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Abstract 
Computational simulations of protein folding 

can be used to interpret experimental folding 
results, to design new folding experiments and to 
test the effects of mutations and small molecules on 
folding. However, while major experimental and 
computational progress has been made in 
understanding how small proteins fold, research on 
larger, multi-domain proteins, which comprise the 
majority of proteins, is less advanced. Specifically, 
large proteins often fold via long-lived partially 
folded intermediates, whose structures, potentially 
toxic oligomerization and interactions with cellular 
chaperones remain poorly understood. Molecular 
dynamics (MD) based folding simulations that rely 
on knowledge of the native structure can provide 
critical, detailed information on folding free energy 
landscapes, intermediates and pathways. Further, 
increases in computational power and 
methodological advances have made folding 

simulations of large proteins practical and valuable. 
Here, using serpins that inhibit proteases as an 
example, we review native-centric methods for 
simulating the folding of large proteins. These 
synergistic approaches range from Gō and related 
structure-based models (SBMs) that can predict the 
effects of the native structure on folding to all-
atom-based methods that include side chain 
chemistry and can predict how disease-associated 
mutations may impact folding. The application of 
these computational approaches to serpins and 
other large proteins highlights the successes and 
limitations of current computational methods and 
underscores how computational results can be used 
to inform experiments. These powerful simulation 
approaches in combination with experiments can 
provide unique insights into how large proteins fold 
and misfold expanding our ability to predict and 
manipulate protein folding. 
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 2 

 
Introduction 

To function, structured proteins need to 
reproducibly fold to a unique three-dimensional 
structure in a biologically reasonable timescale. 
The observation that proteins reliably fold despite 
having astronomical numbers of possible 
conformations has been the impetus behind decades 
of experimental and theoretical folding studies (1–
3). However, protein folding pathways, and folding 
intermediates, are of interest not only in 
fundamental biophysics. Partially folded states 
expose surfaces that are normally buried. If these 
states are populated for extended periods of time 
they may be recognized by elements of the cell’s 
protein quality control machinery that can assist in 
folding or target proteins for degradation (4–7). 
Further, in many protein folding diseases, 
pathological mutant proteins populate partially 
folded non-native conformations and these 
conformations may result in non-native protein-
protein associations or oligomerization. A detailed 
understanding of protein folding and misfolding 
pathways thus has the potential to aid in the 
development of therapeutic interventions that 
prevent misfolding or reduce the population of 
intermediates. Alternately, in diseased cells, drugs 
could be designed that promote misfolding and 
drive cells into apoptosis. 

A challenge to developing such a detailed 
understanding is posed by the transient nature of the 
intermediates. Even the most long lived folding 
intermediates rarely persist beyond timescales of a 
few minutes at most. Experimentally, transient 
intermediate states have been detected and 
characterized using spectroscopic methods such as 
fluorescence and circular dichroism as well as by 
small angle X-ray scattering and other scattering 
methods. And, while technical advances have 
allowed the detection of rare and excited states by 
NMR (8, 9) and X-ray crystallography (10) these 
molecularly detailed methods may not be widely 
available or such experiments may not be sufficient 
to detect folding intermediates. 

By contrast, computer simulations provide a 
detailed picture of protein folding not easily 
accessible to experiment. Specifically, protein 
folding simulations can provide valuable, detailed, 
testable data on how proteins fold and misfold and 

may be used to formulate hypotheses on how 
protein folding might be manipulated. In the last 
decade special purpose supercomputers such as 
ANTON (11) and massively distributed computing 
schemes such as Folding@home (12) have made it 
possible to simulate the folding of small proteins in 
all atom detail using realistic empirical force fields, 
without the aid of any biasing forces. While these 
simulations have provided invaluable insights, even 
special purpose, high performance computing 
platforms are limited to simulating the folding of 
smaller chains (currently ~100 amino acids with 
folding times up to milliseconds). However, the 
median length of a protein is 532, 365 and 329 
amino acids in eukaryotes, bacteria and archaea, 
respectively (13), and folding times range from 
microseconds to tens of minutes. Even with 
anticipated continuing increases in computing 
power, simulating the folding of these larger slower 
folding proteins using standard MD simulations 
will remain out of reach for the foreseeable future. 
In addition to the increased computational demands 
due to size, large slow folding proteins often fold 
through long lived intermediates corresponding to 
deep local energy minima. For such proteins even 
very long simulations are likely to simply observe 
the protein exploring limited conformational space 
within a single local minimum since transitions 
between minima are rare. 

To simulate such rare transitions, numerous 
methods for accelerating or enhancing sampling 
during MD simulations have been developed (14–
23). One particularly effective approach to 
efficiently simulate the folding of large proteins is 
to take advantage of the evidence that protein 
folding is to a large extent encoded by the contacts 
in the native, folded protein. Computational 
schemes in which the force field explicitly includes 
a biasing term favoring native contacts allow the 
simulation of protein folding with many orders of 
magnitude less computational effort than is 
required with conventional MD methods. These 
studies, including folding simulations of large 
proteins such as adenylate kinase (24, 25), GFP 
(26), TIM barrels (27), dihydrofolate reductase 
(28), a DNA polymerase (29) and serpins (30, 31), 
have been successful in generating folding 
pathways and intermediates that agree with 
experimental results and provide testable 
hypotheses on what intermediate states are likely to 
be populated during folding. 
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This review focuses on native-centric 
simulation methods that are applicable to the 
folding of large and slow folding proteins. We 
consider two categories of techniques both of which 
rely on the native protein contact map, but have 
different levels of spatial resolution and chemical 
detail; (i) Gō and related structure based models 
(SBMs) that provide knowledge on the effects of 
structure on folding and (ii) all-atom based methods 
that take into account the effects of side chain 
chemistry on folding and can therefore predict how 
mutations may affect folding.  

As a prototypical case study, we discuss how 
both classes of methods have been used to simulate 
the folding of the canonical inhibitory serpin a1-
antitrypsin (AAT) a 394 amino acid protein with 
folding times as long as tens of minutes (32–34). 
The interest in this specific protein resides in the 
fact that it has a topologically complex native 
structure and the functional conformation is a 
kinetically trapped state, not the lowest free energy 
conformation (35–39). Furthermore, specific point 
mutations are known to enhance its misfolding 
propensity, giving rise to misfolding diseases (40, 
41). We show how the two theoretical methods 
discussed above provide complementary results 
and how these results may be used to inform 
experiments, interpret experimental results and to 
generate hypotheses on how folding proteins may 
interact with the protein quality control machinery. 

The importance of native interactions and the 
native-centric approach to protein folding 

A physical basis and justification for native-
centric approaches to modeling protein folding was 
provided by the energy landscape picture of protein 
folding and the principle of minimal frustration 
developed in the 80s and 90s (1). The effective 
potential energy (averaged over solvent degrees of 
freedom) as a function of chain conformation 
defines a protein’s energy landscape (Fig. 1). This 
multi-dimensional energy landscape results from 
multiple driving forces and constraints including 
the drive to bury hydrophobic residues, to satisfy 
hydrogen bond donors and acceptors, to solvate or 
pair charged residues, and the constraints of chain 
connectivity and steric clashes. According to 
arguments adapted from the physics of disordered 
systems, random amino acid sequences will be 
characterized by irreconcilable conflicts between 

these multiple driving forces and constraints, 
termed energetic frustration, resulting in many 
unrelated structures of similar energy (42, 43).  

The principle of minimal frustration states that, 
unlike random sequences, the sequences of 
naturally occurring proteins have been selected by 
evolution to minimize energetic conflicts between 
interactions in the native conformation (1). As a 
result, compared to alternative structures, the native 
structure is a better optimized solution to the 
problem of satisfying the large number of 
competing interactions. The energy landscape of 
such a minimally frustrated protein resembles a 
high dimensional funnel with the native state at the 
bottom. While local minima and barriers still exist 
(the funnel is “rugged”), the global energetic bias 
towards the native structure promotes efficient 
folding (Fig. 1).  

A funneled energy landscape implies that the 
potential energy of the system should decrease with 
increasing numbers of native contacts; suggesting 
that the number of native contacts formed should 
serve as a good reaction coordinate for folding. 
Early support for a native-centric picture of protein 
folding was provided by simulations of simplified 
lattice proteins (14, 44–47). More recently, Best, 
Eaton and Hummer analyzed ultralong unbiased all 
atom simulations of several small (<100 aa) fast 
folding proteins and found that during transitions 
between unfolded and folded states native contacts 
persisted significantly longer than nonnative 
contacts (48). 

