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Deep Learning (DL) algorithms hold great promise for applications in the field of computational
biophysics. In fact, the vast amount of available molecular structures, as well as their notable com-
plexity, constitutes an ideal context in which DL-based approaches can be profitably employed. To
express the full potential of these techniques, though, it is a prerequisite to express the information
contained in the molecule’s atomic positions and distances in a set of input quantities that the net-
work can process. Many of the molecular descriptors devised insofar are effective and manageable
for relatively small structures, but become complex and cumbersome for larger ones. Furthermore,
most of them are defined locally, a feature that could represent a limit for those applications where
global properties are of interest. Here, we build a deep learning architecture capable of predicting
non-trivial and intrinsically global quantities, that is, the eigenvalues of a protein’s lowest-energy
fluctuation modes. This application represents a first, relatively simple test bed for the development
of a neural network approach to the quantitative analysis of protein structures, and demonstrates

unexpected use in the identification of mechanically relevant regions of the molecule.

I. INTRODUCTION

Proteins are the most versatile biological molecules, as
they cover roles ranging from “mere” structural support
(e.g. in the cytoskeleton) to active cargo transport, pass-
ing through enzymatic chemistry, protein folding chaper-
oning, communication, photochemical sensing etc. The
impressive variety of activities, sizes, shapes and func-
tions proteins show is largely due to the LEGO-like ca-
pacity of the polypeptide chain, as well as to the poly-
morphic chemistry entailed in the 20 amino acids they are
made of. According to the well-established central dogma
of biology, the amino acid sequence of the protein dictates
its three-dimensional structure, which in turn determines
and enables the molecule’s function. It should thus come
as no surprise that protein structures have been thor-
oughly investigated at all levels, from the fundamental,
experimental determination of the arrangement of their
atoms in space (e.g. by means of X-ray crystallography or
nuclear magnetic resonance) to computer-aided analyses
aimed at understanding the interplay between sequence,
structure, and function. These latter studies are car-
ried out through in silico representations of the molecules
whose resolution ranges from atomistic —as it is typically
the case in molecular dynamics (MD) [1, [2]- to simpli-
fied, coarse-grained models |, where several atoms are
lumped together in sites interacting via effective poten-
tials. Furthermore, the field of protein bioinformatics
has boomed in the past few decades, where the wealth
of available sequences and structures has been exploited
to investigate structure prediction, protein-protein inter-
action, docking, protein-related genomics etc. (see e.g.
ﬂj, ] for recent, comprehensive reviews).

The availability of a large number of instances of the
protein space (be that sequence or structure) and the

* raffaello.potestio@unitn.it

necessity to perform dataset-wide analyses and screen-
ing of their properties naturally leads one to wonder
whether one could take advantage of the recent progresses
achieved by machine learning approaches, in particular
deep learning (DL). The latter is a subset of the wide
class of machine learning computational methods, and
has been successfully applied to a fairly wide spectrum
of areas of science [9, [10], ranging from neuroscience [11]
to image and speech recognition ﬂﬂ, |E] In the field
of Computational Chemistry much effort has been de-
voted to the identification of the variables that are able to
provide a comprehensive description of a chemical com-
pound (molecular descriptors). These features are usu-
ally designed in order to be applied to elements of the
Chemical Compound Space (CCS), the theoretical com-
binatorial set of all possible compounds that could be iso-
lated and constructed from all combinations and configu-
rations of atoms |. Several examples of descriptors
are present in the literature ﬂﬂ@] they proved to be
extremely useful in the development of predictive models
about a huge variety of molecular properties. Neverthe-
less, the size of the CCS is limited from above by the
Lipinski rules ﬂﬂ, ], that set the maximum molecu-
lar weight to 500 atomic mass units. It thus appears
evident that the vast majority of structures studied in
biophysics, such as proteins, nucleic acids, and polysac-
charides, falls well beyond this value. As an example, the
structures conserved in the Protein Data Bank (PDB)
have a molecular weight ranging from few hundreds to
hundred thousand daltons. One of the biggest issues in
the application of DL-based approaches to biophysical
problems thus consists in defining a flexible and robust
method to properly encode the huge amount of informa-
tion contained in these structures (feature extraction).

Nonetheless, deep learning algorithms are enjoying in-
creasing popularity in the context of biological and con-
densed matter physics as well. In particular, Behler and
Parrinello employed DL to construct accurate potential
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energy surfaces at low computational cost m, @], while
Dellago et al. @] built DL architectures capable of iden-
tifying local phases in liquids. More recently, Feinberg
et al. m] developed PotentialNet, a DL-based model
for predicting molecular properties. At the same time,
Wehmeyer and Noé @] have implemented a complex DL
algorithm (time-lagged autoencoder) able to perform ef-
ficient dimensionality reduction on Molecular Dynamics
trajectories. Notably, promising works by Peter et al.
[31] and Zhang et al. ﬂﬁ] extended the use of such algo-
rithms to the field of coarse-grained models.

