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• Several debates are flourishing in the
protein folding field.

• Compaction of the denatured state
measured by single molecule tech-
niques is challenged by SAXS.

• Thepresenceof nucleation sites probedby
Φ analysis is constantly being criticised.

• Long transition path times challenge
molecular dynamics simulations.
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The folding of proteins has been at the heart of protein chemistry and biophysics ever since the pioneering experi-
ments by the labs of Fred Richards and Christian Anfinsen. But, despite nearly 60 years of intense research, there are
unresolved issues and a lively debate regarding some aspects of this fundamental problem. In this reviewwe give a
personal account on some key topics in the field: (i) the nature of the denatured state of a protein, (ii) nucleation
sites in the folding reaction, and (iii) the time it takes for individual molecules to traverse the transition state.
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1. Introduction

The amino acid chain of a protein folds into a native structure, which
can be globular and well defined, highly disordered, or anything in
between. The structure of the protein is dictated by the sequence of
the amino acid residues and the environment of the protein. Because
the structure of a protein defines its functions, it is clear how the interest
in the study of protein folding has been significant over the last six
decades, with this scientific field playing a very influential role in bio-
physics and molecular biology [1]. The protein folding problem can be
formulated in a very simple way: how does the unfolded chain find
the native conformation? The answer is less simple.

Thanks to the collaborative efforts between experimentalists and
theoreticians, some of the general rules of folding have been already
drawn and our understanding of the reaction has grown enormously
over the last years (discussed for example in these interesting reviews
[2–7]). Nevertheless, the employment of innovative techniques, as
well as re-analyses of the large amount of data accumulated over the
years not only answered questions, but is now igniting new debates in
the field, and raising new challenges and questions to address.

Most proteins contain more than 100 amino acid residues and often
several independently folding domains. However, due to the complexi-
ty of large proteins and limitations in computational power, studies on
protein folding have mainly been limited to small (b100 residues) sin-
gle domain proteins. Themost striking experimental observation inpro-
tein folding on single domain proteins, is the stark co-operativity of the
reaction [8]. In fact, whilst hundreds of interactions form and break
upon folding or unfolding, the observed transition from unfolded to
folded is often surprisingly as simple as two-state [9]: only the unfolded
state and the native state are typically present at equilibrium.
Consequently, when a transient intermediate cannot be identified or
characterized in the protein folding reaction, the transition state,
separating the unfolded and the folded state, is the only source of
information regarding the reaction mechanism.

In this review we highlight some emerging controversies in the
protein folding field. We will first focus on the unfolded, or perhaps
more correctly, the denatured state of the protein, which represents
the starting point of the folding reaction. We will then look at the
transition state, which contains the key points to address the overall
mechanism. Finally, we will discuss the track along which a single
molecule diffuses on the free energy landscape, and in particular
the transition path time, which is the time it takes to pass the ener-
getic barrier.
2. The denatured state of proteins

What is the denatured state of a protein? This question has spurred
many discussions and the lack of clarity regarding the denatured state
can be sought in its own definition. In 1957, Klee and Richards [10]
and Anfinsen and co-workers [11] observed that the enzymatic activity
of RNAse A and its spectral properties, reporting on the secondary and
tertiary structure, were not necessarily concomitantly perturbed when
the enzyme was exposed to different experimental conditions.
Therefore, in 1959 White and Anfinsen listed a set of conditions where
the activity of RNAse A could be abolished along with its spectral
properties or not [12]. Thesefindings led to theproposal that theprotein
contained an “active centre” constituted by a relatively small part of the
molecule. The experimental forefathers of protein folding hence put
forward the concept of denaturation. Consequently, by following
Richards and Anfinsen, the term denatured may be refereed to a
conformation of a protein that is inactive, irrespective of whether or
not it contains ‘folded’ regions.

The difference between the terms denatured and unfolded is there-
fore not only semantic, it is very important for the understanding of
the inherent properties of this heterogeneous state. The denatured
state (D) represents a functionally inactive conformation that contains
a variable degree of native or non-native interactions, and may be
populated under conditions that favor folding. On the other hand, the
unfolded state (U), represents the expanded chain found at equilibrium
in the presence of high concentrations of denaturants or at high temper-
ature. While U of many proteins resembles a random coil, the structural
and dynamic properties of D is key to understanding the early events in
protein folding, as shown for different protein systems [13–21].

In refolding mixing experiments, it is commonly observed that a
rapid dilution of denaturant leads to a variation of fluorescence that pre-
cedes the folding reaction [22,23]. This ‘burst phase’ has been associated
with a compaction of the unfolded chain, i.e., representing the transition
from U to D. A recurring debate in protein folding pertains to whether
such transition is a barrier limited reaction, driven by specific interac-
tions, or a non-specific collapse induced by water exclusion [24–29]. A
recently developed methodology, single molecule Förster resonance
energy transfer (smFRET), could provide additional insights to this
issue [30]. An advantage of smFRET is that it avoids ensemble averaging.
Specifically, by performing a statistical analysis of single molecule
events, it is possible to reconstruct the properties of a given state, rather
than measuring experimental observables belonging to a mixture of
states.