Gō models encode native structure and can be 
used to understand protein folding dynamics.  

The funneled shape of a protein's energy 
landscape implies that there is a minimal chance 
that the polypeptide chain remains trapped in local 
energy minima (2, 49, 50). In the ideal funnel limit, 
proteins can smoothly flow from unfolded states at 
the top of the funnel to the folded ensemble. On the 
other hand, this process is associated with a large 
configurational entropy reduction, which can give 
rise to a significant free energy barrier. As a result, 
even in the minimally rugged funnels, protein 
folding remains a rare, thermally activated reaction. 

Gō models of proteins further simplify the 
nature of the folding landscape by encoding the 
native structure of the protein in the potential 
energy and for the most part, ignoring all non-
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native interactions (14, 44, 51–53). This reduces the 
complexity of the calculations and makes the rare 
folding events computationally accessible. The 
term structure-based models (SBMs) has been used 
to refer to Gō-type models which, in addition to 
native structure derived terms, may contain 
knowledge based terms which are derived from 
sequence information (15, 54), non-native 
interactions (55), information from additional 
native structures (56), etc. However, since this 
review deals mostly with models which include few 
non-structure derived interactions, we use the terms 
Gō models and SBMs interchangeably. Gō models 
have commonly been simulated using either Monte 
Carlo or molecular dynamics (MD) methods and 
are computationally relatively inexpensive. A 
further reduction in complexity can be achieved 
through coarse-graining to include either a single 
Cα bead or a few beads per residue (Fig. 2). Thus, 
Gō models are simple protein models that enable 
extensive sampling of potential energy landscapes. 
Additionally, because so few beads are involved, 
the data are easier to interpret. Further, standard 
enhanced sampling methods, such as replica 
exchange, used in MD simulations can be used 
when folding proteins with large barriers (57, 58). 
Gō model simulations have been successfully used 
to understand both the structural (folding 
mechanisms, intermediate populations, etc.) and 
the kinetic features (barrier heights, rates of 
different events, etc.) of protein folding (14, 51–
53).  

Encoding structure in Gō models. Gō models 
encode protein structure through two features: (1) 
the chain connectivity of the protein and (2) contact 
interactions present in the native state (Fig. 2). 
Chain connectivity is encoded by having strong 
bonds (that cannot break during the course of the 
folding simulation) between those beads which 
represent atoms or groups of atoms that are 
connected by chemical bonds in the protein. 
Additional local (along the backbone) interactions 
can include strong angular constraints between 
three consecutive beads (connected by bonds) and 
dihedral interactions between four consecutive 
beads. Strong dihedral interactions may be used to 
preserve chain chirality or other structural 
constraints such as the planarity of rings. Weaker 
structure derived or statistical dihedral interactions 
serve as a proxy for secondary structural 
propensity. These interactions are weak enough to 

break and form on the timescale of the simulation. 
Contact interactions are defined between two beads 
which do not interact through any local interactions 
and which are close in space in the folded structure 
of the protein. Two beads are considered to be close 
in space if either they or alternately, the atoms that 
they represent are within a cutoff distance of each 
other. Other more complex ways of defining 
contact interactions exist and sometimes work 
better in folding simulations than the cutoff based 
contact map (59). Contacts may also all have the 
same (homogeneous) strengths, or be assigned 
contact strengths based on the atoms or the residues 
which are in contact. Finally, an excluded volume 
interaction is present between those beads which 
are not in contact in the native state. This ensures 
that beads do not pass through each other and the 
chain doesn’t cross. Different flavors of Gō models 
have been tested on a few proteins and for the most 
part as long as little to no frustration in the form of 
non-native interactions is encoded, diverse features 
of protein folding calculated from the different 
models are both similar to each other and to 
experiment (15, 60, 61). However, functional 
regions of proteins can be either energetically or 
topologically frustrated and in such cases, different 
unfrustrated Gō models can give different folding 
features (62, 63) and energetic frustration in the 
form of non-native interactions (Fig. 2) needs to be 
explicitly included in the model (54, 64–66). 

A key advantage of using a Gō model is that it 
can be easily modified to include specific native or 
non-native terms (increasing the complexity of the 
model) when data from the simplest model does not 
agree with a specific experimental observable, such 
as the population of an intermediate. When addition 
of an extra term to the potential energy function 
leads to an agreement with experiments, then it can 
be concluded that that term leads to that specific 
feature. In other words, in some cases extra terms 
can lead to a better understanding of the physical 
basis of experimental findings. 

Encoding frustration in Gō models. As stated 
earlier, the funneled energy landscape of structured 
proteins is a result of selection for protein 
sequences in which interactions present in the 
folded state are much more stabilizing than non-
native interactions thus reducing frustration (2, 49, 
50). However, residues that perform function in the 
folded state need to be conserved and cannot always 
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be chosen to reduce energetic frustration. The 
interactions of functional residues, e.g. amino acids 
in the active site or at protein-protein interfaces, 
with residues that have been selected to reduce 
frustration and promote folding can lead to trapping 
during folding (67, 68). Such functional frustration 
can show up as an increase in complexity of the 
folded state due to the presence of additional 
functional secondary structural elements in the 
native state. This can lead to larger barriers to 
folding, backtracking during folding, etc. An 
alternate signature of functional frustration is a loss 
of contacts because functional amino acids are 
chosen to stabilize inter-protein interactions rather 
than intra-protein interactions. This can lead to 
lower barriers to folding, stalling of folding and the 
population of intermediates, etc. Such effects of 
function which induce localized changes in protein 
structure are detectable even in Gō models which 
do not encode frustration (67, 68).  

However, for some proteins, non-native 
interactions need to be explicitly encoded in the Gō 
model in order for key folding features such as the 
population of a folding intermediate to agree with 
experiment (54, 64–66). Non-specific non-native 
interactions can be added to purely structure-based 
Gō models by introducing an attractive interaction 
at a chosen interaction distance between all those 
pairs of beads which are not in native contact (Fig. 
2). Alternately, non-native interactions may be 
added between selected groups of amino acids such 
as the hydrophobic amino acids or the charged 
amino acids. Such non-specific non-native 
interactions, their forms and utility have been 
reviewed in detail elsewhere (55, 69).  

Several proteins undergo conformational 
transitions converting from one structural ensemble 
to a distinct structural ensemble upon ligand 
binding or chemical modification. In such cases, 
interactions which are “non-native” in the unbound 
(or unmodified) structural ensemble are formed in 
the bound (or modified) ensemble. Such specific 
non-native interactions can be appended to the Gō 
model of the unbound structure (51, 56, 70). This 
class of models termed dual structure-based models 
has often been used to understand conformational 
transitions of proteins but has rarely been used to 
understand folding. However, when a single large 
conformational transition dominates the function of 
a protein, which is the case for serpins, it is likely 

that simulations using such dual structure-based 
models will be a computationally inexpensive way 
to capture the functional frustration present in the 
folding energy landscape. 

All-atom enhanced sampling based on a native-
centric biasing force 

An alternative strategy for simulating rare 
macromolecular transitions consists of retaining 
full all-atom resolution with chemically motivated 
realistic forces, but resorting to more sophisticated 
algorithms, possibly combined with additional 
approximations, in order to lower the cost of 
characterizing rare transitions. While 
computationally more expensive, such methods 
have the advantage of accounting for the chemistry 
of the side chains and can be used to investigate the 
effects of mutations on folding. Many of such 
enhanced path sampling techniques have been 
developed during the last two decades (for a recent 
review see e.g., (20)). Some of these methods are 
based on reconstructing the reaction kinetics from a 
statistical analysis of many short MD trajectories 
(an incomplete list includes transition interface 
sampling (17, 21), Markov State Models (22) and  
Milestoning (19)). This way it is in principle 
possible to obtain predictions statistically 
consistent with plain MD simulations, while 
massively distributing the computational load. In 
practice, however, these schemes still require huge 
computational resources and cannot be applied to 
slow, complex reactions such as the folding or 
conformational changes of large proteins which can 
occur on time scales of minutes to hours.  