In spite of the recent encouraging attempts, a straight-
forward approach to a DL-based structural analysis pro-
tocol for the study of large macromolecules is lacking. In
the present work, we aim at moving a step forward in
this direction through the construction of a DL model to
analyze protein structures. We set ourselves a relatively
simple goal, that is, to predict the ten lowest eigenvalues
of an exactly solvable coarse-grained model of a protein’s
collective fluctuations. The first aim of this work consists
in identifying the procedure of feature extraction that is
most suitable to our task. Second, we show that the ap-
plication of a simple, standard and computationally not
expensive DL architecture to the selected features gives
satisfactory results, suggesting that more complex tasks
will be attainable with similar, more refined networks. It
is worth pointing out that although the development of a
DL-based predictive model leads to a significant compu-
tational gain with respect to the exact algorithmic proce-
dure, this is not the purpose of this work: here, we focus
on demonstrating the viability of a DL-based approach to
a specific class of problems in computational biophysics.

II. MATERIALS AND METHODS

In this section we first summarise a few relevant con-
cepts about Deep Neural Networks (DNNs), and specifi-
cally on Convolutional Neural Networks (CNNs). Subse-
quently, we provide a brief overview of the protein models
of interest for our work, that is, Elastic Network Models
(ENMs).

The raw data employed in the present work, includ-
ing PDB files, protein structures datasets, CNN training
protocols, trained networks and related material are pub-
licly available on the ERC VARIAMOLS project website
http://variamols.physics.unitn.eu in the Research
output section.

A. Convolutional neural network model

Born in the Fifties as theoretical, simplified models
of neural structure and activity, neural networks are be-
coming an increasingly pervasive instrument for the most
diverse types of computation. In particular, the tasks in
which DNNs excel are those that can be reduced to clas-
sification, pattern recognition, feature extraction and,

more recently, even a rudimentary (yet impressive) cre-
ative process. DNNs can be understood as a very com-
plex form of fitting procedure, in that the parameters of
the network are set through a process of training over
a large dataset of items for which the outcome value is
known; a prototypical example is that of a network en-
dowed with the task of distinguishing images of dogs from
those of cats, which is “trained” by proposing to it sev-
eral images of the two types and changing the parameters
so that the outcome label corresponds to the correct one.
The following step is the validation of the network’s effec-
tiveness onto a complementary dataset of input instances
that have not been employed in the training. The predic-
tive power of DNNSs is largely due to the non-linear char-
acter of the functions employed to connect one “neuron”
to the following. This characteristic makes them substan-
tially more flexible and versatile than multi-dimensional
linear regression models, albeit also more obscure to com-
prehend in their functioning.

Deep Feedforward Networks (also called Multilayer
Perceptrons (MLPs) or Artificial Neural Networks
(ANNs)) are the most known class of Machine Learn-
ing algorithms HE] Given some input values x and an
output label y (categorical or numerical), MLPs assume
the existence of a stochastic function F' of x such that
y = F(x). They define a mapping y = f(x; W) and try
to learn the value of parameters W that give the best
approximation of F. This function f(a; W) is the com-
position of n different functions (usually called layers),
where n is the depth of the MLP.

f(x) = fu(foo1( fo(fi(z)))) (1)

The function f1, which directly acts on the input data,
is called the input layer, while f, is the output layer.
fa++- fn_1 and, more generally, all the intermediate lay-
ers are called hidden because their scope is to translate
the results coming from the first layer into an input that
can be processed by the output layer. Most importantly,
the functions f,,, also called activation functions, are non-
linear: in fact, a neural network with only linear activa-
tions in the hidden layers would be equivalent to a linear
regression model [10].

Eq. [ shows that a layer can be thought of as a func-
tion that takes a vector as input and gives a different
vector as output. One can also imagine a layer as a set
of vector-to-scalar functions (neurons) that act in paral-
lel ﬂﬁ] Neurons are the building blocks of a Multilayer
Perceptron. These entities loosely resemble their analo-
gous biological counterpart: each unit receives a certain
amount of input signals from other units, adds a cus-
tom bias term, performs a weighted sum and applies a
nonlinear transformation in order to produce an output
signal.

Among the several Neural Network architectures that
have been developed throughout the years, a particular
class is that of Convolutional Neural Networks (CNNs).
CNNs proved to be extremely powerful if applied to pro-
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cesses like image and video recognition and natural lan-
guage processing.

