossover point p∗ satisfies the equation where the energies
for S1 and S2 are equal. This gives:

p∗ =
1

2
+

[#bp](S2)− [#bp](S1)

2C
[
[#bp](S1 − S2) + [#bp](S2 − S1)

] .
The set-theoretic relation [#bp](S1) + [#bp](S2 − S1) − [#bp](S1 − S2) = [#bp](S2) can be used
to simplify the equation for p∗ to the one given in the theorem. Finally, when [#bp](S1 − S2) = 0,
we have the simplification p∗ = 1

2 + 1
2C , which is at least 0.6 when C ≤ 5. �

Given a fixed RNA sequence, energies can be used to define a Boltzmann distribution of struc-
tures, where a particular structure S with energy E(S) has the probability in the distribution,

(2) P(S) :=
e−E(S)/RT

Z
,

where Z is a partition function over all possible structures for the sequence, R = 0.001987 kcal/(mol
K) is the gas constant, and T is the temperature, which we take to have default value 310K.

One would expect that as the number of places where the structures S1 and S2 differ increases, the
SHAPE data will have more of an influence on interpolations, because a SHAPE penalty is applied
more frequently. This would mean that as the number of differences increases, both structures
appear simultaneously in a distribution less frequently. The following result confirms this, as the
crossover window length is expressed as a function inversely proportional to C and [#bp](S1∆S2):
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Theorem 2. In the Nussinov-Jacobson SHAPE-directed energy model, the binary S2 → S1 inter-
polation has a crossover window with length at most

RT ln 4

C[#bp](S1∆S2)
.

Proof. In order to have at least 20% of each structure appearing in the SHAPE-directed distribution,
a necessary (but insufficient) pair of conditions is:

P(S1|pM1 + (1− p)M2) ≥ 2

8
P(S2|pM1 + (1− p)M2),

P(S2|pM1 + (1− p)M2) ≥ 2

8
P(S1|pM1 + (1− p)M2).(3)

The advantage of this condition is that by including probabilities on both sides of the inequality,
the partition function Z can be cancelled from the inequality entirely. Using the expressions for
ENJ(S1|pP1 + (1 − p)P2) and ENJ(S2|pP1 + (1 − p)P2) from the proof of Theorem 1, taking the
natural logarithm of the above expression, and rearranging yields the equivalent set of inequalities,

(4) [#bp](S2)− [#bp](S1)−RT ln 4 ≤ C(2p− 1)[#bp](S1∆S2)

≤ [#bp](S2)− [#bp](S1) +RT ln 4.

In order to find an upper bound for the length of the crossover window, we must find how slowly
the expression C(2p − 1)[#bp](S1∆S2) can increase from the lower limit to the upper limit, as a
function of p. Recognizing that the difference between the lower and upper limits is 2RT ln 4, and
letting ` be the length of the crossover window, this is equivalent to:

2C[#bp](S1∆S2)` ≤ 2RT ln 4,

which can be rearranged to finish the proof. �

Using the VcQrr3 structures W2 and W5 from the empirical results in Section 2, we can count
[#bp](W5∆W2) = 6. This implies that for C > 0.5, the binary W5 → W2 interpolation crossover
window has length at most 0.29. This is in contrast to the ideal width of 0.6, corresponding to
structures W2 and W5 both being present with weight at least 20% for the range of p-values from
p = 0.2 to 0.8. The crossover window is even narrower for other structures. For example, for the
binary W5 → W3 interpolation (where W3 is described later), we can count [#bp](W3∆W5) = 24,
reducing the crossover window length to at most 0.072. We will find similarly short crossover
windows for other prediction models.

3.2. SHAPE data analysis. Reconstructing a multimodal structural distribution requires both
identifying the structures in the distribution, and identifying their weighting. So far, we have found
evidence that the structural prediction models may not accurately identify the structures nor the
weightings corresponding to mixed sequences of binary SHAPE data. In this section, we consider
a related problem: if the structures S1 and S2 are known in advance, is it possible to determine
the weighting p of structure S1 from a string of experimental SHAPE data? More precisely, in
Rice et al. (2014), the authors propose a cutting-edge version of SHAPE data, described in Section
6.1.1 below. This method of incorporating SHAPE data improves predictions for those sequences
that have structures which are hard to predict due to pseudoknots or other non-canonical features.
We will consider empirical distributions based on this model: one for paired nucleotides, and one
for unpaired nucleotides. Let M1 and M2 be SHAPE sequences for S1 and S2 modelled by these
distributions. Assuming the distributions of SHAPE data are known, we investigate whether it is
possible to determine p when given the values of the sequence D, where D = pM1 + (1− p)M2.

To start, consider the scenario where [#bp](S1 − S2) = 0. In this case, information about the
proportion of S1 and S2 is contained mostly in positions where the structures differ, counted by
[#bp](S2 − S1). Let D̄ be the average value of the SHAPE values in D corresponding to these
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positions. Let X and Y be random variables distributed as the SHAPE values for unpaired and
paired nucleotides, respectively. Then, a method of moments estimator for p is:

p̂ :=
D̄ − EY
EX − EY

.

We investigate whether p̂ reliably reconstructs p, and conclude that when S1 and S2 differ by a
short-length helix, it does not. In particular, in Section 6.1.1, we find a formula for the variance of
p̂ in terms of [#bp](S2 − S1), p, and the distributions for X and Y . It turns out that when S1 and
S2 differ by a helix of length 4, p̂ can have a standard deviation as high as 0.5 for p ∈ [0.25, 0.75]. A
standard deviation this high means that the value of p cannot reliably be reconstructed. However,
we will find potential improvements for SHAPE data that will lower the variance of p̂, guaranteeing
better predictions of p on average. Then, we analyze the best way to estimate p in the case where
structures differ by more than one helix in Section 6.2.

4. Background

Here, we give more details on SHAPE data and SHAPE-directed energy and probability models.
The specific models we will analyze are detailed in the section where the analysis occurs.

4.1. Nearest Neighbor Thermodynamical Model. The Nearest Neighbor Thermodynamical
Model assigns an energy score to each potential structure into which a sequence can fold. The model
has hundreds of parameters, corresponding to the energies of every possible structural feature and all
types of bonds that can appear in an RNA secondary structure, as described in Mathews and Turner
(2006), Turner and Mathews (2010), and Doshi et al. (2004). The total energy of a structure is the
sum of the energies of all of its components. Because we will be analyzing multimodal distributions,
we will analyze the suboptimal structures predicted by this model. Given a fixed RNA sequence,
energies can be used to define a Boltzmann distribution of structures, as described in Equation (2).
Note that when an RNA sequence is predicted to fold into a single structure, a prediction algorithm
typically aims to find the structure S which minimizes the energy, or equivalently, maximizes P(S).
But, when a distribution of structures is identified, then there are efficient algorithms which can
sample structures from the distribution, as described in Ding and Lawrence (2003) and Mathews
(2006), and used in the empirical study in Section 2.