A computationally efficient way to further 
lower the computational cost of atomistic 
simulations consists of introducing biasing forces 
to promote escape from metastable states (see e.g. 
references (18, 71–74)). One particularly useful 
biasing force is implemented in ratchet-and-pawl 
MD in which a history dependent force is only 
applied to prevent the system from backtracking 
(71, 72). In native-centric simulations, the 
collective coordinate of interest for backtracking is 
the contact map distance from the native state. In 
this implementation of ratchet-and-pawl MD, no 
biasing force is present as long as the protein is not 
moving away from the native state, e.g., as long as 
the total number of native contacts formed remains 
constant, increases or no non-native contacts are 
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formed.  When the biasing force is off, the 
simulation is identical to a conventional MD 
simulation and the motion of the system is 
determined entirely by the physical forces between 
atoms. When the system evolves in such a way that 
the total number of native contacts decreases or 
non-native contacts are formed, then a biasing force 
is applied to discourage (but not absolutely prevent) 
the move from occurring. Unlike Gō type models 
the energy landscape is not a smooth ideal funnel 
and local minima and barriers still exist. However, 
the ratchet force facilitates escape from local 
minima and therefore allows for computationally 
efficient simulations of folding (Fig. 3). 

One of the first challenges in introducing a bias  
is that if  the reaction coordinate chosen for biasing 
is sub-optimal, uncontrolled systematic errors may 
occur. A number of approaches have been proposed 
in order to keep these errors to a minimum. In 
particular, the Bias Functional (BF) method (74) 
relies on generating a large number of trial 
transition pathways using ratchet and pawl MD, and 
subsequently scoring these trial pathways 
according to a specific penalty function. It can be 
shown that the paths corresponding to the lowest 
value of this penalty function are the most realistic, 
in the sense that they have the largest probability to 
occur in the absence of the biasing force.  

Such post-processing of ensembles of possible 
transition pathways has the advantage of keeping 
the systematic error introduced by the biasing force 
to a minimum, while enabling extremely slow and 
complex reactions to be simulated on typical 
computer clusters available to most computational 
biophysics/biochemistry laboratories.   

The BF approach has been benchmarked 
against the results of plain MD simulations for the 
folding of small proteins (74) and directly against 
experimental data for folding kinetics (75, 76). It 
has since been applied to simulate very slow folding 
reactions of large proteins, including serpins (31) 
and even proteins with knotted native structures 
(65). These processes are far too slow to be 
simulated by plain MD, even by massively 
distributed computing or by resorting to the largest 
special purpose supercomputing facility. The BF 
approach successfully predicted differences in the 
folding kinetics of two structurally homologous 
proteins, by showing that one of these proteins had 
to overcome an additional free-energy barrier in 

order to reach the native state (75). In this case, the 
chemical information present in the atomistic 
description of the amino acids was required to 
distinguish between the folding pathways of the 
structurally homologous proteins. 

In spite of these promising results, it should be 
emphasized that if the collective coordinate (e.g., 
the contact map) adopted in the definition of the 
biasing force is not a good reaction coordinate, then 
the minimum-bias paths identified by the BF 
scheme will still be plagued by large systematic 
errors.  In principle, these errors, could affect the 
reliability of the BF calculations, in particular when 
it is applied to study the folding of large chains with 
complex folding mechanisms, where a biasing 
coordinate based on the distance from the native 
contact map may not be a good reaction coordinate.  

To tackle this problem, an important 
improvement of the BF method, called Self-
Consistent Path Sampling (SCPS) has been recently 
introduced (23). In this scheme, the biasing 
collective coordinate is not chosen a priori. Instead, 
it is calculated self-consistently, through an 
iterative procedure, starting from an initial guess. 
This way, at convergence, the dynamics is 
accelerated by a bias which acts along a direction 
set by a realistic reaction coordinate (technically, a 
parametrization of the so-called committor 
function).  A number of numerical tests on toy 
systems designed in order to emphasize the 
problems of the BF method have shown that SCPS 
can lead to significant improvement. The 
computational cost of SCPS simulations is however 
about one order of magnitude larger than that of BF 
simulations.  Although SCPS simulations are 
significantly more computationally challenging, 
they are still feasible using existing super-
computing facilities or clusters based on a hybrid 
GPU-CPU computing platform.  

Finally, it should be emphasized that unlike 
structure-based methods discussed above, BF and 
SCPS are intrinsically non-equilibrium methods. 
As a result, the statistical methods which are 
commonly adopted to estimate equilibrium 
properties (such as free energy barriers) from 
molecular simulations cannot be applied. Thus, 
most of the applications of BF and SCPS made to 
date are based on semi-quantitative analyses.  For 
example, studies have been performed to estimate 
the relative change in free-energy generated by 
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specific point mutations. Recently, more elaborate 
statistical methods have been proposed for 
recovering equilibrium distributions from SCPS 
and BF non-equilibrium simulations. For example, 
a recently proposed scheme makes it possible to 
sample the Boltzmann distribution in the transition 
region by means of specific ratchet-and-pawl 
simulations (77). To date, however, these 
techniques have only been validated against MD 
simulations for simple systems and further 
validation is required to assess their accuracy for 
realistic and biologically relevant systems. 

Both Gō and BF computational methods have 
been used to simulate the folding of the human 
serpin a1-antitrypsin (AAT) (30, 31). We therefore 
next describe the structural properties of AAT and 
highlight how these two approaches have led to 
complementary insights into the complex folding 
mechanisms of this inhibitory serpin. 

 
Inhibitory serpins: a prototype for folding large, 
topologically complex proteins  

Inhibitory serpins are the most common 
inhibitors of serine and cysteine proteases and are 
found in all kingdoms of life (78). Large 
conformational changes of these two domain, 
approximately 400 amino acid long, topologically 
complex proteins are required for both regulation 
and function (Fig. 4). The ubiquity of this multi-
domain protein family, the functionally required 
metastability of the active structure and human 
diseases associated with serpin misfolding 
motivated both Gō and BF based folding 
simulations of AAT, the canonical human 
inhibitory serpin (30, 31).  

Inhibitory serpins regulate target proteases by 
mechanically deforming the protease active site 
(79–81). The energy for this mechanical process is 
stored in the metastable, stressed serpin 
conformation characterized by the solvent exposed 
reactive center loop (RCL) which acts as bait for 
proteases (Fig. 4). The initial stages in interactions 
between the RCL and the Ser or Cys target protease 
are the same as those for a normal protease 
substrate: the target protease docks to the RCL, the 
acyl intermediate with a covalent bond between the 
catalytic Ser in the protease and the RCL is formed 
and the peptide bond is cleaved. In inhibitory 
serpins, RCL cleavage leads to insertion of the 

cleaved RCL into b sheet A, the central b sheet, as 
a sixth, central strand, translocating the covalently 
attached protease approximately 70 Å relative to 
the serpin, increasing the distance between the 
catalytic Ser and His residues in the protease 
catalytic triad from approximately 3 Å to 
approximately 6 Å and trapping the acyl 
intermediate with its covalent bond between the 
catalytic Ser and the cleaved RCL   (80–83). This 
reaction results in a protease-serpin covalent 
complex containing an inhibited, mechanically 
deformed protease and a serpin in the relaxed, RCL 
inserted conformation  The energy for this large 
conformational change is stored in the active, 
metastable stressed serpin structure, and mutations 
in regions critical to this functionally required 
conformational lability are often associated with 
misfolding and disease (40, 79, 84). 

Why would such a complex – and potentially 
dangerous – inhibitory mechanism have been 
favored during evolution? We can only speculate, 
but proteolysis is a rather dangerous process for 
cells and organisms since runaway proteolysis is 
likely to result in severe injury or death. For 
example, in animals many of the processes 
regulated by serpins, such as complement 
activation, fibrinolysis and haemostasis, involve 
proteolytic cascades in which a very small amount 
of protease at the beginning of the cascade can, 
through amplification, produce large numbers of 
activated proteases at the end. For example, a small 
amount of active factor IXa can result in large 
amounts of active thrombin. It has been suggested 
that the irreversible suicide inhibition resulting 
from the serpin inhibitory mechanism enables 
tighter control of potential proteolytic cascades than 
noncovalent inhibition mechanisms associated with 
other families of protease inhibitors (85).  

In addition to protease inhibition, serpins can 
spontaneously deactivate by releasing strand 1C (C-
terminal to the RCL) from b sheet C thus 
lengthening the flexible RCL and allowing 
insertion of the intact RCL into b sheet A as a sixth, 
central strand resulting in the latent conformation 
(Fig. 4) (36, 79). The latent structure resembles the 
relaxed form in the protease-serpin complex, but b 
sheet C is disrupted and the RCL is still intact. For 
some serpins, modulating the probability of 
transitioning to the latent state provides another 
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means of regulating serpin activity and protease 
inhibition (36, 79). 

The latent conformation has lower free energy 
than does the active state; however, to our 
knowledge, direct folding to the latent state has not 
been observed for any serpin. Even serpins that 
readily transition to the latent state make this 
transition via the metastable, active conformation 
(86, 87).  