Mathematically, the bidimensional discrete convolu-
tion between two functions F' and G is given by the fol-
lowing expression:

(F®G) (i,5)= Y, F(mn)Gi—-m,j—n). (2)

m,n=—o0

F is referred to as the input function (a bidimensional
grid-like object) while G is called kernel function. G is
much smaller than F'.

In the vast majority of CNNs [10, [13, [33] a convolu-
tional layer does not contain only the convolution oper-
ation: in fact, it is followed by an activation layer and,
usually, by a pooling layer. The activation layer trans-
forms the feature map through the application of a non-
linear function HE] Pooling layers downscale the input
data: given the output of the activation layer at a cer-
tain location, a pooling operation performs a summary
statistic (average, maximum [34]) on its neighbours that
replaces the original value.

Common CNNs consist of a sequence of convolutional
layers followed by a number of fully connected (dense)
layers placed before the output. This is the network ar-
chitecture of choice for this work, as detailed later on.

B. Elastic Network Models

Classical Molecular Dynamics ﬂ, E], by which New-
ton’s equations of motion are numerically integrated, is
the most effective and widespread method used to investi-
gate in silico the equilibrium properties and the dynamics
of a (biological) molecule. Despite the recent dramatic
gains in computational efficiency , many biolog-
ical phenomena cannot be investigated with atomically
detailed models: this is a particularly limiting problem
if the system size exceeds few tens of millions of atoms
or if the relevant biological processes occur over long
timescales (typically larger than hundreds of microsec-
onds). Furthermore, it is important to underline that
highly detailed atomistic MD simulations generate an
enormous amount of data, which is often difficult to store
and post-process and, sometimes, simply not needed.

MD simulations rely on sophisticated semi-empirical
potentials that depend on a large number of parameters
and reference properties; however, in a seminal paper
Tirion @] showed that, in several cases, it is possible
to replace the atomistic potential with a much simpler,
single-parameter harmonic spring:
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where the parentheses in the summation (i,j) indicate

that the sum is restricted to those atom pairs whose dis-
tance |r; ;| = |r; — ;| is lower than a cutoff radius.

This functional form of the potential is extremely sim-
plistic, as 3-body terms are not even taken into consid-
eration. Nevertheless, it can capture the collective, low
energy vibrations of proteins. The slowest modes of vi-
bration involve several atoms and interatomic interac-
tions, whose sum approaches a universal form governed
by the central limit theorem . For slow, collective modes,
the details on the form of the pair potentials can be ne-
glected @], and if one is only interested in analyzing
these modes (which usually dictate the function-oriented
dynamics of the molecule) a single-parameter harmonic
description can provide accurate predictions.

The potential energy in Eq. Blgives rise to the following
Hessian matrix:
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where @; = r; — rY and p and v are Cartesian compo-
nents. Models described solely by the Hessian matrix
in Eq. [ are called anisotropic elastic network models,
or ANMs. The advantage of a quadratic approximation
to Eq. Blis that the normal modes of vibration can be
straightforwardly obtained through the inversion of the
Hessian.

As anticipated, ENMs can be employed in contexts
other than the analysis of vibrational spectra. In fact, it
is possible to associate the harmonic force field of these
models with simplified representations of the structure,
that is, coarse-grained models. Coarse-graining can be
defined as the process of reducing the accuracy and res-
olution of the representation of a system, describing it
in terms of fewer collective degrees of freedom and effec-
tive interactions. The former are usually defined lump-
ing together a relatively large number of atoms (2 — 3 to
tens) into a single bead; the latter, on the other hand,
are parametrised making use of one of the many avail-
able strategies B—B], which in general aim at reproduc-
ing the multi-body potential of mean force of the system.
Coarse-grained ENMs are typically constructed retain-
ing only the C, atom of the backbone, and placing a
harmonic spring between pairs of atoms whose distance
in the native conformation lies within a given interac-
tion cutoff. More refined models employ also the Cj
carbon atom —or an equivalent one— which explicitly ac-
counts for the amino acid side chain. It is important to
underline that the spring potentials employed in coarse-
grained ENMs are a proxy for a thermal average of true
all-atoms interactions over all conformations compatible
with a given coarse-grained configuration; hence, they
consist in free energies rather than potential energies, as
it is usually the case in the context of coarse-graining.

Studies making use of all-atom or coarse-grained
ENMs proved to be particularly effective in the mod-
elling and prediction of low energy conformational fluc-
tuations, corresponding to the most collective normal



modes. These results are often in agreement with the
ones produced using all-atoms MD simulations with a
standard semi-empirical force field. Among the most no-
table structures they have been applied to we point out
RNA Polymerase II [40], Virus Capsids [41], Transmem-
brane Channels [42] and the whole ribosome [43].