4.2. SHAPE data. Auxiliary data can be used to shift the probabilities in the distributions
by assigning additional energy terms to each structure, called pseudoenergies. The C|xi − Mi|
terms in Equation (1) are an example of pseudoenergies. Experimentally, folded RNA sequences
are exposed to chemical reagents in probing experiments, resulting in SHAPE data, named after
the laboratory method, selective 2’-hydroxyl acylation analyzed by primer extension. There are
several different reagents that are commonly used: N-methylisatoic anhydride (NMIA), 1-methyl-
7-nitroisatoic anhydride (1M7), and 1-methyl-6-nitroisatoic anhydride (1M6). As discussed in Rice
et al. (2014), different chemicals can give different structural signals, which we will revisit in Section
6.1.1.

Regardless of the chemical used, once this experiment is completed, each nucleotide in an RNA
sequence is assigned a (typically) non-negative score reflecting its reactivity to the reagent. In
general, the higher the reactivity, the less likely a nucleotide is to be paired. As mentioned above,
there are several ways of incorporating this information into the NNTM, and the survey Eddy
(2014) discusses benefits and drawbacks of each. The accuracy of single-conformation predictions
is generally high when SHAPE data is included in predictions. However, for those sequences that
have structures which are still hard to predict due to pseudoknots or other non-canonical features,
the use of differential SHAPE data can help, as introduced in Rice et al. (2014).

Although there is evidence of the existence of multimodal structural distributions, there is not a
large collection of data derived from known multimodal distributions yet. As a result, we will model
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SHAPE data coming from a multimodal distribution with a linear interpolation of SHAPE data
from two structures, as described in Section 2. Throughout the paper, we will use three different
types of SHAPE distributions to model mixed data. First, in Section 2, we generated SHAPE data
from empirically-derived distributions developed in Sükösd et al. (2013), to illustrate the potential
problems with using SHAPE data in existing prediction models. These empirical distributions
are described further below. Second, when analyzing the individual prediction models, we will use
binary SHAPE sequences. These noiseless sequences represent an idealized version of SHAPE data,
and simplify the analysis of each model. Finally, in Section 6 when we investigate how well data can
be used to recover the weightings of structures in a distribution, we will use experimental SHAPE
data from Rice et al. (2014).

Before moving on, we discuss the empirical distributions for SHAPE data described in Sükösd
et al. (2013). Here, the authors fit distributions for paired and unpaired nucleotides to SHAPE
data from two Escherichia coli ribosomal sequences: a 16S rRNA sequence with 1542 nucleotides,
and a 23S rRNA sequence with 2904 nucleotides. The authors formed both a binary model where
they fitted the data separately for paired and unpaired nucleotides, and a ternary model where
they broke paired nucleotides into center-paired and edge-paired nucleotides. A paired nucleotide
at position i is center-paired if the nucleotides at positions i− 1, i, and i+ 1 are all paired, and are
all part of the same helix. As an added technicality, nucleotides in the center of a helix are still
considered center-paired when one side of a helix is interrupted by a single unpaired nucleotide.
All other paired nucleotides are called edge-paired.

The ternary model performed better in simulations, and thus is what we used to generate SHAPE
data in Section 2 above. However, the binary model will be used for incorporating SHAPE data into
SCFGs. Thus, we will let g(x) be the probability distribution function for the paired distribution,
and h(x) for the unpaired distribution. g(x) is a generalized extreme value distribution with
parameters ξ = 0.895341, σ = 0.0712473, and µ = 0.054239. h(x) is an exponential distribution
with parameter λ = 1

0.681211 .

4.3. Stochastic context-free grammars. An alternative to NNTM energy models, stochastic
context-free grammars (SCFGs) use recursive rules to convert a non-terminal, S, into a string of
symbols called terminals. SCFGs were originally introduced in the context of speech recognition
and language analysis, as in Baker (1979) and Booth and Thompson (1973). A couple decades later,
SCFGs were applied to RNA secondary structures. They have been implemented and analyzed in
Knudsen and Hein (1999), Knudsen and Hein (2003), Dowell and Eddy (2004), and Durbin et al.
(1998).

For RNA secondary structures, the non-terminal S is converted into the terminals, which are
dots ‘.’ and brackets ‘(’ and ‘)’. Such a sequence of parentheses and dots is the dot-bracket notation
for an RNA secondary structure, where pairs of brackets correspond to paired nucleotides and dots
correspond to unpaired nucleotides. For example, the word ((..).) corresponds to a structure where
the first and last nucleotide are paired together, the second and fifth nucleotide are paired together,
and the rest are unpaired. Dot-bracket notation was popularized by the ViennaRNA prediction
software from Lorenz et al. (2011).

Once the SCFG converts the non-terminal S into a word of terminals, each terminal has a
corresponding set of emission probabilities. In the context of RNA structures, emission probabilities
correspond to the chance of the non-terminals becoming each type of nucleotide, A, C, G, or U.
Typically, given an RNA sequence, the Inside and Outside algorithms from Baker (1979) can be used
to compute the structure with the maximum probability of occurring, which is then the structure
the SCFG predicts. The SCFG also produces a distribution of structures given an RNA sequence.
In order to compute such a distribution, one must compute a partition function similar to in the
NNTM: probabilities must be normalized by the sum of the probabilities of all possible structures
given the particular RNA sequence.
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Name Dot-bracket Structure Helices

W0
((((((((.........))))))))......((((....))))...........

W0
......................((((((((((......)))))))))).....

W1
((((((((.........)))))))).(((((.(((....)))))))).......

W0 ∪H1
......................((((((((((......)))))))))).....

W2
((((((((.........))))))))......((((....))))...((((((..

W0 ∪H2
....))))))............((((((((((......)))))))))).....

W3
((((((((.........)))))))).(((((.(((....))))))))...(((( W0 ∪
(((...........))))))).((((((((((......))))))))))..... H1 ∪H3

W4
((((((((.........))))))))...(((.(((....)))))).((((((.. W0 ∪
....))))))............((((((((((......))))))))))..... H1 ∪H2

W5
((((((((.........))))))))...(((((((....))))...((((((.. W0 ∪
....))))))....))).....((((((((((......))))))))))..... H2 ∪H4

W

W W

WWW

0

1 2

3 4 5

H
1

H
2

H
1

H
2

H
3 H

4

Figure 3. The VcQrr3 sequence can fold into several potential structures, all of
which contain the same three helices from structure W0 plus combinations of the
four remaining colored helices. On the right, arrows represent adding a helix to a
structure, illustrating the relationship between the Wi.