The native structures of AAT and other serpins 
are topologically complex and consist of 3 b sheets 
and 8 to 9 a helices (Fig. 4). These secondary 
structural elements form two non-sequential 
domains (89) with three connections between 
domains. The a/b domain (CATH domain 2) 
contains 7 of the 9 a helices, including 4 at the N-
terminus, and the central A b sheet. The mainly 
b domain (CATH domain 1), which includes the C-
terminus, is composed of b sheets B and C and the 
remaining 2 a helices. Unlike many multi-domain 
proteins, the two domains of the serpin fold are 
interdigitated, and both contain residues from the 
N- and C-terminal regions of the sequence. The 
RCL switches between domains forming part of the 
mainly b domain (CATH domain 1) when solvent 
accessible in the metastable, active conformation 
and part of the a/b domain (CATH domain 2) in the 
latent state and protease-serpin complex where the 
RCL forms strand 4A in the central b sheet. 

How inhibitory serpins with diverse sequences 
from a wide range of organisms fold to the 
kinetically trapped higher free energy metastable 
state while avoiding the lower free energy latent 
state has long been a puzzle in the field. 

Gō model simulations of inhibitory serpin 
folding to the active and latent states 

The consistency of inhibitory serpin folding 
suggests that folding to the metastable active state 
is encoded in the structure rather than in specific 
sequences implying that Ca based SBMs should be 
sufficient to explain this phenomenon.  

To address this question, Giri Rao and Gosavi 
used Gō models to simulate folding of human AAT 
to the metastable, active and latent conformations 
(30). Proteins that undergo large conformational 
transitions between stable structures have often 
been studied using dual-structure based models in 
which favorable energies are included for contacts 

present in either of the two conformations, leading 
to an energy landscape with two alternative 
minima. However, to address the basis of serpin 
folding to a metastable conformation, a different 
approach was taken. Two independent Gō model 
folding simulations were performed. In one, the 
native (target) state was taken to be the metastable 
active structure, and in the other the native state was 
the more stable latent structure (see: Fig. 4 and 5).  

The Gō model simulations of AAT folding to 
the metastable, active structure found that the 
mainly b domain (CATH domain 1), including 
most of sheets B and C but lacking the two C-
terminal b strands, 4 and 5B, folds early while the 
a/b domain remains largely unfolded (Fig. 5). This 
partially folded structure with a largely folded b 
domain comprises a major intermediate along the 
folding pathway consistent with the experimental 
observations that folding to the active, metastable 
conformation involves at least one intermediate 
(32–34, 39, 87, 90, 91). Subsequently the 
a/b domain folds, and, in one of the last folding 
steps, strands 4 and 5B are incorporated into the 
mainly b domain. This order of events is in good 
agreement with available data on AAT folding 
kinetics from hydrogen/deuterium exchange 
coupled to mass spectrometry (MS) (33), fast 
photochemical oxidation coupled to MS (34), and 
tryptophan fluorescence spectroscopy (32). 

Simulations of folding to the latent state 
showed significant differences from folding to the 
metastable structure (Fig. 5). In the latent state, the 
inserted RCL is strand 4A in the a/b domain, 
hydrogen bonding with strands 3 and 5A (Fig. 4 and 
5). During folding to the latent state, stable contacts 
between the RCL (4A) and b strand 5A formed 
early, and consolidation of these two strands 
resulted in concerted folding of the mainly b and 
a/b domains, with no significantly populated 
intermediate states along the folding pathway. This 
lack of an intermediate is consistent with 
experimental observations that unfolding of serpin 
species with cleaved, inserted RCLs appears to be 
two state (90).  

This simultaneous folding of both domains 
observed for folding to the latent state resulted in a 
large concerted loss of conformational entropy. 
This entropy loss leads to a folding free energy 
barrier that is higher than that seen for the stepwise 
folding pathway that leads to the active, metastable 
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structure (Fig. 5). Based on these results it is 
suggested that if RCL-strand 5A contacts form 
early during folding, they will subsequently break 
and allow folding to proceed along the lower free 
energy barrier pathway to the active metastable 
structure. 

This finding, that folding to the active, 
metastable state results from entropic contributions 
to folding barriers is experimentally testable. Giri  
Rao and Gosavi suggested incorporating a disulfide 
bond between the RCL and strand 5A (30). Under 
oxidizing conditions with an intact disulfide bond 
this AAT variant should fold directly to the latent 
state with slower kinetics than would be observed 
for folding of the reduced AAT variant to the active, 
metastable state.  

These results demonstrate how simple, 
structure based models can be used to address 
folding conundrums even for large proteins with 
complicated topologies such as serpins.  

Investigating the effects of mutations on serpin 
folding using enhanced sampling based on 
biased all-atom simulations 

Because all-atom biased MD simulations retain 
the chemistry of the side chains they allow for the 
investigation of how sequence specific factors, e.g., 
mutations, affect folding. These investigations are 
particularly important for proteins such as serpins 
where mutations can lead to disease-associated 
misfolding and aggregation (41, 84). Therefore, 
Wang, Orioli and co-workers used the BF method 
to examine how known pathological mutations 
associated with human disease perturb AAT 
folding. 

The most common AAT mutation linked to 
severe disease is the Z mutation, Glu342Lys which 
converts a Glu-Lys salt bridge at the base the RCL 
to a repulsive Lys-Lys interaction. In vitro, folding 
Z populates an aggregation prone intermediate that 
can persist for hours (92) and Z unfolds from the 
native to the intermediate state significantly faster 
than does wild-type (93). In cells, this folding 
defect results in severe misfolding, degradation of 
nascent Z chains as well as the formation and 
accumulation of insoluble polymers in the 
endoplasmic reticulum (ER) (94). The resulting low 
level of circulating AAT leads to lung disease while 
accumulation of polymers in hepatocytes can lead 
to cell death and liver disease (41). The structure(s) 

of the partially folded Z AAT species that mediate 
polymer formation is therefore of considerable 
medical interest, but its high aggregation propensity 
has hindered structural studies. 

The serpin fold consists of two non-sequential 
domains with extensive inter-domain and non-local 
contacts (Fig. 4). Perhaps unsurprisingly, in all-
atom BF folding simulations for wild-type, Z and 
other AAT variants folding began with the 
independent formation of local, sequential 
structural units (Fig. 6). For wild-type AAT, 
subsequent successful folding involved at least two 
pathways in which these structural units dock to 
each other in a defined order. In the major pathway 
strands 4 and 5B at the C-terminus and the a helices 
at the N terminus docked last. The N-terminal 
helical region is highly frustrated (68). Thus, the 
finding that the last step in folding is docking of the 
N terminal a helices highlights the difficulties in 
folding frustrated regions. This result, that the C-
terminal b strands 4 and 5B are incorporated into 
the AAT structure prior to incorporation of the N-
terminal a helices in the major folding pathway, is 
a novel, experimentally testable prediction of the 
BF simulations. 

In BF simulations, folding of the pathological 
Z mutant diverged from wild-type folding relatively 
early despite the use of the same all-atom force field 
(Amber99) and ratchet and pawl native-centric 
biasing force. In other words, the Glu342Lys 
mutation was sufficient to drive the variant to a 
non-native structure.  In wild-type AAT folding 
simulations, interactions were formed between b 
strands 5 and 6A in the a/b domain and sheets B 
and C in the mainly b domain. This inter-domain 
association occurred early in the folding as the local 
structural elements began to dock with each other, 
and once formed, these inter-domain interactions 
were preserved for the remainder of the wild-type 
folding pathway. In Z folding simulations this 
association failed to occur, and as a result the 
majority of simulations led to final structures in 
which b sheets in both domains failed to form 
correctly.  

In cellular studies a number of AAT mutations 
have been made to rescue or better understand Z 
misfolding (95, 96). Folding simulations for these 
and other variants suggest that unfavorable 
electrostatic interactions and steric clashes both 
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play a role in Z misfolding and that there are a 
number of different ways to rescue Z misfolding. 

Experimental studies of the kinetics of AAT 
folding have mainly focused on wild-type AAT 
(32–34) with limited data on the kinetics of Z 
unfolding (92, 93). The results of the BF 
simulations are in good agreement with data from 
kinetic and equilibrium AAT folding studies. 
Importantly, these simulations make new, testable 
predictions on how AAT variants fold and misfold, 
for example, structural predictions for likely long-
lived intermediates in the Z misfolding/folding 
pathways, and how Z misfolding might be rescued. 

