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We derive a new continuous free energy formula for protein folding. We obtain the formula first by

adding hydrophobic effect to a classical free energy formula for cavities in water. We then obtain the

same formula by geometrically pursuing the structure that fits best the well-known global geometric

features of native structures of globular proteins: 1. high density; 2. small surface area; 3. hydrophobic

core; 4. forming domains for long polypeptide chains. Conformations of a protein are presented as an all

atom CPK model P¼ [N
i ¼ 1 Bðxi; riÞ where each atom is a ball Bðxi; riÞ. All conformations satisfy generally

defined steric conditions. For each conformation P of a globular protein, there is a closed

thermodynamic system OP*P bounded by the molecular surface MP . Both methods derive the same

free energy aVðPÞþbAðPÞþcWðPÞ, where a; b; c40, VðPÞ, AðPÞ, and WðPÞ are volume of OP , area of MP , and

area of the hydrophobic surface WP �MP , which quantifies hydrophobic effect.

Minimizing WðPÞ is sufficient to produce statistically significant native like secondary structures and

hydrogen bonds in the proteins we simulated.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Proteins are macromolecules consisting of amino acid se-
quences joined by peptide bonds. According to their side chains,
the 20 amino acids are classified as hydrophobic or hydrophilic. The
former avoid contact with water, the latter can form hydrogen

bonds with water. Complicated interactions due to the locations of
hydrophobic and hydrophilic moieties and surrounding water
molecules contribute to free energy; the total contribution made
is called the hydrophobic effect (Kauzmann, 1959; Tanford, 1978;
Tanford and Reynolds, 2001; Finkelstein and Ptitsyn, 2002; Dill et
al., 2008).

Proteins are nature’s robots participating in every life phenom-
enon. Proteins’ ability to perform such versatile functions depends
on their specific 3-dimensional geometric shapes, their native

structures. Proteins can only perform their functions in native
structures (Branden and Tooze, 1998; Tanford and Reynolds,
2001). In physiological environments, among the infinite different
shapes that an amino acid sequence may take, a protein always
rapidly folds to its native structure automatically, though, some
(larger ones) may need help.
ll rights reserved.

2 62623623;

u.edu.au (Y. Fang).
The amino acid sequence of a protein is called its primary

structure. Regular patterns of local (along the sequences) struc-
tures such as helix, strand, sheet and turn are called the secondary

structure which contain many intramolecular hydrogen bonds. The
global assembly of these secondary structures, connected by turns
and irregular loops, is called the tertiary structure. For proteins
having multiple amino acid sequences or structurally associated
with other molecules there are also quaternary structures (Branden
and Tooze, 1998; Finkelstein and Ptitsyn, 2002).

Generally speaking, why and how a protein’s amino acid
sequence can automatically fold to its native structure is called
the protein folding problem. In Dill et al. (2008), it is summarized
as: ‘‘the protein folding problem has come to be regarded as three
different problems: (a) the folding code: the thermodynamic
question of what balance of inter-atomic forces dictates the
structure of the protein, for a given amino acid sequence; (b)
protein structure prediction: the computational problem of how
to predict a protein’s native structure from its amino acid
sequence; and (c) the folding process: the kinetics question of
what routes or pathways some proteins use to fold so quickly.’’

In this paper we concentrate on part (a), the folding code, of
the protein folding problem.

To an amino acid sequence U ¼ A1A2 � � �An�1An, we define the
chain distance of two atoms a and b in U by dða;bÞ ¼ ji� jj if aAAi

(a belongs to Ai) and bAAj. Following Dill (1990), an interact-
ion among atoms ai1; ai2; . . . ; aik, k¼ 2;3; . . ., is local if
max1r j;lrkdðaij; ailÞr4; otherwise the interaction is non-local.

www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2009.09.013
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We will say that an interaction is global if it involves all atoms in
the molecule and the non-local ones collectively make a major
contribution.

The CPK, or space-filling model of a molecule of N atoms, is a
bundle of balls P¼ [N

i ¼ 1 Bðxi; riÞ where atom ai is a ball
Bðxi; riÞ ¼ fyAR3 : jy � xijrrig, xi ¼ ðx

1
i ; x

2
i ; x

3
i ÞAR3 is the atomic

center, jy � xij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
k ¼ 1ðyk � xk

i Þ
2

q
, and ri40 is the van der Waals

radius. All CPK models in this article contain all atoms of the
molecule, including hydrogen atoms.