In our case, the SCFG must be modified so that it can also incorporate SHAPE data into
its predictions. To include the SHAPE data, we use the empirical binary paired and unpaired
distributions from Sükösd et al. (2013). With this information, for each position i, we can multiply
the original emission probability by a new factor corresponding to the probability of the SHAPE
value at position i being emitted given that the position is paired or unpaired. More details are
given in Section 5.3.

4.4. VcQrr3 structures. In Rogers and Heitsch (2014), a new method of analyzing distributions
of RNA structures was presented, where structures were classified by the helices that they contained,
instead of by their exact pairings. By forming equivalence classes of structures in this manner, a
landscape of many competing structures could be reduced to a handful of structural classes that
combine structures containing similar functional information. The authors applied this analysis
to the VcQrr3 sequence discussed in Section 2. VcQrr3 is an RNA sequence with 107 nucleotides
that was studied in Lenz et al. (2004) and Tu and Bassler (2007). Such short RNA sequences have
gained attention in recent research because their biological roles are more diverse and complicated
than originally anticipated, as described in Couzin (2002) and Doudna (2000).

For the RNA sequence VcQrr3, the authors identified seven helices that formed the building
blocks for many potential VcQrr3 structures. Representatives from each structural class are sum-
marized in dot-bracket notation in Figure 3. Without SHAPE, a Boltzmann sample of 1000 struc-
tures was produced by the NNTM thermodynamic optimization. In the sample, structures W1

through W5 all occurred with frequency at least 30. These structures share the helices found in
structure W0, along with combinations of a set of four other helices. The representatives shown in
Figure 3 each occurred with positive frequency in a SHAPE-directed Boltzmann sample. Although
many of the results below are in terms of these particular representatives, the results rely on the
number of pairings and underlying energy of each structure, which does not change greatly between
different representatives in the same structural class.

5. Model analysis: binary SHAPE data

In this section, we analyze the crossover points and crossover windows for binary interpolations
under the Deigan energy method, the Zarringhalam energy method, and a popular SCFG, the
KH99 grammar from Knudsen and Hein (1999). Throughout this section, we generalize the binary
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data so that the value of the unpaired data is a constant, A, instead of 1. The results below will
resemble the simpler results for the Nussinov-Jacobson energy model.

5.1. The Deigan model. The Deigan method, introduced in Deigan et al. (2009), assigns pseu-
doenergies of the following form:

(5) ∆GSHAPE(i) := m ln(1 + ai) + b.

Here, m is a positive constant, b a negative constant, and ai is the SHAPE reactivity value corre-
sponding to nucleotide i. The penalty ∆GSHAPE(i) is used only if the ith nucleotide is paired. This
penalty can be incorporated into the dynamic programming algorithm that computes the NNTM
energy for a structure S. In Deigan et al. (2009), the authors showed that shifting the probabilities
defined in Equation (2) by incorporating these pseudoenergies can dramatically improve structural
predictions.

Here, we investigate how the Deigan pseudoenergies from Equation (5) behave under binary
SHAPE interpolations. Due to the way the Deigan penalty is incorporated into dynamic program-
ming algorithms, ∆GSHAPE(i) is applied once for edge-paired nucleotides, twice for center-paired
nucleotides, and never for unpaired nucleotides. Thus, we will need to count slightly different
quantities than in the Nussinov-Jacobson model. Let E(S) be the NNTM energy for S before
SHAPE data is incorporated. Let [#m](S) be the number of nucleotides in edge-pairs in S, plus
twice the number of nucleotides in center-pairs. We will refer to this as counting nucleotides with
multiplicity. Additionally, let [#m](S1 − S2) be the number of paired nucleotides in S1, counted
with multiplicity, that are not in S2. In this computation, edge- or center-pairedness depends only
on S1, and not on S2.

This method of counting paired nucleotides can lead to counterintuitive results when many edge-
paired nucleotides from one structure align with center-paired nucleotides from another. Consider
the structures below:

T1 : ........((((((....))))))........

T2 : .((..((..))))......((((..))..))..

Here, [#m](T1) = 20 due to the high number of center-paired nucleotides, and [#m](T2) = 16.
However, even though T1 has more paired nucleotides with multiplicity, [#m](T1 − T2) = 4 while
[#m](T2−T1) = 8. Although this combinatorial example illustrates the scenario, VcQrr3 structures
W5 and W4 have a similar relationship. For structures with this sort of relationship (and some other
conditions), we will show that the crossover point must be skewed towards the structure with fewer
pairings overall. Thus, we have the following version of Theorem 1 for the Deigan model:

Theorem 3. Let S1 and S2 be two structures for the same RNA sequence. Assume that E(S1) ≥
E(S2), [#m](S1) ≤ [#m](S2), and [#m](S1 − S2) = D[#m](S2 − S1) > 0 for some constant D > 1.
Then, there is no choice of A > 0,m > 0, and b < 0 such that the crossover point for the binary
S2 → S1 interpolation is in the range, [0, D/(D + 1)].

Before proving Theorem 3, we investigate its application to VcQrr3. For structures W5 and W4,
we can count that [#m](W5 −W4) = 5 while [#m](W4 −W5) = 3, that [#m](W5) = [#m](W4) =
104, and verify that E(W5) > E(W4). Then, in the statement of the theorem, D = 5/3, so that
D/(D+1) = 0.625. This yields the following corollary, showing the existence of uncentered crossover
points in RNA structures for a real RNA sequence:

Corollary 4. There are no values for m, b, and A with m,A > 0 such that the crossover point p
in the W4 →W5 interpolation has p ≤ 0.625.

Theorem 3. Let ED(S|M) be the total Deigan model energy for the structure S with SHAPE se-
quenceM . Although the dynamic programming algorithm recursively adds the penalties ∆GSHAPE(i)
to each paired nucleotide while simultaneously computing the free energy of the structure using the
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NNTM, the SHAPE pseudoenergy can be computed separately and added to the NNTM energy to
calculate ED(S|M).

We consider the possible contributions of ∆GSHAPE(i) for mixtures of binary SHAPE data. Every
paired nucleotide in a structure contributes b to the structure’s Deigan SHAPE-directed energy,
counted with multiplicity, regardless of the SHAPE sequence. Additionally, in ED(S1|pP1 + (1 −
p)P2), a term of the form m ln[1+A(1−p)] appears for each paired nucleotide in S1 that is unpaired
in S2, counted with multiplicity. Similarly, in the energy for S2, terms of the form m ln[1 + Ap]
correspond to paired nucleotides in S2 that are unpaired in S1.