Comparing all-atom biased simulations to Gō-
model predictions 

An important issue to address is how the results 
of BF protein folding simulations, performed using 
all-atom force fields, compare to the results of MD 
simulations based on simplified native centric (Gō) 
force fields. For small globular proteins, typically 
characterized by native structure with a simple 
native topology, both the BF and Gō model 
approximation schemes lead to remarkably similar 
folding mechanisms (73). On the other hand, some 
discrepancies seem to emerge for medium sized 
proteins (e.g. consisting of more than 100 amino-
acids) and for proteins with non-trivial native 
topology (65, 75).  

A prototypical case of disagreement is the 
folding of the two evolutionarily related bacterial 
colicin immunity proteins, Im7 and Im9. These 
chains have nearly identical a helical native 
structures; thus Gō-type models cannot distinguish 
between them and predict identical folding kinetics 
(66). However, a number of kinetic folding 
experiments have shown that at neutral pH Im7 
populates a folding intermediate and shows three-
state kinetics, while Im9 shows two-state folding 
kinetics (97–99). This difference is due to transient 
non-native interactions which stabilize the folding 
intermediate in Im7 and can be resolved in Gō-type 
models augmented with sequence dependent non-
native hydrophobic interactions (66). However, 
these Gō-type simulations required several model 
iterations before the correct model was arrived at. 
In contrast, the Im7 folding intermediate was 
correctly observed in BF simulations, based on the 
CHARMM36 force field in explicit water without 
any modifications to the BF method (75). 

Differences between Gō-type and biased 
dynamics simulations were also observed in the 
folding of the smallest known polypeptide chain 
which folds into a topologically knotted native 
structure (65). However, remarkable agreement 
between these two approaches was recovered after 
the effective potential in the Gō-Model was 
modified in order to include non-native interactions 
which implicitly account for the 
hydrophobic/hydrophilic property of the amino 
acids (100). These results for both the knotted 
protein and Im7 emphasize that, as stated 
previously (see the Encoding frustration in Gō 
models section), inclusion of non-native 
interactions is sometimes required to correctly 
simulate folding using Gō-type models (Fig. 2).   

In the case of serpin folding, the Gō model (30) 
and the BF approach (31) are complementary and 
show considerable agreement. For wild-type AAT 
both sets of simulations found that the mainly b 
domain folds early and that there is a highly 
populated intermediate state in which the b domain 
is mostly folded while the a/b domain is still 
largely unformed (Fig. 5 and 6). However, even at 
this stage in the all-atom BF simulations significant 
amounts of local secondary structure was formed in 
the a/b domain. 

Wild-type AAT is at least a three-state folder 
(32–34, 91) and this is reflected in both sets of 
simulations. In the Gō model simulations a highly 
populated intermediate is formed when the fraction 
of native contacts, Q, is ~0.4 (Fig. 5), and in the BF 
simulations similar intermediates are populated 
between Qs of 0.5 and 0.7 (local minima 1 and 2 in 
Fig. 6). The somewhat larger fraction of native 
contacts in the BF simulations may be due to the 
fact that folding was carried out at room 
temperature while the Gō model simulations were 
carried out at a higher temperature, Tfold; the 
temperature at which the native and unfolded states 
are equally populated. In addition, because the 
native-centric BF approach discourages 
backtracking, secondary structural elements may be 
overstabilized. The approach to this intermediate 
state is different for the two simulations; in the BF 
simulations, non-native contacts between sheets B 
and C in the b domain and a strand from sheet A in 
the a/b domain must be resolved before these 
intermediates could form. These stabilizing non-
native interactions are not present in the Gō model. 
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As noted above, positioning of the highly 
mobile RCL is critical for correct serpin folding to 
the active, metastable state (Fig. 4). Although the 
timing is slightly different, in both sets of 
simulations premature insertion of the RCL into 
sheet A is prevented by the formation of contacts 
between the RCL and sheets B and C locking the C-
terminal end of the RCL into place before the b 
domain has completed folding in agreement with 
the results of kinetic folding experiments (34). 
Interestingly, based on Frustratometer (68, 101) 
calculations of frustration, the C-terminal end of the 
RCL shows a lower degree of frustration than does 
the N-terminal end again emphasizing that 
frustrated regions can be more difficult to fold. 
Both Gō model and BF simulations also agree that 
packing of the C terminal strands 4 and 5B which 
complete the formation of the b domain is a late 
event in folding, a finding that is supported by both 
pulsed oxidative footprinting (34) and fragment 
complementation studies (102).  

Thus, as demonstrated by investigations of 
AAT folding, Gō-type and all-atom approaches can 
provide complementary insights into protein 
folding and method selection will depend on the 
question being asked.   

Simulating the folding of other large proteins 

In addition to AAT, folding simulations have 
been performed for a number of large multi-domain 
proteins using both SBMs and all-atom methods 
(24–29, 103). The domain architecture in multi-
domain proteins may be classified as sequential, 
proteins in which the domains are translated 
sequentially from the N- to the C-terminus, and 
non-sequential or discontinuous, proteins such as 
serpins in which one or more domain is 
discontinuously translated. Often, the folding of 
proteins with sequential domains is hypothesized to 
also be sequential, but more complicated folding 
has also been observed (104–106). A special class 
of sequential multi-domain proteins are the repeat 
proteins, and the folding and misfolding of this 
class of proteins has recently been reviewed 
elsewhere (107, 108). 

Another promising native-centric approach to 
study the folding and misfolding of multi-domain 
proteins is AWSEM-MD (Associative memory, 
Water mediated, Structure and Energy Model) 

developed by Wolynes and colleagues  (16, 109). 
AWSEM is a coarse grained protein force field in 
which a native centric bias can be introduced to 
varying degrees, ranging from a full Gō-type 
potential based on the native structure to a potential 
with local conformational preferences derived from 
fragment libraries (16). Zheng et al. used AWSEM-
MD to study the folding of fused dimers of either 
SH3 domains or Ig domains from human titin. Prior 
to these simulations, single molecule studies on Ig 
domain folding had shown that the monomers could 
domain swap (a process in which adjacent 
monomers form intermolecular contacts that mimic 
the corresponding intramolecular native contacts in 
the monomer) and that monomers with identical 
sequences were more likely to domain swap than 
monomers with divergent sequences (110). Domain 
swapping of monomers with identical sequences 
was also observed in force unfolding experiments 
and simulations of polyubiquitin chains (111).  

The AWSEM-MD simulations performed by 
Zheng and co-workers. suggested that misfolding 
of repeat proteins could occur in multiple ways 
including the experimentally observed domain 
swapping and an alternate mechanism involving the 
formation of short stretches of intermolecular b-
strands that formed amyloid-like contacts. 
Subsequently, the amyloid-like misfolding 
mechanism was supported by both ensemble and 
single molecule kinetic folding experiments (112). 
Unlike domain-swapped contacts, these amyloid-
like contacts had no counterpart in the native 
structure. More generally, Zheng et al. found that 
the frequency of misfolding through both 
mechanisms was reduced by lowering the sequence 
identity between monomers in the fused dimer, a 
finding which supports the hypothesis that 
evolution has disfavored high sequence identity 
between neighboring domains in repeat proteins as 
a means of minimizing misfolding (64). These 
finding are important not just for repeat proteins but 
also for proteins such as serpins where misfolding 
of some disease-associated mutants is proposed to 
result in domain swapped oligomers (113, 114) as 
well as for amyloidgenic proteins.  

Unlike repeat proteins, many sequential multi-
domain proteins are made of diverse structural 
units, decreasing the probability of misfolding by 
domain swapping. Jin Wang and colleagues used 
SBMs to simulate the unfolding and folding of 

 at L
A

W
R

E
N

C
E

 L
IV

E
R

M
O

R
E

 L
A

B
 L

IB
 on February 27, 2020

http://w
w

w
.jbc.org/

D
ow

nloaded from
 

http://www.jbc.org/


 12 

DNA polymerase IV from Sulfolobus solfatariscus 
(DPO4), a 342 amino acid long protein (29). With 
the exception of the N-terminal eight amino acids 
which form a strand in the palm domain, DPO4 is a 
four domain sequential protein with the finger, 
palm, thumb and little finger domains in order from 
the N- to the C-terminus (Fig. 7A). In the SBM 
simulations, DPO4 folded via six parallel 
pathways, a "divide and conquer" strategy where 
each domain could fold independently and some, 
but not all, domain interfaces helped template the 
folding of other domains. Wang and co-workers 
suggest that this divide and conquer strategy can 
lead to multiple folding intermediates but that the 
formation of each intermediate decreases the 
degrees of freedom thereby speeding the folding of 
multi-domain proteins. 