The (-Gaussian Model (8-GM [44]) is a particular
flavour of coarse-grained ENM in which the description of
protein fluctuations is improved through the introduction
of effective Cs centroids (with the exception of Glycine
residues, whose side chain is made up by a single hy-
drogen atom). The S-GM model is defined on a coarse-
grained protein structure, thus providing a simplified de-
scription of the system’s fluctuations in a local free en-
ergy minimum, centred on a reference structure typically
chosen to be the native, crystallographic conformation.
The introduction of Cz atoms in the model results in a
Hamiltonian that is considerably more complex than the
one relative to a chain of Cy, units, whose general form
is given by:

] J
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where M is an interaction matrix. The first term of
the Hamiltonian represents the interactions between C,,
atoms, be they bonded links between consecutive C,’s
along the peptide chain or simply those belonging to
close-by residues in contact in the native conformation.
The second term accounts for interactions between C,’s
and Cpg’s; lastly, the third term includes interactions ex-
isting solely among Cj’s.

In the S-GM framework, the positions of Cg’s are as-
signed using a simplified version of the Park-Levitt pro-
cedure ], in which the Cp centroids are placed in the
plane specified by the local C, trace. This assumption
allows one to compute the Cg coordinates of atom 7 us-
ing only the positions of C,’s ¢ — 1, ¢ and ¢ + 1, giving
rise to a Hamiltonian that is quadratic in the C,, devi-
ations but with a different coupling matrix. This model
has the very same computational cost of less accurate,
C,—only anisotropic models, but it is able to capture
in a more accurate way the low-energy macromolecu-
lar fluctuations. In this way the deviations of Cz atoms
of all amino acids (excluding Glycine and the terminal
residues) are parametrised using the C, Cartesian coor-
dinates, leading to a new Hamiltonian of the form:

J
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In the present work we have been consistent with the
model as described in the original paper M], and used
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FIG. 1: Schematic illustration of the procedure
followed to construct the 100-amino acids long decoys.
Proteins whose sequence is longer than 100 residues are
cut in 100-residues long sub-sequences sliding a window
of this length along the main chain. A protein of length
100 + N amino acids produces N + 1 decoys.

the same parameters present therein. In particular, the
cutoff radius R, has been set to 7.5 A.

C. Construction of the protein dataset

In the previous section we described the exactly solv-
able algorithmic procedure through which one can com-
pute eigenvalues and eigenvectors associated to the local
fluctuation dynamics of the 3-GM coarse-grained protein
model. As anticipated in the introduction, the scope of
our work consists in building a DL architecture (CNN)
capable of predicting the lowest ten of these eigenvalues.
In order to do so we have to first train and subsequently
validate this CNN approach. We constructed two sepa-
rate groups of protein structures, downloaded from the
Protein Data Bank (PDB), to be used as Training and
Evaluation Sets, respectively. The Evaluation Set con-
tains protein structures with a single chain and 100 C\
atoms; for the Training Set we considered chains with a
length between 101 and 110 monomers that have been
processed to construct N + 1 decoys for each protein of
length 100 + N. In this specific context, by decoy we
indicate protein-like chains or sub-chains that preserve
the vast majority of typical structural properties of real,
“full” proteins ﬂ@] Figure [ illustrates the procedure
followed to produce such decoys.

Through this simple process we obtain an Evaluation
Set of 146 real proteins with 100 amino acids and a Train-
ing Set of 10728 decoys of the same length. It is impor-
tant to notice that the S-GM spectrum is invariant with
respect to the orientation of the sequence, namely we
can easily double both datasets including the reversed
structures.

Dealing with proteins and biologically relevant decoys
we encounter a wide variety of structures. They are ex-
tremely heterogeneous in terms of radius of gyration and
their spectra show high variability. Fig. 2l shows the dis-
tribution of the ten lowest eigenvalues in the Validation
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FIG. 2: Distribution of the lowest 10 eigenvalues of the
spectrum of all proteins in the Evaluation Set,
computed by means of the 3-GM.
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FIG. 3: Distribution of the radius of gyration over
Training set (left) and Evaluation set (right).

Set. It can be seen that the \;’s become more broadly
distributed with increasing i, a feature that has been pre-
viously observed in the context of ensemble analysis of
ENM spectra [47].

Fig. Bl shows a histogram of the globularity of the
samples in the available datasets in terms of radius of
gyration. In the Training Set there are several structures
that are highly non-globular, but the vast majority has a
gyration radius comparable to the values present in the
Evaluation Set.