Thus, the crossover point for the S2 → S1 interpolation satisfies the equation ED(S1|pP1 + (1−
p)P2) = ED(S2|pP1 + (1− p)P2), which can be rearranged to the following expression:

(6)
E(S1)− E(S2) +

(
[#m](S1)− [#m](S2)

)
b

m
= [#m](S2 − S1) ln(1 +Ap)− [#m](S1 − S2) ln(1 +A(1− p)).

Our goal will be to show that for all A,m > 0, D > 1, b < 0, and p ∈ [0, D/(D + 1)], the right side
of the expression is negative, while the left side is positive, which will yield a contradiction. The
left side is simple to analyze: the numerator is positive because E(S1) > E(S2) and [#m](S1) ≥
[#m](S2) by assumption. And, the denominator is positive because m > 0.

The right side of Equation (6) is more challenging to analyze. We see that when A = 0, the
right side of the equation is zero. Then, we will show that with the conditions on A,D, and p,
the derivative is negative with respect to A, which will prove that the expression is negative. The
derivative of the right side of Equation (6) is:

(7)
d

dA

(
[#m](S2 − S1) ln(1 +Ap)− [#m](S1 − S2) ln(1 +A(1− p))

)
=

1

(1 +Ap)(1 +A(1− p))
·
(
A
(
[#m](S1 − S2)− [#m](S2 − S1)

)
(p2 − p)

+
(
[#m](S1∆S2)

)
p− [#m](S1 − S2)

)
.

The denominator of the fractional term is positive for all A > 0 and all p ∈ (0, 1), which leads
us to investigate the sign of the remaining expression enclosed in parentheses. We substitute the
assumed condition [#m](S1 − S2) = D[#m](S2 − S1) into this expression, and it becomes:

(8) [#m](S2 − S1) ·
[
(AD −A)p2 + (−AD +A+D + 1)p−D

]
.

We view the expression in brackets as a polynomial in p. When p = 0, this expression is negative,
because D > 1 by assumption. Additionally, the coefficient of p2 is positive while the constant
term, −D, is negative, which means that the derivative in Equation (7) has a zero for a negative p
value and a positive p value. We will show that the the positive p root is greater than D/(D + 1),
which will imply that the derivative is always negative for p ∈ [0, D/(D + 1)]. In order to do so,
we substitute p = D/(D + 1) + t for an indeterminate, t, into Equation (8), so that it becomes:

(9)
[#m](S2 − S1)

(D + 1)2
·
[(
A(D − 1)(D + 1)2

)
t2+

(
(D + 1)(AD2 − 2AD +D2 +A+ 2D + 1)

)
t−AD2 +AD

]
.

Here, the zeroes are determined by the expression in brackets, which we view as a polynomial in
t. Again, the coefficient of t2 is positive, because A > 0 and D > 1. Also, the constant term is
negative, since D > 1. Thus, there is a root of this expression when t > 0. Because this corresponds
to the positive root of p = D/(D + 1) + t, this proves that the positive root of p is always greater
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than D/(D + 1). Therefore, the derivative in Equation (7) is negative for all p ∈ [0, D/(D + 1)].
Note that this condition on the negativity of the derivative is sharp. To see this, we can write the
zeroes Equation (7) in terms of p explicitly. Taking the limit as A approaches zero gives D/(D+1).

Now, since the right hand side of Equation (6) is zero for A = 0 and has a negative derivative
for A > 0 and p ∈ [0, D/(D + 1)], this implies that the expression is negative for A > 0 and
p ∈ [0, D/(D + 1)]. This completes the proof. �

The previous result showed a problem with centering crossover points for a specific class of pairs
of RNA structures. The next result instead shows that crossover points can be centered whenever
one structure contains all of the helices of the other, plus more. In fact, in this scenario, crossover
points can be pushed to any interval [c1, c2]. This highlights that for the Deigan model, the reason
that crossover points cannot consistently be centered involves structures with competing helices.

Theorem 5. Let {Si,1, Si,2}ki=1 correspond to pairs of structures for the same RNA sequence where
[#m](Si,1−Si,2) = 0 for all i. Then, for any constants 0 < c1 < c2 < 1, and any A > 0, there exist
infinitely many Deigan parameters m > 0 and b < 0 so that all k crossover points for the binary
interpolations are between c1 and c2.

Proof. The proof relies on the fact that when two structures differ by exactly one helix, then the
difference of their energies has a Deigan term of the form m ln(1 +Ap) occur as many times as the
term, −b. This special relationship will imply that for any two structures Si,1 and Si,2 that differ
by one helix, the set of m and b forcing the crossover point to be between c1 and c2 is a cone in
the (m, b)-plane, where the upper and lower slopes of the lines depend only on c1, c2, and A, but
not on the structures themselves. The intersection of finitely many such cones is always another
infinite cone, which will complete the proof. Now, for the details.

In the case that Si,2 has strictly more helices than Si,2, we have that [#m](Si,2 − Si,1) =
[#m](Si,2) − [#m](Si,1) and [#m](Si,1 − Si,2) = 0. Thus, setting the interpolated Deigan ener-
gies of Si,1 and Si,2 equal yields:

E(Si,1) + [#m](Si,1)b =

E(Si,2) + [#m](Si,2)b+

(
[#m](Si,2)− [#m](Si,1)

)
m ln(1 +Ap).

Rearranging yields:

−b = m ln(1 +Ap) +
E(Si,2)− E(Si,1)

[#m](Si,1)− [#m](Si,2)
.

Let Li =
E(Si,2)− E(Si,1)

[#m](Si,1)− [#m](Si,2)
. The bound c1 ≤ p ≤ c2 is equivalent to the following:

m ln(1 + c1A) + Li ≤ −b ≤ m ln(1 + c2A) + Li.

As a result, for any particular A > 0, the set of solutions satisfying the condition that c1 < p < c2

is a cone in the (m, b)-plane with a point at the intercept of the two lines, (m, b) = (0, Li). Note
that while the intercept Li of the two bounding lines depends on the structures themselves, the
slope depends only on c1, c2, and A. As a result, the upper lines of all k cones are parallel, and the
lower lines of all k cones are parallel. So, the intersection of all of the cones is the space between
the lowest cone’s upper bound, and the highest cone’s lower bound, which must be another infinite
cone of solutions, completing the proof. �

Next, we examine the crossover windows for the Deigan interpolations. As in the Nussinov-
Jacobson model, the simplest scenario is when we have structures where [#m](S2 − S1) = 0.
Below, the Deigan analogue of Theorem 2 will imply that for two of the VcQrr3 structures, the
crossover window is of width at most 14%, which is much shorter than the expected width of 60%.
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Theorem 6. Let S1 and S2 be two potential structures for the same RNA sequence, where [#m](S2−
S1) = 0. Then, for all values of A,m, and b with A > 1 and m > 1, the crossover window for the

S2 → S1 binary interpolation has length at most 2− 2 · 4−2RT/[#m](S1−S2).