Simulations of the folding of the protein 
dihydrofolate reductase (DHFR) and a circular 
permutant by Inanami, et al. (28) provide further 
insight into the divide and conquer folding strategy. 
The 159 amino acid DHFR has two discontinuous 
domains, a discontinuous loop domain (DLD) 
(residues 1-37 and 107-159) and a continuous 
adenosine-binding domain (ABD) (residues 38-
106) (Fig. 7B), while the circular permutant 
resolves the discontinuities resulting in two 
sequential domains. In order to simulate the folding 
of DHFR and other proteins with discontinuous 
domains Inanami and co-workers had to modify the 
Wako–Saito–Muñoz–Eaton (WSME) method 
(119–121), a kind of SBM. They then simulated the 
folding of both wild-type DHFR and the circular 
permutant using their extended WSME approach.  

In the simulations, folding occurred through 
two major intermediates, one in which the 
continuous ABD domain was mostly formed and 
the second in which the DLD domain was mostly 
formed. In the wild-type protein, formation of the 
DLD was entropically disfavorable due to the loop 
closure penalty that arises when the N- and C-
termini are brought close together. Thus, the DLD 
first pathway was disfavored and the folding 
pathway in which the ABD forms before the DLD 
dominated. In the circular permutant, the entropic 
penalty for forming the DLD was much reduced 
and the two pathways (ABD first or DLD first) had 
similar probabilities similar to the divide and 
conquer folding observed for DPO4. The DLD loop 
closure penalty is similar to the barrier for folding 

to the serpin latent state (30), and both of these 
studies reiterate the importance of entropic folding 
barriers.  

E. coli Adenylate kinase (AKE) is a complex 
non-sequential protein composed of two continuous 
domains (LID and NME) inserted into a 
discontinuous domain (CORE) split into three parts 
(Fig. 7C). SBM simulations of AKE found, in 
agreement with bulk thermodynamic experiments, 
that AKE folds cooperatively (25). This 
cooperativity was enabled by the insertion of the 
smaller less stable domains into the larger more 
stable domain. The smaller domains transiently 
folded and unfolded, stabilizing only upon folding 
of the larger discontinuous domain whose folding 
constrained the termini of the smaller domains into 
near native conformations and reduced the entropic 
cost of folding these domains. Similar entropic 
considerations go into the physics-based sequential 
collapse model in which the closure of loops with 
lengths on the order of 65 amino acids, too large to 
crowd the side chains and too small to have very 
large entropic penalties, are postulated to be one of 
the earliest events in protein folding (122). This 
non-local loop formation would encourage the 
formation of local structure such as foldons (123, 
124). Application of the sequential collapse based 
method to AKE agreed with the results of time-
resolved FRET experiments (122) and the previous 
SBM folding simulations. 

Results of the SBM simulations suggested that 
for AKE the number of intermediates and in turn 
folding pathways could be modulated by increasing 
the stabilities of the inserted domains and making 
their folding independent of the discontinuous 
domain (25). In separate SBM simulations, the 
stabilities of the inserted domains were tuned by 
introducing energetic heterogeneity in the strengths 
of the contacts stabilizing the smaller domains (24). 
The results of these simulations, specifically both 
the number of folding intermediates and the number 
of folding pathways, broadly matched with 
experiments. Further tuning of domain stabilization 
and folding pathways was achieved by mutating 
AKE residues in or near the NME domain (125). 
Upon experimentally testing the effects of these 
mutations, it was found that stabilizing the NME 
domain mainly preserved wild-type like folding 
while shunting a minor fraction (9 percent) of the 
folding flux through a pathway that bypassed 
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folding intermediates and folded directly to the 
native state. Although the effects of the specific 
mutations used in the experiments on folding have 
not been tested using SBMs, the experimental 
results only partially agree with predictions from 
the SBM simulations with homogeneous contact 
strengths. This partial agreement between 
experimental and computational folding results 
provides clues on how to improve simulation 
approaches. For instance, heterogeneous contact 
strengths may be necessary to predict the specifics 
of intermediate populations in AKE folding. As 
shown for other proteins, such as Im7 (66) and the 
knotted protein (100) mentioned earlier, SBMs may 
need to be supplemented with nonnative 
interactions (see Fig. 2) to improve agreement with 
experiment. 

In contrast, for the 443 amino acid long E. coli 
cell division protein SufI (also called ftsP) the 
ability to access a number of parallel folding 
pathways leads to misfolding (103). SufI is 
composed of three sequential domains (Fig. 7D) 
and Ignatova and colleagues showed 
experimentally, that stretches of slow translation 
are required for proper SufI folding (126). Tanaka, 
et al. (103) used their SBM to simulate the folding 
of full-length SufI and mimicked co-translational 
folding by vectorially synthesizing SufI at various 
rates during the simulations. For the full-length 
protein and for fast vectorial synthesis, SufI folded 
via multiple pathways many of which resulted in 
long-lived misfolded species. In contrast, vectorial 
synthesis regimes that allowed for folding during 
synthesis restricted the number of possible 
pathways and increased the efficiency of folding. 
These results are consistent with recent work 
showing that rare codon regions, which may 
attenuate translation, are conserved across species 
(127, 128).  In general, the balance between 
translation rates and folding is protein dependent. 
For proteins such as Suf1 translational attenuation 
at particular places in the sequence can aid in 
folding while for other proteins fast translation can 
reduce the probability of populating misfolded 
intermediates (129, 130). 

In summary, when larger proteins consist of 
multiple small domains with minimal inter-domain 
interfaces, the folding of individual domains may 
be only partially dependent on or completely 
independent of the folding of other domains and 

this can lead to multiple pathways. Inter-domain 
interfaces can template the folding of neighboring 
domains and reduce the number of pathways that 
are available to the protein. Evolution may further 
modulate the folding of such sequential multi-
domain proteins by having divergent amino acid 
sequences in adjacent domains or by tuning 
translation rates. However, on the whole, 
conclusions drawn from single domain proteins can 
be applicable to the folding of the individual 
domains of such modular multi-domain proteins. In 
contrast, in multi-domain proteins, where either the 
domains are connected through multiple linkers or 
there is an extensive interface between them, 
protein folding depends on the structure of the 
entire protein. In such proteins, topological 
frustration created by the need to fold a complex 
structure may stall folding and reduce free energy 
barriers but enable the population of folding 
intermediates. Alternately, the entropy loss 
required to fold the entire protein in an all or 
nothing fashion can lead to large folding energy 
barriers. 

Harnessing the predictive power of folding 
simulations  

Existing experimental folding data is often used 
to validate the results of folding simulations; as 
shown for AKE, where simulations motivated the 
design of AKE mutants and single molecule FRET 
(smFRET) studies of their folding (125), the 
conformational ensembles along the simulated 
folding trajectories can be used to design new 
kinetic folding experiments and to help interpret 
experimental results. As has been demonstrated for 
near UV circular dichroism (CD) spectra calculated 
from BF folding simulations (76), these 
conformational ensembles may be used to predict 
how average protein properties change during 
folding. However, different conformational 
ensembles can lead to similar average properties 
and the real power of the conformational ensembles 
available from folding simulations lies in 
comparisons to and prediction of results from 
methods that can elucidate how conformational 
distributions change as a protein folds.  

Many methods, including time-resolved 
fluorescence, lifetime FRET, smFRET, 19F NMR 
and EPR, use site specific labels that report on the 
local environment around the label or changes in 
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the relative distance between labels. For these local 
probes, simulations may be used to make informed 
decisions as to where to locate these local reporters 
in order to maximize signal changes as the protein 
folds and to predict the experimental results. 
Simulations may also be helpful in interpreting 
observed signals. For example, for smFRET, all-
atom conventional MD simulations performed on 
the Anton supercomputer have been used to explain 
observed folding and unfolding rate constants 
(131). More recently, Schug, Schuler and co-
workers used coarse-grained SBMs that explicitly 
included the FRET dyes to simulate smFRET 
folding data resulting in good agreement with 
experimental results (132).  

While label-dependent methods can provide 
information on how the local environment of the 
probe changes as the protein folds, other methods 
including NMR, pulsed oxidative labeling coupled 
to MS (133, 134) and hydrogen-deuterium 
exchange MS (HDX-MS) or NMR (135) provide 
conformationally sensitive data with peptide to 
single residue resolution. Particularly for NMR 
experiments, experimental data may be 
incorporated into simulations to help provide a 
molecular interpretation of the experimental results 
(e.g., (136)).  In addition, conformational 
distributions from folding simulations may be used 
to predict time-resolved experimental results. For 
example, oxidative labeling of amino acid 
sidechains is dependent on sidechain solvent 
accessibility (133, 134) and the time evolution of 
the probability that a given residue is solvent 
accessible may be simply computed from 
conformational ensembles along the folding 
trajectory.  