By applying smFRET, it has been observed that D is characterized by
a compact conformation in the absence of denaturants [31–33]. Inter-
estingly, increasing denaturant concentrations led to a gradual increase
of the overall radius of gyration of D. This observation suggests that in
the case of the proteins explored, the transition from U to D is a second
order barrier-less type of transition, characterized by a continuum of
states. In fact, if the reaction were of a first order barrier-limited type,
smFRET would have detected a discrete change in the relative popula-
tions of U and D. However, the observations by smFRET were recently
challenged. In particular, small angle X-ray scattering shows little
evidence for D state compaction as a function of denaturant concentra-
tion [34]. Furthermore, it was shown that double labeled polyethylene
glycol (PEG) asmeasured by smFRET showed a compaction very similar
to that of denatured proteins, but neutron scattering experiments
demonstrated that unlabeled PEG remains expanded irrespective of
the denaturant concentration [35]. These differences question the
validity of the smFRET analyses and keep the debate on the nature of
the denatured state alive. We interpret these experimental differences
as arising, at least in part, from the lower quality and resolution of the
SAXS data and encourage additional research on this critical topic in
protein folding.
3. The transition state

Like any chemical reaction, the folding of a protein proceeds via a
transition state. Because of the co-operativity of the folding reaction,
the transition state of folding is often the only experimentally accessible
state giving information about the pathway [9], unless intermediates
can be identified [36–40]. Consequently, a considerable amount of
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work has been devoted to characterizing its structure. Themost power-
ful experimental technique to solve the structure of the transition state
for folding is the so-calledΦ value analysis. [41,42] This methodology is
based on the synergy between mutagenesis and kinetics and relies on
measuring the effect of amino acid side chain perturbations on the
free energies of the folded and transition states, respectively. By
normalizing the change in activation free energy upon mutation to
that of the folded state it is possible to obtain a structural index,
namedΦ. Quantitatively, theΦ value for folding is defined as:

Φ ¼ ΔΔGD−TS

ΔΔGD−N
ð1Þ

Φ = 1 indicates that the site of mutation is fully structured in the
transition state,Φ= 0 indicates that the site of mutation is as unstruc-
tured as the denatured state D.

Ever since its introduction, theΦ value analysis has attracted a great
interest, but also been challenged from different angles. In particular,
two types of debates arose: i) the perturbation introduced by the
mutation distorts or de-routes the genuine folding pathway of the
wild type system [43,44]; ii) the analysis of the observed kinetic param-
eters is not accurate enough to provide reliable values [45,46]. Most of
the criticisms were rebutted by Fersht and co-workers [47], who have
also provided guidelines on how to choose the mutations and how to
perform the error analysis of Φ values [48]. Here, we focus on one
particular criticism.

In a recent analysis, Naganathan and Muñoz reassessed a large
database of different mutants and questioned the importance of Φ
values [49]. In response to their points, we have previously used the
comparison of the folding between different homologous protein
systems to demonstrate the robustness of Φ values (Φ-Φ plots) [50]; a
finding that reinforces their significance in protein folding studies. In
this review, we will consider the point of Naganathan and Muñoz
from a different perspective. They analyzed more than 800 mutations
in 24 different proteins as a single data set and concluded that “all
data were consistent with a single Φ value (0.24) with accuracy
comparable to experimental precision, suggesting that the structural in-
formation in conventional Φ values is low”. That is – because the Φ
value represents a two-point slope of the change in the activation free
energy versus the change in ground state free energy upon mutation,
Fig. 1. Dependence of distance over time for running world records for both men and
women. The line is the best fit to a linear equation. Open circles refer to the best
personal records for 10,000 m, half marathon and marathon for one of the authors of
the present paper.
if all the mutants (when considered together) are consistent with a
single slope, it follows that little structural information is contained in
the Φ values. In analogy to this analysis, we report in Fig. 1 the depen-
dence of the time in seconds versus the meters of all the world records
in running for 100 m up to marathon (42,195 m), for both women and
men. It may be observed that all the data are consistent with a single
slope of 5.4 ± 0.07 m/s. Because the speed of a runner represents the
two-point slope of the meters of a given athletic discipline versus
time, a paradoxical analogy of the analysis performed by Naganathan
and Muñoz may suggest that all the runners (from 100 m to marathon),
were consistent with a single speed, suggesting that the information in con-
ventional speed measurement is low. Of particular interest, the personal
best times for one of us fall relatively close to the line suggesting a
speed which could challenge Usain Bolt. Obviously, the linearity is an
artefact of the scaling and each point holds precise and accurate
information. Similarly, whilst each Φ value is robust and reliable,
when all the mutants are considered together, an apparent (artificial)
linearity arises.