Proof. We use the condition in Equation (3) from the proof of Theorem 2. Plugging in Deigan
pseudoenergies yields the following equivalent condition, which is the analogue of Equation (4):

(10) [E(S2)− E(S1)] +

(
[#m](S2)− [#m](S1)

)
b−RT ln 4

≤ m[#m](S1 − S2) ln(1 +A(1− p)) ≤

[E(S2)− E(S1)] +

(
[#m](S2)− [#m](S1)

)
b+RT ln 4.

Now, in order to find an upper bound for the length of the crossover window, we must find the how
slowly the expression m[#m](S1 − S2) ln(1 + Ap̃) can jump between the lower bound and upper
bound in (10). In other words, we investigate how slowly m[#m](S1 − S2) ln(1 +Ap̃) can increase
by 2RT ln 4, as a function of p̃.

Note that the derivative of m[#m](S1−S2) ln(1+Ap̃) with respect to p̃ is decreasing in p̃, which
implies that the longest crossover window occurs when one of the endpoints in the window is p̃ = 1.
Thus, we assume that the crossover window is of the form p̃ ∈ [pL, 1], and we search for the lower
bound of the window, pL, where the following is true:

m[#m](S1 − S2) ln(1 +A)−m[#m](S1 − S2) ln(1 +ApL) = 2RT ln 4.

Solving for pL yields:

pL = 4
− 2RT

m[#m](S1−S2) +
1

A

[
4
− 2RT

m[#m](S1−S2) − 1
]

≥ 2 · 4−
2RT

m[#m](S1−S2) − 1,

where the last line is true because A ≥ 1 by assumption. This implies that the width of the
crossover window is at most:

1− pL ≤ 2− 2 · 4−
2RT

m[#m](S1−S2) .

This is a decreasing function in m, and thus is at most 2− 2 · 4−2RT/[#m](S1−S2). �

We can apply this result to the VcQrr3 structures. We have that [#m](W1 − W3) = 0 and
[#m](W3 −W1) = 24, which yields:

Corollary 7. For all values of A,m, and b with A,m > 1 and the temperature T = 310K, the
crossover window for the {W3,W1} interpolation has length at most 0.14.

Thus, for the Deigan method, have found an upper bound on the crossover window length for
a class of RNA structures, and identified an actual RNA sequence with structures within this
class. Our analysis has focused on the Deigan method because it is the dominant approach to
identifying secondary structures. However, we will now turn towards finding similar results for the
other structural prediction models, illustrating that these challenges are not specific to the Deigan
model. Because the other models are more complicated, the results will be more constrained.
Nonetheless, we will still be able to identify structures with uncentered crossover points and short
crossover windows.

5.2. The Zarringhalam model. Introduced in Zarringhalam et al. (2012), the Zarringhalam
model for incorporating SHAPE data uses a pseudoenergy term, much like the Deigan model.
However, unlike the Deigan model, a penalty is added exactly once for each nucleotide, regardless
of whether the nucleotide is center-paired, edge-paired, or unpaired. Thus, we will be interested in
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the [#bp] function from the analysis of the Nussinov-Jacobson model. As opposed to the Deigan
model, the Zarringhalam model uses all of the SHAPE data to assign energies to a structure.

Explicitly, a new pseudoenergy penalty of the form,

∆GZ-SHAPE(i) = β|xi − f(Mi)|,
is added to each term, where xi is 1 if the ith nucleotide in the structure is unpaired, and xi is 0
if the ith nucleotide is paired. β is a parameter with the default value, 0.89. As before, Mi is the
SHAPE reactivity corresponding to the ith nucleotide. The function f rescales SHAPE data in a
piece-wise linear fashion:

f(y) =



0, y ≤ 0,

7

5
y, 0 < y ≤ 0.25,

4y − 13

20
, 0.25 < y ≤ 0.4,

3
4y + 13

40 , 0.4 < y ≤ 0.7,

y

10
+

39

50
, 0.7 < y ≤ 2.2,

1, y ≥ 2.2.

Thresholds for f were determined by examining distributions of SHAPE data and determining
which ranges of values corresponded roughly to nucleotides being highly unreactive, slightly un-
reactive, slightly reactive, and highly reactive, and were partly based on data from Deigan et al.
(2009). In particular, f linearly maps the intervals [0, 0.25], [0.25, 0.3], [0.3, 0.7], and [0.7, 2.2] to
the intervals, [0, 0.35], [0.35, 0.55], [0.55, 0.85], and [0.85, 1].

Despite the fact that SHAPE penalties are assessed for both paired and unpaired nucleotides, it
turns out that the Zarringhalam model also does not guarantee crossover points between 0.4 and
0.6, even for structures with [#bp](S1 − S2) = 0, with the default value β = 0.89. However, the
crossover point result for the Zarringhalam model below is less general than Theorem 6 for the
Deigan model because the Zarringhalam model is more complicated. This is due to the fact that
penalties are now applied to paired and unpaired nucleotides, and due to the piecewise function, f .

Theorem 8. When β = 0.89 in the Zarringhalam model, there is no value of A such that both the
W5 →W2 and the W0 →W2 binary interpolations have crossovers between 0.4 and 0.6.

Proof. Again, the total contribution of the ∆GZ-SHAPE terms can be tabulated separately from
the rest of the NNTM energy calculations. Because the Zarringhalam pseudoenergy is assessed
on both paired and unpaired nucleotides, the Zarringhalam pseudoenergies for Sj in a Sk → Sj
interpolation can take on four different forms, depending on whether the ith nucleotide is paired or
unpaired in each of Sj and Sk. Let c1 and c2 correspond to the crossover points in the W5 → W2

and W0 → W2 interpolations, respectively. By tabulating the paired and unpaired nucleotides in
each structure and how they overlap, we find the equations,

− 33.6 + 6β(1− f((1− c1)A)) + 45β(1− f(A))

= −31.6 + 6βf((1− c1)A) + 45β(1− f(A)),

−33.6 + 12βf(c2A) + 51β(1− f(A)) = −27.4 + 12βf(c2A) + 51(1− f(A)).

To simplify matters, let c̃1 = 1 − c1. Then, the equations above simplify to the following, when
considering that β = 0.89:

f(Ac̃1) =
1

2
− 1

6β
=

167

534
≈ 0.31,(11)

f(Ac2) =
1

2
+

62

240β
=

211

267
≈ 0.79.(12)
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From equation (11), we know that because the value of f(Ac̃1) is between 0 and 0.35, f(Ac̃1) =
1.4Ac̃1, and hence

(13) A =
835

3738c̃1
.