For folded proteins, deuterium uptake curves 
from HDX-MS experiments have been predicted 
with reasonable accuracy from all-atom or coarse 
grained simulations even on relatively short sub-
microsecond timescales (137, 138). Similarly, 
conformational ensembles along folding pathways, 
such as those shown in Figures 5 and 6 for AAT, 
could be used to predict the results of kinetic 
folding experiments monitored by HDX-MS. 
However, conformational ensembles from native-
centric simulations may not capture structural 
fluctuations possibly leading to underestimation of 
exchange. An alternative approach would be to 
better account for structural fluctuations by 

subjecting one or more conformations from the 
major long lived intermediates identified in the 
simulations to 0.1-1 microsecond MD simulations. 
Deuterium uptake at short pulse labeling timescales 
(typically 5-10 seconds in the case of manual 
labeling) could then be predicted from ensembles 
harvested directly from the folding simulations or 
from the MD generated ensembles allowing direct 
comparisons between predicted and observed 
folding intermediates. 

In addition to predicting experimental results, 
the simulations may be used to test the effects of 
mutations as demonstrated for both AAT (31) and 
AKE (25). Furthermore, as has been demonstrated 
for AKE (125), the simulations may be used as the 
basis for designing and experimentally 
characterizing new mutations. 

Extrapolating from folding simulations to 
folding in more complicated environments. As 
discussed above, the results of folding simulations 
are generally compared to experimental results 
from the folding of purified, full-length proteins. 
But, physiologically, proteins are synthesized and 
fold in the crowded and complicated intracellular 
milieu (139–141). In cells, proteins may fold co-
translationally as they are synthesized and both co- 
and post-translationally proteins interact with the 
protein homeostasis machinery, including 
modifying enzymes (e.g. kinases and 
oligosaccharyltransferases) and molecular 
chaperones. While folding simulations are 
performed in a much simpler environment, the 
insights generated on how the protein sequence 
folds is still relevant to in-cell folding. 

Folding pathways and intermediates generated 
using the computational methods described above 
may allow the formulation of specific hypotheses 
regarding which structural regions and motifs of a 
protein interact with molecular chaperones and 
other components of the protein homeostasis 
machinery. Because folding simulations are usually 
performed on full-length proteins, we focus on what 
is known about post-translational interactions 
between folding proteins and cellular quality 
control. (For more comprehensive reviews of the 
protein homeostasis machinery see (7).) To our 
knowledge, there have not been rigorous attempts 
to extrapolate substrate-chaperone interactions 
from folding simulations; nonetheless, a general 
strategy is summarized below.  
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The first step is to use protein folding 
simulations to predict and structurally characterize 
the conformational ensembles of the relevant long-
lived intermediates. Next, the solvent accessibility 
of regions that are likely to bind molecular 
chaperones or other components of the protein 
homeostasis machinery can be determined.  

For the bacterial Hsp70 molecular chaperones 
DnaK and BiP, the Hsp70 resident in the ER, seven 
amino acid sequence motifs that are likely to bind 
in the Hsp70 substrate binding site have been 
determined using peptide arrays combined with 
Hsp70 structures and computational methods (142, 
143). Using the available webservers (Limbo 
(switchlab.org/bioinformatics/limbo) for DnaK and 
BipPred (omictools.com/bippred-tool) for BiP) 
likely Hsp70 binding sites can be determined from 
the protein sequence. Then, the relative solvent 
accessibility of these regions could be determined 
for the conformational ensembles of folding 
intermediates from simulations. Similarly, recent 
work (144) suggests that binding motifs for the ER 
resident Hsp40s Erdj4 and Erdj5 as well as the 
mammalian ER resident Hsp110 ortholog Grp170 
may be identified using the TANGO algorithm 
(tango.crg.es) (145) developed to identify 
sequences with a high aggregation propensity. For 
proteins that fold and mature in the ER, these 
sequence motifs can also be used to try to identify 
likely binding sites for molecular chaperones. Other 
classes of molecular chaperones, including the 
chaperonin GroEL (146), may preferentially 
recognize dynamic, frustrated protein regions 
(147). Frustrated regions in folding simulations 
may be identified  using the Frustratometer (101, 
148), again allowing the identification of possible 
accessible recognition sites in the conformational 
ensembles of likely long-lived folding 
intermediates. While these proposed methods are 
relatively primitive and not applicable to all 
chaperones (149), they have the potential to provide 
structural information on transient folding 
intermediates that may be recognized by chaperone 
networks. 

These predictions may also be experimentally 
tested either in vitro for folding experiments 
performed in the presence of molecular chaperones 
or in cells. Interactions between the chaperones and 
folding proteins may be captured using cross-
linking and the location of the interactions may be 

mapped using MS (150). This combination of 
simulations and experiments has the potential to aid 
in understanding how chaperones and other 
components of the protein homeostasis machinery 
recognize and interact with folding and misfolding 
client proteins. 

Another area where native centric folding 
simulations can find application is in understanding 
the basis of diseases caused by protein misfolding. 
In misfolding diseases such as AAT deficiency, 
amyotrophic lateral sclerosis (ALS), and 
Alzheimer’s disease, toxic gain of function 
phenotypes are correlated with aggregate 
accumulation, and oligomerization and aggregation 
are believed to proceed from specific partially 
folded or misfolded states (151). Such 
oligomerization prone states could potentially be 
targeted by small molecules. High throughput 
screening is one strategy for identifying such 
compounds, but for a rational design strategy to be 
pursued, knowledge of the structure of these 
pathological protein states, ideally at the level of 
atomic detail, is needed. In the AAT folding 
simulations described above, it was encouraging to 
see that the propensity of disease associated 
mutants to misfold correlated with observed disease 
severity in patients  Similar correlations between 
MD trajectories, mutations and disease severity 
have been observed for superoxide dismutase 1 and 
ALS (152). These results suggest that the misfolded 
states generated computationally may adequately 
represent the pathological misfolded states formed 
in cells. While this hypothesis requires further 
experimental validation, if correct then these 
computationally generated misfolded states could 
serve as targets for in silico drug design. We 
suggest that such a combination of folding 
simulations, in silico small molecule 
screening/design and experiments could serve as a 
general approach for identifying potential therapies 
for diseases linked to protein misfolding. 

Conclusions & Future Directions 

Native centric simulation methods have made it 
possible to extend the computation of detailed 
folding pathways and intermediates beyond the 
small fast folding model proteins that have 
traditionally been favored by protein folding 
researchers.  
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Collectively, comparisons between studies 
suggest that the results of all-atom approaches such 
as BF/SPCS and native-centric structure based (Gō-
type) model (SBM) folding simulations share many 
common features likely reflecting the importance of 
native contacts. SBMs are particularly helpful when 
interrogating how the same or similar chains fold to 
different structures as demonstrated by simulating 
serpin folding to the native and latent 
conformations (30). BF/SPCS and other all-atom 
methods can address similar questions while 
extending the reach of simulations to questions of 
chemistry.  

For example, these all-atom methods can be 
used to predict or explain how differences in the 
primary structure  alter folding pathways (75). 
Additional, important differences between all-atom  
and SBM approaches are likely to arise for 
reactions in which transient non-native interactions 
play an important role in restricting the exploration 
of the configuration space. Thus, the choice of 
method is likely to depend on computational 
resources and efficiencies as well as the question 
being asked. 
Increasing complexity. All-atom biased 
simulations have been successfully applied to 
elucidate the mechanism through which a specific 
small molecule accelerates the PAI-1 serpin latency 
transition (153) and to predict how point mutations 
alter the misfolding propensity (31). Future 
applications are likely to include explicitly 
simulating interactions between proteins and small 
molecules as well as simulating the formation of 
protein oligomers during and after folding. 

SBMs have already been used to simulate the 
complex conformational dynamics of ribosomes 
(154), the membrane insertion of proteins (155) and 
co-translational folding (103). Additionally, in the 
absence of structure, protein or DNA sequence 
derived information and experimental constraints 
have been used in conjunction with coarse-grained 
and structure-based models to understand protein 
conformations and assembly (52, 156, 157), 
chromosome folding (158), etc. With increasing 
computational power, and the accumulation of 
biological data, we expect that both structure and 
data derived models of larger biological machines 
will be used to simulate and understand folding, 
assembly and dynamics in cells and other 
physiologically relevant environments (159–161). 