A conformation is a CPK model P satisfying the following steric

conditions: there are positive numbers eij, dij, and Dij, 1r io jrN,
such that for any two atoms Bðxi; riÞ and Bðxj; rjÞ in
P¼ [N

k ¼ 1 Bðxk; rkÞ,

eijr jxi � xjj; if Bðxi; riÞ and Bðxj; rjÞ have no bond;

dijr jxi�xjjrDijoriþrj; if Bðxi; riÞ and Bðxj; rjÞ have a bond:

ð1Þ

We will denote the set of all conformations of U as PðUÞ.
The steric conditions represent the totality of inter-atomic

interactions within the molecule. We will discuss them more in
Section 4.

The ‘‘thermodynamic hypothesis’’ in Anfinsen (1973) is: ‘‘the
three-dimensional structure of a native protein in its normal
physiological milieu (solvent, pH, ionic strength, presence of other
components such as metal ions or prosthetic groups, temperature,
and other) is the one in which the Gibbs free energy of the
whole system is lowest; that is, that the native conformation
is determined by the totality of inter-atomic interactions and
hence by the amino acid sequence, in a given environment.’’ This
is the consisensus in the protein folding community, called the
Thermodynamic Principle, see for example, Tanford (1978), Dill
(1990), Branden and Tooze (1998) and Tanford and Reynolds
(2001).

Thus, any mathematical model of protein folding has to handle
free energy. What is the free energy formula for a given protein?
Various free energy formulae for the system consisting of protein
and solvent (water) have been proposed, such as in Lazaridis and
Karplus (1999, 2003). Here we form a mathematical model that
gives a continuous free energy formula for every possible
structure of an amino acid sequence. The solvent structure is
not explicitly accounted for in the formula. Instead, like in
Eisenberg and McLachlan (1986), and Lazaridis and Karplus
(2003), we define the boundary of a thermodynamic system and
use boundary data to express the solvent contribution to the free
energy.

We will derive the continuous free energy formula indepen-
dently through classical thermodynamics and through pure
geometric calculus of variation. In the former we add the
hydrophobic effect to a classic free energy formula for cavities
in water; in the latter we imitate nature and pursue the structure
that fits best the well-known global geometric features of native
structures of globular proteins.
2. A free energy formula: thermodynamics

2.1. A classical free energy formula for cavities in water

Let P¼ [N
i ¼ 1 Bðxi; riÞ be a conformation and T �R3 a closed

thermodynamic system containing P with boundary S¼ @T . Let
VðT Þ and AðSÞ be the volume of T and the area of S. If we think of
T as a cavity in water, then by classical thermodynamics the free
energy for T is

GðT Þ ¼ sAðSÞþpVðT Þ; ð2Þ
where s is the surface tension and p the free energy per unit
volume of the bulk liquid (Pippard, 1957; Southall et al., 2002), or
pressure (Chandler, 2005).

Because a protein is not just a cavity in water, obviously, this
would not work for proteins. We have put ‘‘the totality of inter-
atomic interactions’’ (Anfinsen, 1973) of the protein into the steric
conditions (1) such that it does not show in formula (2). But
the totality of interactions of the protein molecule with the
solvent, that is, the hydrophobic effect that is the main
driving force of protein folding, is still missing. Thus, we should
quantify hydrophobic effect and put it into the free energy
formula (2).

2.2. Hydrophobic core

The hydrophobic effect causes the hydrophobic core: almost all
globular proteins of known structure have a hydrophobic
core—the interior of proteins are composed of clustered hydro-
phobic moieties, not polar side chains, nor ionized side chains in
salt bridges. This is important in determining whether or not the
driving force of protein folding is the hydrophobic effect (Tanford,
1978; Novotny et al., 1984, 1988; Richards and Lim, 1994; Branden
and Tooze, 1998; Tanford and Reynolds, 2001; Lesk, 2001;
Finkelstein and Ptitsyn, 2002).

2.3. Hydrophobic surface

Since the formation of the hydrophobic core is caused by the
hydrophobic effect, we will quantify the hydrophobic core to
indirectly quantify the hydrophobic effect.