D. Molecular descriptor

A crucial step in the construction of a DL-based
pipeline to analyze and process a given molecular struc-
ture is the identification of an appropriate molecular de-
scriptor. From Eq. [l we can see that, within the 5-GM
framework, the Hamiltonian of the system depends only
on the positions of the C\, atoms. Hence, our molecular
descriptor will take as input only the Cartesian coordi-
nates of these atoms. However, for CNN applications we
cannot simply characterise the biomolecule in terms of
Cartesian coordinates, since these are not invariant with
respect to rotations and translations of the system, an
important requirement a molecular descriptor has to ful-
fill.

A prominent example of molecular descriptor is given
by Behler and Parrinello’s symmetry functions @, ]
These functions describe the local environment of each
atom in a molecular system, while satisfying the invari-
ance requirement. Among the parameters that are de-
fined in the calculation of these quantities, the most rel-
evant one from a conceptual point of view is the cut-
off radius: interatomic distances larger than this value
yield zero contribution to these descriptors. Symmetry
functions have been mainly employed in order to provide
accurate potential energy surfaces m, @] and to detect
local atomic arrangements in liquids m] Although these
descriptors proved to be extremely successful, our learn-
ing task concerns the prediction of a property that is
(at least in general) intrinsically global, hence we need
a function that is able to encode all the interactions be-
tween the atoms that constitute the system. Therefore
we decided to characterise the proteins under examina-
tion in terms of the Coulomb Matrix, a very general and
global molecular descriptor that is rotation-translation
invariant. This is defined as:

frI=J
otherwise

0
MU—{ 1 (7)
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where I and J are atomic indices. It is important to
remark that in our work we did not consider properties
related to the charge, so we set all the diagonal elements
in Eq. [ to zero.

E. Architecture

In the previous sections we defined all the elements
of our learning problem, namely the chosen molecular
descriptor, the desired output, and the algorithmic pro-
cedure used to produce it. We now illustrate the archi-
tecture of the network employed.

The motivations behind the choice of a CNN architec-
ture to address the problem at hand are essentially three.
First, Parameter Sharing allows one to keep the total
number of parameters to be learned relatively low. If



we used an ANN, which has tied weights, we would have
obtained a much higher total number of learnable param-
eters. Second, CNNs are particularly suited to deal with
grid-like input data, such as Coulomb matrices. Third,
no data preprocessing is required.

Here we used a CNN composed by three convolutional
layers and two fully connected layers. Each convolutional
layer is made by a convolution operation followed by an
average pooling layer. While the latter acts on regions of
amplitude 2 x 2, the former is realised with the use of 32
kernel functions, each of which is a 5 x5 matrix whose ele-
ments represent the learnable parameters (weights). The
dense layers consist of 512 and 128 units, respectively.
There are ten output units, each of which corresponds to
one non-zero eigenvalue of the 5-GM spectrum. The net-
work structure is sketched in Fig. @ Three dropout HE]
layers have been included in the network before, between,
and after the fully connected layers. Dropout is a regu-
larization technique that drops a certain ratio (25% in
our case) of the input units of a layer at each step of the
training process. This technique significantly prevents
the risk of overfitting the training set [49].

The network is developed using Keras @ with Ten-
sorflow B backend. The optimizer is adagrad ﬂa with
learning rate = 0.008. The batch size is 400 and the
number of epochs is bound to 100. For what concerns
the loss function we decided to employ the mean abso-
lute percentage error (MAPE):

N

_ N =Ml
MAPE = _Zm; W (8)

where N is the batch size while A and X/ represent true
and predicted eigenvalues, respectively. Recent work by
de Myttenaere et al. @] proved generic consistency re-
sults for this loss function.

In order to quantitatively assess the effectiveness of
the network, we analysed the CNN-predicted eigenvalues
through a cross-validation procedure. This is a common
strategy to evaluate the performances of a learning al-
gorithm and its ability to generalise to an unknown and
independent dataset. The idea behind this technique is
the repetition of training and testing processes on differ-
ent subsets of the full training set. k-fold cross-validation
is the most known example of this procedure: the full
training set is split into k different folds; for each of these
subsets the algorithm is trained over the other k —1 folds
and is tested against the unknown samples present in
the k-th fold. In this work we have made use of the Deep
Analysis Protocol (DAP) for cross-validation. This pro-
tocol has been extensively employed in many machine
learning challenges applied to biological data ,@], in-
ducing an effective massive replication of data. In this
work we performed a 10 x 5 cross-validation, namely a
5-fold cross-validation performed ten times, with ten dif-
ferent random seeds for the network. These are the same
seeds that have been used during the process of training

on the full dataset.