We suggest that the average Φ value of 0.24 is in fact the conse-
quence of the generality of the so-called nucleation-condensation
mechanism in protein folding [51–53]. By following this model, whilst
folding is driven by nucleation of specific residues, formation of the
nucleus can only occur if a significant fraction of the overall structure
is in a conformation approximating the native one. Thus, formation of
the nucleus (nucleation) is coupled with a more general formation of
structure (condensation), giving rise to a diffuse transition state,
resembling a distorted version of the native state. Therefore, because
the transition state is similar in structure to the native state, with a
robust native-like structural content, a global analysis of themutational
variants will return an overall linear behavior. But the discussionwill go
on.

4. The transition path

Our current understanding of chemical reactions is based on
Arrhenius theory on the transition state [54]. From this view, the
whole concept of kinetics has a probabilistic nature - molecules jump
quasi instantaneously between thermodynamic wells, with a probabili-
ty over time that is proportional to the height of the intervening free-
energy barrier, with the resulting apparent kinetics for a monomolecu-
lar reaction conforming to a single exponential decay. A breakdown of
such an exponential decay may occur in the absence of a barrier [55]
(the so called ‘downhill folding’), a controversial scenario that has
been extensively discussed previously [56–61]. The time that is required
for a molecule to transit from one state to another is defined as the
‘transition path time’ and represents a quantity that, until very recently,
has escaped experimental detection, for any molecular process in
solution.

In 2009, by employing smFRET and analysing photon-by-photon
trajectories of protein folding and unfolding, Eaton and co-workers
measured for the first time the upper bound for the transition path
time of a chemical reaction, the folding of GB1 [62]. A few years later,
this ground-breaking work was continued by measuring the transition
path time of GB1 in comparison to that of a WW domain and of α3d
[63,64], by quantifying the influence of viscosity in barrier crossing
[64] and by determining the role of specific non-native interactions in
the dynamics of barrier crossing, rather than in altering the height of
free-energy barriers [65]. The experimental work was compared with
very long molecular dynamics simulations (in the μs to 1 ms time
range) carried out by Shaw and co-workers on the most powerful
computer in the world, Anton 2, built specifically to study protein
folding [66].

The detection and characterization of transition path times is of out-
standing interest and takes our understanding of protein folding to a
new level. Over and above the molecular details of the reactions,
which were exhaustively discussed in the original works, we wish to
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briefly discuss here two observations that are particularly surprising –
i) the transition path time of different proteins is rather conserved and
fast folders display a transition path time comparable to slow folders;
ii) the transition path time is relatively long, being in the order of 1 μs,
that is, on the same time scale as the fastest folding protein domains.
Attila Szabo provided a quantitative method to extract the transition
path times from the analysis of single molecule trajectories, and
reported an explanation of the observed robustness of the transition
path time between different protein systems [62]. By describing the
diffusive motion of chemical particles over a barrier, he demonstrated
that the transition path time is proportional to the logarithm of the
activation free energy, which minimizes the observed variations in
transition path times between fast and slow-folding proteins.

One of the most interesting approaches to override the limita-
tions of computer power in molecular dynamics simulations has
been represented by distributed computing [67,68]. Instead of
running a single long simulation to achieve at best a few tens of μs
with the top-notch computers (a time scale still very far from the
majority of proteins, folding in the ms to second time scale),
thousands and thousands of very short simulations were performed
on screen savers of personal computers around the world. In theory,
even if the simulations are very short compared to the time scale of
the folding reaction, by performing a sufficiently high number of
simulations there would be a probability for a few of them to con-
verge. Now back to the transition path time: The observation that
the transition path time, even for very simple systems, may be as
long as 1 μs, seems to represent an additional complication to distrib-
uted computing and for any very short simulation in the ns time
range. In fact, whilst it is clear that the transition path timemeasured
by Eaton and co-workers is an average value andmore fast events are
theoretically possible, we note that the probability of distributed
computing to pick a really converging simulation is in fact probably
much smaller than previously estimated and long simulations, such
as those performed by Shaw and co-workers [65,66], are needed to
describe a complex reaction such as protein folding.
5. Conclusions

The improvement of innovative experimental techniques, the
development of super computers as well as the accumulation of a
large amount of mutational data on different proteins have contributed
to increase our knowledge of protein folding tremendously. Neverthe-
less, many questions are still open and newdebates are arising. Further-
more, considerable efforts are still needed to investigate some issues
that are relatively unexplored. Strikingly, the vast majority of the work
on protein folding, including our own, still focuses on simple systems
and our understanding of the folding of multi-domain large (some
would argue “real”) proteins is very limited and only few studies may
be found, see for example [69–71]. If one compares the complexity of
the protein systems used by Richards and Anfinsen with most of the
modern work on protein folding, it would appear that the field is
going in the reverse direction, towards smaller proteins. Continued
efforts are therefore needed to bridge the gap between our knowledge
on simple protein domains and large complex proteins, preferably in a
cellular environment [72,73] or in the context of the interaction of the
nascent chain with the ribosome [74,75].
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