Let U be a molecule, H�U be the set of all hydrophobic
moieties. If we label all atoms in the molecule by fa1; . . . ; aNg then
there is a subset I� f1; . . . ;Ng such that atom ai belongs to H if and
only if iA I. Therefore, H is intrinsic, and, independent of
conformations. Note that H contains all hydrophobic moieties,
not just the hydrophobic amino acid side chains in a protein. In
each conformation P, H’s conformation is denoted as
HP ¼[iA IBðxi; riÞ � P¼ [N

i ¼ 1 Bðxi; riÞ �R3. Define the hydrophobic

surface WS �S as follows:

WS ¼ fxAS : distðx;HPÞodistðx; P\HPÞg; ð3Þ

where distðx;HPÞ ¼minyAHP
jx� yj and P\HP ¼ fyAP; y does not

belong to HPg. See Fig. 1
Let W ¼WðSÞ ¼ AðWSÞ be the area of WS �S, then

0rWðSÞrAðSÞ. If all hydrophobic moieties are in the core,
i.e., surrounded by non-hydrophobic moieties, then P\HP separates
HP and S, i.e., for any xAS and any yAHP, the straight line
segment L between x and y will intersect P\HP . Thus, there
will be at least one zAP\HP lying on L, hence, jz� xjo jy � xj. We
have

distðx; P\HPÞ ¼ min
zAP\HP

jz� xjrmin
yAHP

jy � xj ¼ distðx;HPÞ;

by definition, x does not belong to WS. Since this is true for any
xAS, we have WS ¼ | and WðSÞ ¼ 0. Similarly on the other hand,
if all non-hydrophobic moieties are surrounded by hydrophobic
moieties, then for any xAS, distðx;HPÞodistðx; P\HPÞ; therefore,
WS ¼S and WðSÞ ¼ AðSÞ.

Between these two extremes, the less hydrophobic moieties
are exposed to water, the smaller the WðSÞ is and the better the
formation of the hydrophobic core. Hence, WðSÞ can be used to
quantify the hydrophobic core.

Putting WðSÞ into (2) we have the free energy formula for a
protein contained in the closed thermodynamic system T

GðT Þ ¼ pVðT ÞþsAðSÞþhWðSÞ; p;s;h40: ð4Þ
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Fig. 1. Sketch of hydrophobic surface on a sphere. Any boundary S, usually not a

sphere, totally surrounds the conformation P.

Fig. 2. Two dimensional sketch of various surfaces. Shaded area is the conforma-

tion P, its boundary is the van der Waals surface. Molecular surface is in between

the van der Waals surface and accessible surface and is smoother than both.
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This is still not satisfactory, since for a conformation P, there are
infinite systems T containing it. The question remains as to which
one should be used.

2.4. Boundary S of the thermodynamic system T

For the conformation P, there are some natural surfaces that
are determined uniquely by P, some of them have been treated as
the natural boundary of P.

The conformation P’s own boundary @P is called the van der
Waals surface. But it is not suitable to be @T since it does not
count on the interactions with the surrounding water. If we add a
certain length, say the rough radius of a water molecule about
rp ¼ 1:6 Å to the various van der Waals radii ri, i.e., make
Ri ¼ riþrp, then the van der Waals surface of P0 ¼ [N

i ¼ 1 Bðxi;RiÞ is
called the solvent accessible surface of P (Lee and Richards, 1971)
See Fig. 2. Many believe that the area of the solvent accessible
surface of a protein structure is correlated to the free energy, for
example, in Bolen and Rose (2008), it is treated as if it were
truthfully the free energy.

Molecular surface is generated by rolling a probe sphere of
radius rp on the van der Waals surface (Richards, 1977). It has two
parts (not necessarily connected), the convex part called contact
surface (those sphere caps in the conformation P¼ [N

i ¼ 1 Bðxi; riÞ

where the probe sphere touches only one sphere in P), and
reentrant surface (the probe sphere simultaneously touches two
or three or more spheres in P) (Connolly, 1983). Since there may be
inner cavities in P large enough to allow the probe sphere to roll
inside, the molecular surface may have separate components
(Connolly, 1983). We will take MP as the outermost and also the
largest component and still call it the molecular surface of P.

Rolling the probe sphere can be viewed as water surrounding
the protein, thereby viewing the force or energy exchanges on the
molecular surface as the solvent effect. In this view, we can see
why selecting the correct boundary surface will dramatically
affect the correct treatment of the hydrophobic effect as shown in
Tuñón et al. (1992).

In fact, molecular surface area reflects the free energy better
than accessible surface area does, see Tuñón et al. (1992) and
Jackson and Sternberg (1993, 1994, 1995). While the non-smooth
part of the accessible surface caused the gap between experi-
mental data of free energy and the surface area (Jackson and
Sternberg, 1993, 1994, 1995), a molecular surface does not have
non-smooth part.

For the above considerations and practical purposes, we use
the molecular surface MP as the boundary of the thermodynamic
system OP ¼ T , i.e., we take S¼ @T ¼ @OP ¼MP .