IIT. RESULTS AND DISCUSSION

Before discussing the results we deem it useful to high-
light a few crucial aspects of the purpose of our work. In
essence, the problem we tackle here can be seen as a
spectral inversion by means of a CNN. In the literature
there are previous examples @, @] of machine learning-
based approaches to extract the eigenvalues of a matrix
using mainly recurrent neural networks. However, our
work focuses on an intrinsically different goal: first, we
did not consider the actual interaction matrix of pro-
teins as input data, rather the far more general distance
matrix; second, our scope is to provide a preliminary ex-
ample of how to employ DL-based algorithms to extract
non-trivial, global structural properties of proteins. Our
choice to make use of ENMs relies both on their simplic-
ity and low computational requirements, which allowed
us to quickly validate the performance of the CNN.

This validation was carried out through the applica-
tion of the DAP to our multitask regression problem. In
the several 5-fold cross-validation processes, the indepen-
dent folds were built so that a structure and its reversed
counterpart were included in the same fold. On the other
hand decoys coming from the same protein were allowed
to be part of different folds. This results in folds that are
not completely independent. In Fig. Bl we can see an ex-
ample of the behaviour of Training and Evaluation losses
during the Training Process on the full Training Set. The
losses have a quite steep decrease during the early stages
of the training, where they are almost coupled. After a
few (~ 20) epochs the loss on the Evaluation Set starts
oscillating, but it keeps decreasing. These non-negligible
oscillations are due partly to the small size of the Eval-
uation Set, and partly to the relative lack of robustness
of MAPE to small fluctuations.

The result achieved for each eigenvalue in cross-
validation and Evaluation are reported in Fig. [fl Results
in cross-validation are more accurate than the others:
this is reasonable since we decided to include decoys gen-
erated from the same protein in different folds. MAPE
is a relative performance measure; hence, in order to fur-
ther assess the validity of our predictions, they have to be
compared to the ones given by a non-informative model.
In Fig. [ we can see a comparison between our results on
the Evaluation Set and a non-informative model that al-
ways predicts the average value of each eigenvalue in the
Training Set. In our case we can see that the predictions
are considerably more accurate than the ones produced
by this non-informative model.

Fig. B shows the scatter plot of all the eigenvalues in
the Evaluation Set plotted against their predicted values.
Since we ran ten different experiments we had 20 pre-
dictions associated to a single real eigenvalue (sequence-
reversed structures share the A’s of the original struc-
tures). The almost linear behaviour suggests that the
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from the CNN trained in the present work (light green
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model (dark green bars). The values attained by each
model for each eigenvalue are indicated above the bar.

learning model is able to detect with good precision all
the eigenvalues even if they range over several orders of
magnitude.

The accuracy of the CNN-based approach leaves room
for improvement, e.g. through an increased size of the
training dataset, a more refined cost function, different
parameters and structure of the network etc. However,
there is a limitation in the proposed algorithm which
is more fundamental than those mentioned, namely the
fixed size of the input structures. In fact, the far-
reaching objective of employing deep learning approaches
for structural analysis of proteins would be severely lim-
ited if only structures with a given number of amino acids
could be analysed. A mitigation of this issue comes from
the nature of the problem under examination and, as it
will be illustrated hereafter, opens a novel scenario for
the usage of CNNs in the present context.
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FIG. 8: Scatter plot of the eigenvalues predicted by the CNN against the exact ones computed by the S-GM. All
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chain) computed by each of the 100 CNN instances are shown. Right panel: the data are shown in log-log scale.
Left panel: data are reported in linear scale, however only those eigenvalues having A > 0.2 can be seen.

A few words are in place regarding the computational
cost of the CNN in comparison with the exact algorith-
mic procedure. The time required by the network-based
approach to process the entire training set and predict
the corresponding eigenvalues is shorter than 5 minutes
on a single-core CPU, while the application of the (-
GM to the same dataset requires 25 minutes on the same
platform. It is evident that the amount of information
provided by the two approaches, as well as the relative
accuracy, are not comparable: while the 5-GM produces
the full, ezact spectrum for each molecule (eigenvalues
as well as eigenvectors), the CNN can only provide an
estimate of the ten lowest eigenvalues. Nonetheless, even
though the computational gain obtained already in this
case is substantial, one has to bear in mind that the ENM
is here taken as reference algorithm precisely because of
its velocity and accuracy; on the contrary, we envision
applications involving much more time-consuming pro-
cedures, e.g. the optimization of complex cost functions
@], for which the speedup can be substantial.

The defining property of low-energy modes of fluctua-
tions is their collective character, which manifests itself
in the fact that several residues are displaced in the same
direction, with no or very little strain among them. This
characteristic lies at the foundation of coarse-graining ap-
proaches which aim at identifying large groups of residues
behaving as quasi-rigid units ﬂé—@] It is thus the case
that the residues which determine the low energy eigen-
values in ENMs are those few whose distances vary the
most, that is, hinge residues. Consequently, it is reason-
able to expect that the elimination of a few C,’s from

the model would not too drastically impact the value of
the computed spectra.

