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Protein interactions are usually determined by well-defined

contact patterns. In this scenario, structuring of the interface is

a prerequisite, which takes place prior or coupled to binding.

Recent data, however, indicate plasticity of the templated

folding pathway as well as considerable variations:

polymorphism or dynamics in the bound-state. Conformational

fluctuations in both cases are modulated by non-native,

transient contacts, which complement suboptimal binding

motifs to improve affinity. Here I discuss both templated folding

and fuzzy binding mechanisms and propose a uniform scheme.
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Introduction
Protein structure is central to function. Three-dimen-

sional arrangements of amino acid residues generate

specific microenvironments, with a plethora of biological

activities. Folding however, leads to marginally stable

conformations, which can be realized by many iso-ener-

getic states [1]. Conformational ensembles are easy to

modulate via population shifts by posttranslational mod-

ifications, alternative splicing or a network of interacting

partners. What are the mechanisms and structural requi-

sites of molecular recognition? On the one hand, steric

complementarity results in a well-defined set of specific

contacts and usually provide a binary (i.e. yes or no)

response to cellular signals. On the other hand, malleable

interfaces may either increase complementarity via

induced fit or offer alternative interactions upon variable

conditions and more complex cellular responses.

From this viewpoint, interactions of proteins with exces-

sive flexibility are especially interesting to investigate

[2]. Solution techniques [3] and advances in single

molecule methods [4] provide detailed experimental
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characterization of highly dynamic sequences, the native

state of which is represented by an ensemble of variable

secondary and tertiary structure elements. What defines

the recognition sites in these systems and to what extent

the binding partner shapes the structure? Both confor-

mational selection and induced fit mechanisms may

contribute to partner selection [5,6], which result in a

folded, complementary interface. Indeed, most studies

focus on the structural elements, which are observed in

the complex. Within this framework, the folded part of

the protein is thought to impart specificity on the

interaction.

The ‘folding-coupled to binding’ scheme, however, is a

complicated issue [7,8]. First, it is accompanied by a

considerable entropy loss upon limiting the number of

conformers in the bound state. Second, most experiments

use truncated model systems (e.g. without the fluctuating

or sticky parts) with activities differing from the native

state. Third, depending on the resolution, well-defined

structures may represent averages over a range of con-

formers with considerable variations in critical interac-

tions [9�]. Indeed, different pathways for partner-driven

(templated) folding mechanisms have been revealed,

indicating additional layers of the complexity [10�].

In parallel, significant variations in conformations and

alternative interaction patterns in specific protein assem-

blies have been recently observed [11–13] (Figure 1(a)),
especially in large, complex model systems [14,15]. Such

heterogeneity in the bound form implies multiplicity of

functionally relevant states, also referred to as fuzziness

[16]. Conformational exchange in the complex could

present a bottleneck for structural characterization, as

the spectrum may overlap with that of the isolated state

[17]. Nevertheless, conformational ensembles of a few

hundred complexes have been analyzed in detail and

were coupled to functional data [18]. Although intriguing,

conformational multiplicity or dynamics in the bound

state do not compromise specific recognition [19,20],

rather offer a toolbox for regulation under varying con-

texts [21].

In the light of recent data, what does really matter upon

protein interactions: fold [22] or not to fold upon binding

[23]? In this review, I address the problem of how folded

binding elements cooperate with more transient, non-

native interactions, and vice versa how non-native con-

tacts shape folding of dynamic interaction sites. I propose

that under stochastic cellular conditions, a holistic bind-

ing model should operate, where the two scenarios are not

distinct.
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(a) Heterogeneity in protein complexes. (from left to right) Ribosomal protein S6 kinase alpha 1 adopts different secondary structures upon binding

to S100b (PDB: 5csf, 5csi, 5csj [34]). Polymorphism is observed at the canonical interaction motif, corresponding to autoinhibited and released

states to regulate ERK phosphorylation. MAPK kinase MKK4 explores multiple recognition modes upon binding to p38a [9�]. Here the docking site

is relatively rigid, while the kinase specificity sequence exhibits a fast conformational exchange on the ns timescale. GCN4 activation domain

interacts with the shallow binding groove of Med15 in multiple orientations, which interconvert on the ms-ms timescale [19]. Fuzziness of the

system is required for optimal transcriptional activity.