Since such MP is uniquely determined by P (once we fixed the
probe radius) and OP is uniquely determined by MP, we can write
VðOPÞ ¼ VðPÞ, AðMPÞ ¼ AðPÞ. We will denote WP ¼WMP

and
WðPÞ ¼ AðWPÞ.

The free energy of the conformation P thus can be written as

GðPÞ ¼ pVðPÞþsAðPÞþhWðPÞ; p;s;h40: ð5Þ

3. The same free energy formula: geometry

We now derive the free energy formula (5) from a pure
geometric consideration. The fact that geometry enters the picture
is not surprising at all. Anfinsen already stated in Anfinsen (1973)
that ‘‘biological function appears to be more a correlate of
macromolecular geometry than of chemical detail.’’

We may need new perspectives on the problem. We take a
phenomenological point of view, i.e., mathematically express the
results of observed phenomena without paying detailed attention
to their fundamental significance (Thewlis, 1973, p. 248).

What are the ‘‘observed phenomena’’? We look at the well-
known global geometric features of native structures of globular
proteins.

3.1. Global geometric features of native structures of globular

proteins

Bond length, bond angle, and torsion angle are local geometric
quantities. Native structures of globular proteins have well-known
global features depending on the structure as a whole:

3.1.1. High density

It was observed that protein interiors are closely packed and
the interior of lysozyme and ribonuclease have a packing density
of 0.75 (Richards, 1974). The packing density is quite uniform or
homogenous, such that water molecules are excluded from the
interior (Lee and Richards, 1971; Richards, 1974, 1977, 1979).
Unfilled cavities large enough to accommodate a water molecule
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only appear in very few cases (Richards, 1974, 1979; Richards and
Lim, 1994; Branden and Tooze, 1998).

3.1.2. Small surface area

The solvent accessible surface (Lee and Richards, 1971) and the
molecular surface (Richards, 1977) are designed as boundaries of
protein structures. It is observed that the native structure of a
globular protein has smaller surface area than that of other
conformations (Lee and Richards, 1971; Janin, 1976; Richards,
1977, 1979; Novotny et al., 1984, 1988).

3.1.3. Hydrophobic core

As described in Section 2.2.

3.1.4. Long amino acid sequences fold into domains

If the amino acid sequence U ¼ A1A2 � � �An of a globular protein
is long, say nZ400, then the native structure of U will divide into
several domains connected by loops. Each domain looks like the
native structure of a smaller globular protein (Richards, 1977;
Branden and Tooze, 1998; Tanford and Reynolds, 2001; Lesk, 2001;
Finkelstein and Ptitsyn, 2002).

3.2. Pursing a structure that fits these features best

Let U be an amino acid sequence. Our goal is to quantify all
these global geometric features of the native structures of
globular proteins and then try to find a structure (conformation)
Q APðUÞ such that Q best fits these features.

Again we consider a conformation P¼ [N
i ¼ 1 Bðxi; riÞAPðUÞ

being contained in a closed thermodynamic system T ,
P� T �R3. We will require that the boundary S¼ @T of T is a
simply connected closed surface in R3 (A sphere is simply
connected while a tyre surface is not. A mathematical fact is that
all simply connected closed surfaces in R3 are homeomorphic to a
sphere). Thus we have the quantities VðT Þ, AðSÞ, and
WðSÞ ¼ AðWSÞ, where the hydrophobic surface WS is defined in
(3).

3.2.1. Smaller VðT Þ means higher density

Let VP be the volume of P, then the density of P in T is given by

0rDensity¼
VP

VðT Þr1;

because P� T . Since P satisfies the steric conditions (1), VP is
almost a constant in different conformations. Thus, the smaller
the volume VðT Þ is, the higher the density will be.

3.2.2. Smaller AðSÞ gives better global-like shape

The area AðSÞ can be seen as a shape optimizer of conforma-
tions in the sense that among all surfaces enclosing the same
volume, the sphere has the minimal surface area (Almgren, 1986).
In our case, because all conformations must satisfy the steric
conditions (1), S¼ @T can never be a sphere. But the general
principle is still true, the smaller the AðSÞ is, the more global-like
the S will be.

3.2.3. Smaller WðSÞ gives better hydrophobic core

We have already seen in Section 2.2 that the hydrophobic
surface area WðSÞ ¼ AðWSÞ measures the hydrophobic core. The
smaller the WðSÞ, the better the formation of the hydrophobic
core.