Likewise, from equation (12), we have that f(Ac2) = 3
4Ac2 + 13

40 , yielding:

(14) A =
4969

8010c2
.

The fact that the crossover points are restricted to [0.4, 0.6] can be combined with Equations (13)
and (14) to show that 0.372 ≤ A ≤ 0.559 and 1.03 ≤ A ≤ 1.56, respectively. These contradictory
intervals complete the proof. �

Next, for the Zarringhalam model, we find the analogue of Theorem 2. Here, we add the
restriction that A ≤ 2.2, corresponding to the maximum SHAPE value anticipated by f , the
piecewise function that rescales SHAPE data.

Theorem 9. Consider any structures S1 and S2 for the same RNA sequence, with [#bp](S2 −
S1) = 0. Then, for A ≤ 2.2 and β > 0, the Zarringhalam crossover window has length at most
10RT ln 4/(βA[#bp](S1 − S2)).

Proof. The proof has the same structure as Theorem 2. Let c1 be the number of nucleotides which
are paired in both S1 and S2, and let c2 be the number of nucleotides which are unpaired in S1 and
S2. Then, the Zarringhalam energy for S1 given data pP1 + (1− p)P2 is:

EZ(S1|pP1 + (1− p)P2) = E(S1) + β

[
c1 + [#bp](S1 − S2)f(p̃A) + c2(1− f(A))

]
,

where p̃ = 1 − p, and a similar equation holds for S2. Again using the condition in Equation (3)
and simplifying, we obtain the equivalent condition,

E(S1)− E(S2)−RT ln 4 ≤ β[#bp](S1 − S2)
(
1− 2f(p̃A)

)
≤ E(S1)− E(S2) +RT ln 4.

Thus, we investigate how slowly β[#bp](S1 − S2)(1− 2f(p̃A)) can increase, as a function of p. We
have:

d

dp
[1− 2f((1− p)A)] = 2Af ′((1− p)A) ≥ 0.2A,

by looking at the piecewise function, f . Therefore, if ` is the length of the crossover window,

0.2[#bp](S1 − S2)β`A ≤ 2RT ln 4,

and rearranging completes the proof. �

Noticing that [#bp](W3 −W0) = 24 and [#bp](W0 −W3) = 0 gives the following corollary for
A = 2.2, the theoretical maximum SHAPE value imposed by the rescaling function, f :

Corollary 10. The crossover window for the Zarringhalam W3 →W0 interpolation with β = 0.89
and A = 2.2 has width at most 0.2.

Thus, we have found that crossover points can be uncentered and crossover windows can be short
for the Zarringhalam energy model as well. Next, we will consider stochastic context free gram-
mars, which are an alternative to energy models. Because the SCFG will depend on incorporating
empirical distributions for SHAPE data, the analysis becomes complicated and relies on numerical
computations. However, we will find that even with SCFGs, we cannot guarantee that crossover
points are centered.
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5.3. Stochastic context-free grammars. In this section, we consider the SCFG introduced in
Knudsen and Hein (1999), called the KH99 grammar. This grammar has been implemented in the
Pfold program, Knudsen and Hein (2003). The grammar is described by the following rules (where
w.p. stands for “with probability”):

S → LS w.p. p1

L w.p. q1

F → (F ) w.p. p2

LS w.p. q2

L → . w.p. p3

(F ) w.p. q3

Beginning with the non-terminal S, the rules are repeatedly applied until only dots and brackets
(the terminals) remain. Then, each terminal has a corresponding set of emission probabilities,
corresponding to the chance of the non-terminals becoming each type of nucleotide: A, C, G, or U.
Thus, we will have rules as follows:

.→

A w.p. pA
C w.p. pC
G w.p. pG
U w.p. pU

∣∣∣∣∣∣∣∣
AU or UA w.p. pAU

() → GC or CG w.p. pGC

GU or UG w.p. pGU

Above, () represents two paired nucleotides, which are treated simultaneously when emission prob-
abilities are considered. AU and UA pairs are emitted with equal probability, and likewise for the
other two pairs. In Knudsen and Hein (1999), optimal values for the emission probabilities were
computed by training the grammar on a test set of known structures.

As mentioned in Section 4.3, to include the SHAPE data, we use the empirical binary paired
and unpaired distributions from Sükösd et al. (2013) to modify the original emission probabilities.
In our implementation of the SCFG, the distributions are discretized. As before, let g(x) be
the probability distribution function for the paired distribution, and let h(x) be the probability
distribution for the unpaired distribution. Then, if the SHAPE sequence is {Mi}ni=1, the emission
probability for nucleotide j has an additional factor of g(Mj) if position j is paired (a ‘(’ or a ‘)’),
and an additional factor of h(Mj) if position j is unpaired (a ‘.’).

Now, we are ready to analyze the crossovers for VcQrr3. We see that for the SCFG, it is
impossible for the crossover points to be centered while simultaneously allowing the SHAPE signal
to be strong enough to guide the predictions towards the correct structures, even for distance-one
structures. The SCFG version of Theorem 1 is as follows:

Theorem 11. Consider the distributions of secondary structures generated by the KH99 grammar
with the standard parameters and empirical distributions for paired and unpaired SHAPE data.
There is no value of A for which the crossover point p for the W4 → W2 binary interpolation
is between 0.4 and 0.6 and the probability of structures W2 and W4 are above the probability for
structure W5 at the crossover point.

Proof. Because the empirically-derived paired distribution is a generalized extreme value distribu-
tion with a complicated probability density function, we will have to rely on numerical computations
in order to prove this result. First, we employ the Cocke-Younger-Kasami algorithm to trace how
the KH99 grammar can produce each of the structures, W2,W4, and W5. Upon such a traceback,
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we have that the following transition probabilities T2, T4, and T5 for W2,W4, and W5, respectively:

T2 := (1/2)28p46
1 (1− p1)5p24

2 (1− p2)4p51
3 (1− p3)4p12

A p25
U p5

G p
9
C p

13
AU p

13
GC p

2
GU

T4 := (1/2)30p41
1 (1− p1)6p25

2 (1− p2)5p47
3 (1− p3)5p10

A p22
U p5

G p
10
C p15

AU p
12
GC p

3
GU

T5 := (1/2)31p39
1 (1− p1)6p26

2 (1− p2)5p45
3 (1− p3)5p11

A p23
U p3

G p
8
C p

14
AU p

14
GC p

3
GU

Then, we also need to keep track of the product of the emission probabilities for each structure.
Much like in the Zarringhalam model, the emission probabilities for a structure Wj with a SHAPE
sequence that is a mixture of the sequences forWj andWk come in four different varieties, depending
on whether the nucleotides in a given position i are paired or unpaired in each of the structures.
Now, we can compute the total probabilities for each structure in the SCFG distribution:

P(W2|pP2 + (1− p)P4) = T2g(0)55g(A(1− p))h(Ap)5h(A)46,

P(W4|pP2 + (1− p)P4) = T4g(0)55h(A(1− p))g(Ap)5h(A)46,

P(W5|pP2 + (1− p)P4) = T5g(0)55g(A(1− p))g(Ap)3h(Ap)2g(A)3h(A)43.