(b) Binding mechanism for dynamic protein ensembles. The unbound state ensemble interacts with the target in multiple fashion. Heterogeneity of

the transition state (TS) is regulated via non-native interactions (spheres) outside the binding motif. Dynamics of the final, bound complex depends

on the frustration of the landscape. In case the interacting motif is close to optimal, the template-bound conformation is selected/induced from the

TS ensemble. Increased frustration of the binding energy landscape is compensated by multiple, iso-energetic recognition modes. In case of

suboptimal binding motif(s), non-native contacts dominate even in the bound state leading to a fast conformational exchange. This is coupled to

variations in interaction patterns. (graphics was prepared based on coordinates PDB:2lpb).
Residual structures and polymorphism
Transiently formed, regular secondary structures were

observed in highly flexible proteins, which were also sam-

pled in the bound complex [24,25]. In analogy to the

framework model in protein folding [26], these pre-formed

structural elements were proposed to facilitate the forma-

tion of well-defined interfaces [27]. The propensity of

structured motifs may indeed improve binding affinity
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[28], but more intricate relationships can also be revealed

[29]. For example, helix-disrupting mutations have a neg-

ligible impact on the affinity of c-Myb:KIX binding [30].

Furthermore, folding of transient elements induced by

posttranslational modifications may as well impair binding

[31]. Initial contacts can also be established in the absence

of a folded structure [32], so the final conformation may not

be represented in the unbound ensemble [33].
www.sciencedirect.com



Fold or not to fold upon binding Fuxreiter 21
Dynamic, transiently structured binding elements can

adopt alternative conformations with the same, specific

partner in the final, bound form [34] (Figure 1(a)). Static

or dynamic polymorphism seems to be common in higher-

order protein structures [15,35] (e.g. different prion-

strains [36] are generated by interactions of b-strands
in alternative registers). Different binding modes [37]

— often overlooked in binary/ternary protein complexes

— may initiate different pathways under different cir-

cumstances [34,38].

Plasticity of the templated folding pathway
Dynamic protein sequences are remarkable in making

specific contacts with versatile partners [39]. How resid-

ual elements are tailored for different targets? Kinetic

studies on templated folding pathways consistently indi-

cate conformational heterogeneity in the transition state

[29,40��,41]. Structures in the ensemble may exhibit

alternative contact topologies, potentially leading to func-

tional plasticity [40��,42,43] (Figure 1(b)). Interestingly,

the degree of conformational heterogeneity is controlled

by residues outside the binding site [40��], often referred

to as non-native contacts. Here this terminology is used

not only for the transition state, but also for the bound

form. Non-native interactions likely reduce the encounter

times between the flexible protein and its partner [44],

providing a major difference in kinetics as compared to

globular proteins [45]. Along these lines, majority of

native hydrophobic contacts appear after the rate-limiting

step of forming the HIF1a CAD: CBP TAZ1 complex

[46�].

Non-native, transient interactions
Although even highly flexible sequences can achieve

picomolar affinities, the binding surface may not be fully

optimized [47��]. Frustration of the binding energy land-

scape can be minimized by non-native interactions, which

could be transiently sampled in the bound state [11].

These contacts can improve affinity in parallel with

increasing conformational heterogeneity [11] (see above),

demonstrating that the two effects are not exclusive.

Owing to their transient nature, non-native interactions

might be beyond the level of detection [48,49��]. The

presence of these transient contacts is often witnessed by

affinity-modulating mutations outside the physically

interacting segments [50] or even by ionic strength effects

[51]. Transient contacts with the binding elements can

tune the entropy of association [52], compete for the

target site [53], or simply increase local concentration

nearby the partner [54].

Dynamics in the bound state
Energetic frustration of the binding energy surface may

also stem from impaired correlated conformational fluc-

tuations [55,56��]. These long-range motions may be

compensated by decreased order in the bound state, as

observed for osteopontin [57], a-synuclein [56��,58] or
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Hepatitis C virus interactions [43]. In this strategy, the

different conformers interconvert between thermody-

namically equal, suboptimal sites [59�] (Figure 1(b)).

The functional role of the bound state plasticity however,

often remains to be elucidated. In general, structural

properties of the dynamic ensemble can be perturbed

by minor effects or posttranslational modifications

[60,61]. Population shifts in ‘sensor’ regions for example,

may initiate functional [62] or pathological [48] polymer-

ization. The tolerance to sample multiple orientations in

the bound state keeps the interface architecture simple

(e.g. using a few hydrophobic contacts and a shallow

binding cleft [19,63]), which could be explored by several

binding partners. This empowers a fuzzy ‘free for all’

mechanism, where activation domains (AD) could simul-

taneously screen all AD binding regions via weak, low-

specificity contacts [49��] (Figure 1(b)). Such an efficient,

combinatorial mechanism might be common in gene

regulatory circuits.