To provide quantitative concreteness to these hypothe-
ses, we fed the CNN, trained to intake 100-residues-long
structures, with six proteins of 120 amino acids, 20 of
which have been randomly pruned. In Fig. [@ we show
the structure of the selected molecules, which have been
chosen from the PDB so as to have some degree of struc-
tural variability. These proteins range from very globu-
lar (4HNR) to fairly elongated (1BRO) ones, up to a case
where a hinge is evident and identifiable already by vi-
sual inspection (1E5G). For each of these six molecules
we realised 100 different coarse-grained structures hav-
ing only 100 amino acids by randomly removing 20 of
them. The model set of each protein has been fed to 10
networks, differing only for the initial guess of the hyper-
parameters. In Fig. we report the average of the first
10 eigenvalues of each of the 6 proteins, averaged over
the 100 randomly pruned structures and the 10 CNN in-
stances. These eigenvalues are plotted against the value
computed by means of the 5-GM.

A few observations are in order. In one case, namely
4HNR, there is a perfect overlap between the predictions
on the randomly coarse-grained structures and the ac-
tual values, with an overall average MAPE equal to 15.8.
This molecule is highly globular, which also reflects in
the large absolute value of the eigenvalues; hence, it
seems that the removal of a relevant fraction of amino
acids does not affect the precision of the CNN model.
FEigenvalues associated to 2KOK, 2YQD, and 1MEK were
predicted with reasonable accuracy, the overall average
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FIG. 10: Predicted eigenvalues of the six structures

with 120 amino acids against their real value. Each
point is the average over 100 random coarse-graining

procedures and 10 networks, error bars indicate the
standard deviation. The red line is a guide to the eye.

MAPE being 30.7, 35.5, and 48.3, respectively. These
proteins share a medium degree of globularity. The most
important deviations from the real eigenvalues appear for
1BRO and 1E5G, with largely underestimated values; for
these molecules, the overall average MAPE equals 73.7

FIG. 11: Schematics of the procedure to perform a
restrained random removal of the exceeding 20 amino
acids from protein 1E5G. Atoms to be eliminated can
be selected only outside of the sphere centered on the

molecule’s hinge and having a 1 nm radius.

and 58.3, respectively. However, these proteins are at
the other extreme of the “globularity spectrum” with re-
spect to the first, very compact 4HNR. In fact, 1IBRO is a
bundle of 3 quasi-parallel alpha-helices, while 1E5G con-
sists of two identical, independent domains separated by
a few interface residues. It is reasonable to expect that in
the first case no well-defined hinge region exists, rather
each part of the molecule takes part in the low-energy
deformation. A random removal of residues thus has an
appreciable impact in the calculation of the energetic cost
associated with collective motions.



FIG. 12: Schematics of the procedure to test whether
the improved MAPE values obtained excluding a
localized group of residues from removal does not

depend on their location. As described in Fig. [l the

20 residues to remove can be randomly selected only

outside of a sphere of 1 nm radius. The center of the

sphere, however, cannot be localized closer than 2 nm
to the point employed for the previous analysis, namely
the molecule’s sequence center (i.e. the mechanical
hinge). 10 different positions for the sphere are
randomly identified, and for each of them 10 different
models where 20 residues have been randomly removed
have been constructed.
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FIG. 13: 1E5G: MAPE of predictions on proteins
subject to different procedures for the removal of the 20
exceeding residues. Random CG stands for randomly
coarse-grained structures, Centred Sphere CG refers to
the procedure in which central atoms are not removed;
and Random Sphere CG describes structures in which
the sphere has been placed in regions other than the
interface between the domains.

For 1E5G the mechanism is different. This protein
possesses a short linker and a relatively small interface
connecting two lobes, thus suggesting a rather decoupled
dynamics between them. That this is likely the case is
made evident by the fact that this molecule features the
lowest lowest-energy (sic) eigenvalue among those under
examination. Hence, the removal of some residues from
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those constituting the hinge between the two domains
substantially affects the result. In order to verify this
hypothesis, we have repeated the CNN-based calculation
for 1E5G on a set of 100 pruned structures, which have
been obtained randomly removing 20 amino acids from
the crystallographic conformation with the restraint that
no residue lying within a 10A cutoff from the center of
the linker could be eliminated, as illustrated in Fig. [l
The effect of this simple criterion can be seen on the data
reported in Fig. [[3] which show a small yet appreciable
and, most importantly, systematic improvement of the
MAPE score when the hinge residues are not selected for
removal (centred sphere CG) with respect to the com-
pletely random selection case (random CG).