First, we aim to show that if A ≤ 0.2, then for all p, P(W5) > P(W4). On the range, [0, 0.2],
the ratio g(x)/h(x) is strictly in the interval [1, 5]. As a result, we have for all p ∈ [0, 1] and all
A ∈ [0, 0.2]:

g(A(1− p))g(A)3h(Ap)2

h(A(1− p))h(A)3g(Ap)2
>

(
1

5

)2

≥ 0.031 >
T4

T5

Rearranging this inequality and comparing to the probabilities for W2,W4, and W5 illustrates that
the probability assigned to W5 is always greater than the probability assigned to W4 for A ≤ 0.2.

Next, equating the probabilities for structures W2 and W4 when A = 0.2 yields a crossover point
of p ≈ 0.289. As A increases, structure W2 is favored more because it has strictly more unpaired
nucleotides. This means that the crossover point becomes smaller as A increases, which can be
verified numerically for the empirical distributions. Thus, the crossover point is at most 0.289 for
A ≥ 0.2. �

We now have evidence that both SCFGs and energy models cannot consistently center crossover
points. This indicates that these models will have trouble reconstructing what structures appear in
a multimodal distribution, along with the correct weightings of the structures. We next turn to a
related problem, and investigate whether the correct weightings can be recovered in a multimodal
distribution, if the structures are known in advance.

6. Parameter analysis: estimating p

In this section, we again consider an interpolation of SHAPE data coming from two structures,
S1 and S2, with proportion p coming from structure S1. However, we now investigate whether or
not it is possible to determine the proportion, p, if the structures S1 and S2 are known in advance.
In contrast to the previous sections, we consider experimental SHAPE data in this section. The
goal is to determine whether or not the experimental SHAPE data distinguishes between paired
and unpaired nucleotides enough to recover the weights of structures in a distribution.

6.1. Interpolations with [#bp](S1 − S2) = 0. Like when analyzing the models before, let us
restrict our attention to the simple scenario where [#bp](S1 − S2) = 0. The SHAPE values corre-
sponding to nucleotides where the two structures agree give limited information about the propor-
tion, p. So, we do not consider these SHAPE values, and instead only look at the SHAPE values
corresponding to the positions where S1 and S2 differ structurally. Then, in the mixed SHAPE
signal, we focus our attention on a set of n data points for the SHAPE values, {Di}ni=1, where
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each point Di = pXi + (1 − p)Yi, with Xi being the SHAPE value corresponding to the unpaired
nucleotide i from S1, and Yi being the SHAPE value corresponding to nucleotide i from S2. With
the set of points {Di}ni=1, we would like to recover the value of p.

Due to its flexibility in analyzing different types of distributions, we analyze the estimator p̂
generated by the method of moments:

p̂ :=
D̄ − EY
EX − EY

.

Here, D̄ represents the average value of the data points Di. X is a random variable with the same
distribution as an unpaired SHAPE value, and Y is a random variable corresponding to paired
SHAPE values. Since ED̄ = pEX + (1 − p)EY , we have that Ep̂ = p, and thus p̂ is an unbiased
estimator of p.

In order to obtain reliable predictions of p using p̂, we will need p̂ to have a small variance. As a
first check, we examine how the estimator p̂ performs using the paired and unpaired distributions,
g(x) and h(x), originally derived in Sükösd et al. (2013) and used in Section 5.3 from above. The
paired distribution, which is a generalized extreme value distribution, has an infinite variance for
ξ = 0.895341 > 0.5, and thus, the variance of p̂ is unbounded. Additionally, randomly generating
data from these distributions and testing the accuracy of p̂ against this data reveals that p̂ performs
poorly, and is unable to reconstruct the value of p. Thus, we will consider what happens with other
models of SHAPE data where the variance is finite. In this case, we can compute:

Var p̂ =
p2VarX + (1− p)2VarY

n(EX − EY )2
.(15)

Ideally, the variance will be small enough to give consistent estimates for p. However, the variance
will depend on underlying distributions for paired and unpaired nucleotides.

We will analyze the success of an estimator given distributions for X (unpaired SHAPE) and Y
(paired SHAPE) by first choosing a minimal scenario where the estimator should perform well, and
then by choosing a cutoff for the variance. We choose helices of length 4 as a minimal difference for
structures S1 and S2, so that we will have n = 8 data points. Then, we will call the distributions
for X and Y separable if the variance of p̂ is at most 0.0225 for all p in [0.25, 0.75] and for all
n ≥ 8. This corresponds to a standard deviation of 0.15. The motivation for this choice is that
for large n, p̂ has approximately a normal distribution, and this requirement then aligns with the
case that approximately 95% of the distribution for p̂ is within 0.3 of the actual value, p, whenever
0.25 ≤ p ≤ 0.75. In the subsections 6.1.1 and 6.1.2, we examine two potential types of SHAPE
distributions for paired and unpaired nucleotides, and investigate whether the distributions are
separable.

6.1.1. Differential shape distributions. Introduced in Rice et al. (2014) in 2014, the inclusion of
differential SHAPE data into existing secondary structure prediction models has been shown to
improve secondary structure predictions by refining the data so that it reveals noncanonical pairings
and tertiary structure interactions. To use predictions with differential SHAPE, three different
sequences of SHAPE data are required, using the reagents NMIA, 1m6, and 1m7. The 1m7 SHAPE
data is used as in the Deigan method, where it is included in the term m ln(1 +Mi) + b. However,
the NMIA and 1m6 data are processed, and then the positive amplitude signal from the difference
of NMIA and 1m6 is calculated, and included in a new pseudoenergy term. More precisely, if
{Ki}ni=1 is the NMIA data, and {Li}ni=1 is the 1m6 data, then we have a new penalty of the form,

∆GDiff(i) = d[Ki − Li]+,

for a parameter d > 0, where [x]+ = x if x is positive, and zero otherwise. The default value for d
is 2.11.