Multivalency and interaction ambiguity
Recent structural and computational studies evidence

fast kinetics [64,65] and high affinity [66,67] by multiple,

minimalistic, suboptimal motifs. How these could be

achieved? First, these associations do not require a major

conformational transition between the unbound and

bound forms, as both states are highly dynamic. Second,

the redundant binding motifs could be combined into

many iso-energetic configurations [59�], given the plas-

ticity of the interconnecting segments. Third, contacts via

multiple specific sites can increase the encounter fre-

quency, similarly to non-native interactions ([11,40��] see

above). Taken together, the multitude of topologies

appearing in the bound complex increases the efficiency

of target-search as compared to individual motifs.

Oligomerization via weak binding sites can thus optimize

affinity and fidelity of the recognition, which is exploited

as a ‘quality control for signaling’ [68]. For example, this

can rationalize why tandem AD binding sites result in

activated transcription [69]. Indeed, self-assembly of acti-

vation domains generates ‘standalone’ cellular compart-

ments, similarly to proteins with multiple RNA-binding

motifs [70]. These membraneless organelles are con-

structed via dynamic recognition modes, and their build-

ing blocks interconvert amongst many different bound

conformations [71,72].

Entropy-driven specificity?
Given the multitude of conformations in the transition or

bound state and the suboptimal interactions with the

target site, specificity might be an issue. Surprisingly,

multiple recognition modes of high-affinity, synthetic

GCN4 variants correlate to specificity for Med15 [19].

Similarly, complexes of small molecules with p27Kip1 [73],

Tau [74], c-Myc [75��] exhibit significant heterogeneity,
Current Opinion in Structural Biology 2019, 54:19–25
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including variations in the binding site. Conformational

fluctuations, appearing because of the frustrated binding

landscape, could be controlled by non-native interactions

[40��]. Consistently with these observations, entropy may

be specifically tailored for selected partners [76]. Indeed,

a marked difference between the distributions of an

inhibitor (10058-F4) and urea upon diffuse binding to

c-Myc has been observed [75��]. Despite its loosely

defined binding, this compound has been shown to effi-

ciently block heterodimerization with Max, as well as

decrease c-Myc aggregation. Although the generality of

the ‘entropic’ binding has yet to be explored [76], this

pioneering idea could be exploited in targeting highly

dynamic sequences.

Towards a consensus model
Recent structural and kinetic data evidence conformational

fluctuations in both templated folding [40��,47��] and fuzzy

interaction mechanisms [56��] in different stages along the

binding trajectory (Figure 1(b)). Fluctuations either in the

transition or the final bound state are frequently controlled

by partner interactions outside the binding site. Conse-

quently, native interactions are often mediated by subop-

timal motifs, which are optimized by the transient (partial)

non-native contacts. As a further layer of complexity,

multiple suboptimal motifs may similarly cooperate lead-

ing to a combinatorial mechanism [77�]. Thus, partner-

modulated variations in conformations and contact patterns

appear to be general considering the full binding trajectory

of the fully functional sequence. This is a key to define a

uniform binding model.

The holistic pathway should be composed of both native

and non-native interactions defined in a complete model

(i.e. not truncated with full activity). The relative con-

tributions of these two contact types in different stages

along the pathway determine the spatial and temporal

plasticity of the recognition process, and eventually

defines the interaction mechanism. Therefore, the func-

tionally relevant variations in conformations and contacts

(‘fuzziness’) along the binding trajectory should be char-

acterized. This serves as a basis for regulation either in the

transition state [40��] or in the final complex [57].

Future directions
Only a handful high-resolution data is available on arche-

typal fuzzy complexes [9�,64,66]. Detailed experimental

characterization of more systems would be required to

understand the driving forces of these dynamic recogni-

tion modes. Importantly, functionally complete models

(e.g. with Kd equal to that of the full sequence) must be

investigated to eliminate truncation artefacts. Further

technical advances will be needed to overcome limita-

tions by low-affinity and transient interactions, or motif

redundancy. Further computational studies will shed

light on the interplay between non-native and native

contacts, and how these — often transient interactions
Current Opinion in Structural Biology 2019, 54:19–25 
— shape the global characteristics of the association

[11,40��]. Synergy between redundant motifs also

remains to be explored.

In conclusion, a unified binding model must not discre-

tize the bound protein chain to be ‘folded’ or ‘not folded’.

Instead, the model should define the stable or critical

components of the interaction and their variations owing

to conformational heterogeneities in the system along the

full binding trajectory. Alternative — even transient —

structures must be interpreted in the light of functional

data, to relate the different patterns to their biological

outcomes. Albeit difficult to envisage, fuzziness is intrin-

sic to the holistic model, detailed characterization of

which provides exciting perspectives for protein engi-

neering and drug design.
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