We expect that such simulations will aid in the 
analysis of biological experiments at diverse length 
scales. We also hope that such detailed 
computational models will stimulate new and 
interesting experiments. 

The increasing availability of affordable 
graphics processing units (GPUs) capable of 
running MD codes brings both native centric 
simulations as well as simulations based on a native 
biasing force within the reach of many research 
groups at reasonable cost. (And, freely distributed 
software packages such as SMOG (and the 
associated web server) (162), CafeMol (163), Go-
Kit (164), and eSBMTools (165) are available to 
facilitate the use of  Gō-type simulations by non-
experts.)  We hope this review will convince both 
experimentalists and MD simulation experts that 
native-biased simulations have come of age, can 
bridge the time-scale gap between experiments and 
simulations, and are just as easily accessible to 
everyone as atomistic MD simulations. 
Importantly, these methods can aid in the 
interpretation of experiments, and generate novel 
testable hypotheses.  

There are insights to be gained from both types 
of native-biased simulations in the folding of large 
proteins and such insights may be hard to come by 
in experiments. Altogether, these computational 
platforms can provide useful tools for translational 
research aiming to identify new therapeutic 
strategies. Much remains to be done to expand the 
application of native structure-based techniques at 
both the larger and the atomistic length scales and 
we hope this review will inspire further 
developments in the models, methods and 
applications of these promising simulation 
techniques. 
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company focused on using advanced molecular 
simulation methods to develop new therapeutics. 
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Figure 1. Cartoons showing funneled energy landscapes of protein folding. (A) Energy landscape of a 
realistic protein in which the funneled landscape is rugged and contains local minima and barriers that can 
lead to long lived intermediate states. (B) Idealized perfectly smooth energy landscape of a much less 
frustrated protein. This type of smooth landscape is encoded in the simplest Gō models. Images obtained 
from http://dillgroup.stonybrook.edu/#/landscapes and used with permission under creative commons 
license https://creativecommons.org/licenses/by/4.0/. 

 
Figure 2. Gō (SBM) model schematic. Coarse graining sets the chain connectivity while encoding the 
native structure. Two types of constraints are encoded in these models: (i) Local along the polypeptide 
chain constraints consisting of bond constraints between two consecutive beads, angular constraints 
between three consecutive beads, and dihedral potentials between four consecutive beads. (ii) Longer 
distance contact interactions are attractive when two beads are within the contact distance in the native 
structure and are otherwise repulsive, accounting for the excluded volume of the beads. In some 
implementations, non-native attractive interactions replace these repulsive interactions. 

 
Figure 3. The Bias Functional (BF) method for simulating protein folding using all-atom force fields 
and ratchet and pawl MD. (A) A schematic view of multiple folding trajectories from the BF approach to 
transition path sampling. In the BF approach, the force field, V(R), is a conventional, all-atom force field 
(e.g., Amber or CHARMM) plus the history dependent ratchet and pawl bias allowing for the efficient 
production of multiple, trial folding trajectories (lines in the funnel). The ratchet and pawl (right) bias limits 
backtracking and the least biased trajectories (red) are selected for analysis. (The ratchet figure is from 
Antoni Espinosa commons.wikimedia.org/wiki/File:Trinquete.png. The funnel is from the Oas laboratory 
at Duke University https://oaslab.com/Drawing_funnels.html). (B) A schematic explanation of the steps 
involved in implementing the BF method for folding simulations adapted from Wang, et al. (31). In the 
initial step, the protein of interest is unfolded using high temperature MD simulations. BF folding 
simulations are then performed using the force field defined above, and multiple trial folding trajectories 
are generated. Note that folding is not always successful and some protein molecules fail to fold completely 
or misfold, and these results may be particularly pronounced for mutant proteins. Folding and misfolding 
trajectories with minimum biasing (yellow lines) are identified and analyzed. 

 
Figure 4. Inhibitory serpin structure and function. Active, metastable AAT structure (1QLP.pdb (88)) 
with a solvent accessible RCL (dark red). The structure is colored from blue to pink from the N- to the C-
terminus. The a/b domain (CATH domain 2) is in blue (residues 23-190) and yellow (290-340) while the 
mainly b domain (CATH domain 1), which includes the solvent exposed RCL (341-361), is in green (191-
290), dark red (RCL) and pink (362-394).  Spontaneous insertion of the RCL into sheet A remodels the 
domains, adding the RCL to the a/b domain resulting in the lower free energy inactive latent state (1IZ2.pdb 
(39)) and the latency transition is important for regulating the activity of some serpins (36). Cleavage of the 
RCL by target serine and cysteine proteases results in the formation of an acyl enzyme bond between the 
protease active site and the RCL, cleavage of the RCL and insertion of the cleaved RCL into sheet A 
translocating the covalently attached protease 70 Å from one pole of the serpin to the other  as shown by 
the structure of the kinetically trapped trypsin-AAT inhibitory complex (1EZX.pdb (80)). Trypsin is in gray 
with the catalytic triad in red. Ser195 in the trypsin catalytic triad and AAT Met358 which form the 
intermolecular bond are shown in red and dark red spacefill, respectively. The N-terminal 22 to 23 residues 
in AAT lack electron density in the X-ray crystal structures indicating that the extreme N-terminus is 
disordered. 
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Figure 5. A comparison of the folding free energy profiles (FEP) calculated at their respective folding 
temperatures (Tf) using the SBMs of active and latent AAT structures. Simulations were performed 
using replica exchange umbrella sampling (see Ref (30) for further details). The FEP, the change in Gibbs 
free energy relative to the thermal energy at the folding temperature, ΔG/kBTf, as a function of the fraction 
of formed native contacts, Q, for latent and active AAT are plotted in gray and black, respectively. The 
native ensembles, N, are at Q ≈ 0.84; the transition state ensemble of latent AAT, TSlatent, and the 
intermediate ensemble, Iactive, of active AAT are at Q ≈ 0.4; and the unfolded ensembles, U, are at Q ≈ 0.1. 
The relative changes in enthalpy, ΔΔH (active minus latent), and entropy ΔΔS (active minus latent), 
between the folding of active and latent AAT, plotted versus Q are shown in red and blue, respectively. 
ΔΔS at Q ≈ 0.4 is higher than ΔΔH at Q ≈ 0.4. Aligned representative structures from the intermediate 
ensembles are shown with the N-terminal unfolded regions shown in grey. Folded structures (active: 
1QLP.pdb (88); latent: 1IZ2.pdb (39) ) are also shown with the same coloring as the intermediate structures 
(NàC terminal: red through green to blue). The C-terminal region and the RCL are structured in both 
TSlatent and Iactive. The FEP graph was adapted from Giri Rao and Gosavi (30) copyright 2018 National 
Academy of Sciences 

 
Figure 6. Wild-type and Z AAT BF folding results. Kinetic free energy landscapes from least biased 
trajectories plotted as the root mean square deviation (RMSD) from the metastable active x-ray crystal 
structure (1QLP.pdb (88)) versus the fraction of native contancts, Q. The heat map is colored by the number 
of frames. A random sampling of the onformational ensembles from highly populated local minima 2 and 
5 for wild-type and Z are shown with one randomly chosen colored conformation. The landscapes and 
conformational ensembles show that, within the simulated time interval, wild-type AAT does fold to the 
native conformation (local minimum 5) in some of the trajectories. Compared to the wild-type trajectories, 
Z begins misfolding at low Q (e.g., the conformational ensemble from local minimum 2) and even the 
conformations in local minimum 5 are not fully folded. This figure was adapted from Wang, et al. (31) with 
the permission of the Biophysical Society. 

 
Figure 7. Domain structures and connectivities for DPO4, DHFR, AKE and Suf1. (A) DPO4 with the 
finger (light blue), palm (N-terminal strand in blue and the rest in green), thumb (gold) and little finger 
(pink) domains (2RDI.pdb (115)). Domain assignments are from CATH (89). (B) DHFR showing the 
discontinuous DLD (blue and pink) and the continuous ABD (gold)  (1RX1.pdb (116)).The domain 
assignments are from Inanami, et al (28). (C) AKE showing the discontinuous CORE domain (blue, green 
and pink) and the two continuous insertions, NMP (light blue) and Lid (gold) (4AKE.pdb (117)). The 
domain assignments are from Giri-Rao and Gosavi (25). (D) SufI showing the three sequential domains as 
assigned by CATH (89) (2UXT.pdb (118)). There are missing loops in the M domain.  All structures are 
colored from the N-terminus in blue to the C-terminus in pink. Non-sequential, discontinuous domains are 
multicolored. 
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