DECONVOLVING RNA BASE PAIRING SIGNALS 19

Although the SHAPE pseudoenergies are written as two terms, it is possible to rewrite them as
one term. Let Ji = (Ki − Li)+ be the positive amplitude in the differential SHAPE data penalty.
Then, we have:

∆GSHAPE(i) + ∆GDiff(i) = m ln
(

1 +
[
eJid/m(1 +Mi)− 1

])
+ b.(16)

Therefore, we can view the differential SHAPE pseudoenergy as a rescaling of the SHAPE data,
which is then used in the Deigan pseudoenergy from before. In Rice et al. (2014), the authors test
the differential SHAPE method against 14 different RNA sequences. Here, we use the NMIA, 1m6,
and 1m7 SHAPE data from these 14 sequences along with the transformation suggested by (16)
with the default Deigan parameter m = 2.8 and default differential SHAPE parameter d = 2.11
to create new empirically-derived distributions for paired and unpaired nucleotides. We use the
MATLAB statistics toolbox to fit the data to distributions, choosing gamma distributions as in Rice
et al. (2014). For the unpaired distribution, we obtain a shape parameter aU = 0.400637 and a scale
parameter bU = 4.24848. For the paired distribution, we have a shape parameter aP = 0.31486 and
a scale parameter bP = 0.869797. This gives us that the unpaired distribution has mean 1.7021
and variance 7.2313 and that the paired distribution has mean 0.27386 and variance 0.23821.

Consider using these distributions with the estimator p̂ described above. To check separability,
we plug these statistics and n = 8 into Equation (15) to obtain the following estimator variance for
the differential SHAPE distributions:

Var p̂ = 0.4577198448p2 − 0.02919426956p+ 0.01459713478.

It is easy to check that this function is minimized at p = 0.031891, and the maximum value for
p ∈ [0.25, 0.75] is 0.25017, which is much too great for the distributions to be separable. In fact,
even if the variance of the paired and unpaired distributions are cut by a factor of 10 each, the
maximum value of p̂ is scaled down by a factor of 10 to 0.025017, which is still too high to be
separable.

6.1.2. Hypothetical shape distributions. In Sükösd et al. (2013), the authors proposed a hypothetical
distribution for the unpaired SHAPE values that corresponded to a six-fold increase in reagent
reactivity. In this case, the authors modelled the unpaired distribution as a Gaussian with mean 3.51
and standard deviation 1.78. Let XHyp be a random variable with this hypothetical distribution,
and let XDiff be a random variable with the differential SHAPE unpaired distribution. We consider
a linear interpolation between the two distributions as follows: let Xt = tXHyp + (1− t)XDiff where
XHyp and XDiff are independent. We leave the unpaired distribution Y the same as the empirical
distribution from before. We have the following result, which gives an indication of much the
unpaired differential SHAPE distribution needs to be modified before separability is achieved.

Lemma 12. The distributions corresponding to the random variables Xt and Y are separable for
t ≥ 0.62828.

Proof. Because XHyp and XDiff are independent, we have:

VarXt = t2VarXHyp + (1− t)2VarXDiff.

Plugging into equation (15) (and emphasizing that p̂ is now a function of t) gives the following:

(17) Var p̂t =
p2[t2VarXHyp + (1− t)2VarXDiff] + (1− p)2VarY

n(tEXHyp + (1− t)EXDiff − EY )2

For any fixed value of t and n, Var p̂ is a quadratic in p, meaning that its maximum value on the
interval p ∈ [0.25, 0.75] occurs at either p = 0.25 or p = 0.75. Plugging in p = 0.25, n = 8, and the
variance values yields the following:

Var p̂t
∣∣
p=0.25,n=8

=
0.08124765625t2 − 0.1129890625t+ 0.06335703125

3.268502410t2 + 5.503609180t+ 2.316788410
.
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This function is minimized at t = 0.88809, and is easily verified to be below 0.0225 for t ∈ [0.0475, 1].
Likewise, plugging in p = 0.75 and n = 8 yields:

Var p̂t
∣∣
p=0.75,n=8

=
0.7312289062t2 − 1.016901562t+ 0.5092132812

3.268502410t2 + 5.503609180t+ 2.316788410
.

This function is minimized at t = 0.83382, and is also easily verified to be below 0.0225 for t ∈
[0.62828, 1]. Combining these conditions on t completes the proof. �

6.2. Beyond distance-one interpolations. Now, consider the case where the structures S1 and
S2 are known, but they differ by more than one helix, and we would like to reconstruct the propor-
tion p of the mixture that comes from structure S1. As before, let X be a random variable with the
distribution of an unpaired SHAPE value, and let Y be a random variable with the distribution of
a paired SHAPE value. Then, given a SHAPE sequence corresponding to a mixture of structures
S1 and S2, we will have a sample of n1 > 0 data points distributed as D1 = pX + (1 − p)Y and
n2 > 0 data points of the form, D2 = (1 − p)X + pY . For each of these data sets, we can find an
estimator for p as before:

p̂1 =
D̄1 − EY
EX − EY

, and p̂2 =
D̄2 − EX
EY − EX

.

This suggests a family of unbiased estimators for p,

(18) p̂ = sp̂1 + (1− s)p̂2,

where s ∈ [0, 1]. We investigate which one is best to use. We can compute:

Var p̂ =
s2

n1

[
p2VarX + (1− p)2VarY

(EX − EY )2

]
+

(1− s)2

n2

[
p2VarY + (1− p)2VarX

(EX − EY )2

]
.

Let α = n2
n1

. Then, the minimum occurs at the s-value,

s =
p2(VarX + VarY )− 2pVarX + VarX

p2(α+ 1)(VarX + VarY )− 2p(VarX + αVarY ) + (VarX + αVarY )
.

For all of the distributions we have investigated so far, the maximum variance of p̂ for p ∈ [0, 1]
occurs at p = 1. With this in mind, we substitute in p = 1 to find the minimum maximum variance
for these distributions occurs at:

s =
VarY

VarY + αVarX
.

For example, when using a mixture of the differential SHAPE and hypothetical distributions as in
the previous section, this implies that one should use the estimator in Equation (18) with

s =
1

1 + (106.5543033t2 − 148.1823771t+ 74.09118853)α
.

7. Conclusion

The SHAPE-directed energy models we have analyzed were designed to predict a single dominant
structure in a distribution of RNA structures. We have seen that this resulted in the energy models
collapsing the distributions to a single structure, even in the presence of simulated or binary SHAPE
data derived from a mixture of structures. Because all noise is removed in binary SHAPE data,
one would expect the prediction models to work best here. The uncentered crossover points and
short crossover windows indicate that the energies in the models are influenced too heavily by
the data. There are other options that may help improve multimodal distribution identification.
SHAPE data may be preprocessed before being input into an existing model, or a new model must
be produced that does not change the energies of the distributions as much.
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Additionally, experimental SHAPE data currently does not distinguish enough between paired
and unpaired distributions to reliably predict the proportion of structures contributing to a dis-
tribution, even when the structures are known in advance. However, by separating the unpaired
distribution slightly more from the paired distribution, it may be possible to improve the prediction
of proportions.
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