Finally, to rule out the possibility that this improve-
ment depends on the exclusion of a localized group of
CG sites per se rather than their particular location, we
have performed a further test. Specifically, we have con-
structed ten different CG model types in which the 20 ex-
ceeding residues have been eliminated outside of a sphere
of radius 10A whose center is located on a randomly cho-
sen position of the protein at least 20A away from the
hinge centre. In plain English, we have performed the
same calculation as of the centred sphere CG ten times,
with spheres centred so as to avoid overlap with the one
placed in the protein hinge. For each model type —i.e. for
each location of the exclusion sphere— ten randomized CG
models have been produced, and their eigenvalues aver-
aged over specific coarse-graining realization and CNN
model.

The result, also visible in Fig. 3] shows an increase of
the MAPE score with respect to the random case, that
is, the prediction of the CNN worsens with respect to
a model where the 20 removed residues have been ran-
domly chosen throughout the structure. This observation
consolidates the hypothesis that the network is capable of
predicting with sufficient accuracy the low-energy eigen-
values of a protein larger than those it has been trained
upon, provided that the exceeding number of sites has
been removed; furthermore, and quite intuitively, the
prediction improves if the removed residues do not be-
long to mechanically relevant parts of the molecule such
as motion hinges.

IV. CONCLUSIONS

The aim of computer-aided modelling of biomolecular
systems it to achieve deeper, mechanistic understanding
of their function and properties at a level that cannot
be accessed by means of experimental or purely theo-
retical (i.e. mathematical) methods. This approach in-
deed plays on two sides of a medal: on the one hand, it
provides a detailed picture of biological processes at the
molecular level, thus enabling the confirmation or fal-
sification of hypotheses and the formulation of theories
and models of the finest mechanisms of living matter; on
the other hand, it serves as a validation of the currently



available representations of the fundamental constituents
of cells, ranging from single atoms to entire tissues and
organs. Such a workflow is largely algorithmic and deter-
ministic, in the sense that it relies on well-defined proce-
dures each step of which is known and understood. An
exemplary instrument in this sense is molecular dynam-
ics.

The alternative strategy, which is gaining further and
further attention and interest (as well as success), is
machine learning, and deep neural networks in partic-
ular. These computational methods have proven ex-
tremely effective in performing those tasks which cannot
be easily formulated in a classically algorithmic manner,
rather they have a fuzzier, more probabilistic character.
Nonetheless, a steadily growing level of quantitative ac-
curacy is being reached by deep learning techniques.

The complementary nature of the two aforementioned
approaches is not only extremely appealing, but also po-
tentially very powerful, as it is demonstrated for example
in the field of bioinformatics, where (big) data process-
ing moves on both tracks simultaneously. In the present
work we have made a first attempt to combine formal,
algorithmic models with deep learning approaches in the
context of protein modelling. In particular, it has been
our goal to perform, by means of a convolutional neural
network, the calculation of global properties of protein
structures such as the lowest-energy eigenvalues of the
most collective modes of fluctuations. The final aim can-
not, of course, be that of trivially replacing the simple,
extremely effective procedure represented by a matrix in-
version by means of a CNN; rather, we explored the pos-
sibility of allowing a deep learning scheme to perform this
task with sufficient accuracy as a first, necessary step to-
wards more complex kinds of structural protein analyses.
While the calculation of the lowest eigenvalues (as well
as the rest of the whole spectrum) of an elastic network
model is immediate and computationally inexpensive in
terms of linear algebra, it is not given for granted that
a CNN could do it as well. Furthermore, a crucial step
in the usage of a CNN (or similar methods) is the pre-
processing of the molecular structure in terms of appro-
priate input variables: the usage of the Coulomb matrix
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has proven to be a viable choice to this end.

A second, equally relevant outcome of this work is
the extension of the network-based eigenvalue prediction
network to proteins having a larger number of residues
than those employed for the training. The construction
of molecular descriptors flexible enough to process pro-
teins of variable length is still an open issue; however, we
have shown that the network —trained on 100-residue-
long molecules— can provide good estimates of the low-
energy eigenvalues of proteins with 120 amino acids pro-
vided that the exceeding ones have been neglected. This
positive result proves even more pleasant inasmuch as
the agreement between predicted and real values varies
depending on the specific choice of the removed amino
acids, in such a way that mechanically relevant residues
emerge as those whose removal determines a worsening
of the prediction. The natural consequence of this obser-
vation is that, upon appropriate training, deep learning
schemes could be employed in an effective manner not
only to compute properties along the lines of reference
algorithms, but also to extract biologically relevant fea-
tures of a protein and to provide valuable indication on
how to construct simplified, that is, coarse-grained mod-
els.
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