Let PAPðUÞ, define SðPÞ as the set of all simply connected
closed surfaces S�R3 such that S¼ @T , where T is a closed
region such that P� T �R3 and VðT Þo1. We want to find a
conformation Q APðUÞ and a L*Q , @L¼ SASðQ Þ such that

uðVðLÞ;AðSÞ;WðSÞÞ ¼ min
PAPðUÞ

min
SASðPÞ

uðVðT Þ;AðSÞ;WðSÞÞ; ð6Þ

where uðx; y; zÞ is a smooth function such that

@u

@x
40;

@u

@y
40;

@u

@z
40: ð7Þ

Thus, u is increasing for any of its three variables, any shrinking of
VðT Þ, or AðSÞ, or WðSÞ will reduce the value of uðVðT Þ;AðSÞ;WðSÞÞ.
This unknown function u reflects the requirement that we have to
simultaneously reduce the volume, surface area, and hydrophobic
area in a coherent way.

Note that under the variational constraint, i.e., the steric
conditions (1), the surface SASðQ Þ in (6) can never be a sphere.
But it is certain in mathematics that such a conformation Q in (6)
will fit best the global geometric features of the native structures
of globular proteins among all conformations. An analogue is
that as long as a surface has the minimal area among all surfaces
enclosing the same volume, it must be a sphere (Almgren,
1986).

Since these global geometric features essentially characterize
the native structures of globular proteins, we can reasonably
hypothesize that Q in (6) actually should be the native structure,
of course, if we have the correct function u.

The uncertainty of u can be resolved by linear approximation.
Let Q APðUÞ and S¼ @LASðQ Þ be the minimizer in (6) and
x0 ¼ ðx0; y0; z0Þ ¼ ðVðLÞ;AðSÞ;WðSÞÞ, u0 ¼ uðx0Þ, and
ðm1;m2;m3Þ ¼ ð@u=@x; @u=@y; @u=@zÞðx0Þ. Then near x0 the first ap-
proximation of uðx; y; zÞ can be written as

uðx; y; zÞffiu0þm1ðx� x0Þþm2ðy� y0Þþm3ðz� z0Þ;

mi40; i¼ 1;2;3:

Since a constant is irrelevant in minimization, (6) can be
approximately written as

m1VðLÞþm2AðSÞþm3WðSÞ ¼ min
PAPðUÞ

min
SASðPÞ

m1VðT Þþm2AðSÞþm3WðSÞ:

ð8Þ

3.3. System boundary revisited

The two-tier minimizations in (6) and (8) actually gives us a
way to theoretically determine the ideal thermodynamic system
T*P. For any PAPðUÞ, let @T P ¼SP ASðPÞ such that

m1VðT PÞþm2AðSPÞþm3WðSPÞ ¼ min
SASðPÞ

m1VðT Þþm2AðSÞþm3WðSÞ:

ð9Þ

This special surface SP then is the boundary of a tailor-made
thermodynamic system T P*P. It has been proven that such a SP

is a piecewise constant mean curvature smooth surface (Fang,
2005).

Recall that what is called mean curvature in mathematics is
called surface tension in physics. It has been discovered that many
interfaces between two different materials are constant mean
curvature surfaces. The first example, the A/B block copolymer
consisting of two macromolecules bonded together, was discussed
in the pioneering work Thomas et al. (1988). Hence the fact that
SP has piecewise constant mean curvature is not a surprise at all.
On the other hand, because SP has to be a closed simply
connected surface and not a sphere, it can never be a constant
mean curvature surface.
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Using SP , we can write VðPÞ ¼ VðT PÞ, AðPÞ ¼ AðSPÞ, and
WðPÞ ¼ AðWSP

Þ and (8) can be written as

m1VðQ Þþm2AðQ Þþm3WðQ Þ

¼ min
PAPðUÞ

m1VðPÞþm2AðPÞþm3WðPÞ; mi40; i¼ 1;2;3: ð10Þ

Compared with (5), we see that what we are pursing in geometry
is actually minimizing the free energy; a wonderful coincidence!
The advantage of thermodynamic consideration is that we can
infer that m1 ¼ p, the pressure. But the geometric consideration
also suggests how to pursue the best boundary of a protein
structure. It is a piecewise constant mean curvature (surface
tension) smooth surface.

The theoretical boundary SP is hard to handle. The good news
is that the molecular surface MP (see Section 2.4) is a good
approximation to SP . In fact MP is smooth and has a large portion
with piecewise constant mean curvature (Fang and Jing, 2008).
Moreover, there exists ready software for calculating molecular
surfaces, for example, Connolly (2002). Thus from now on we will
replace SP with MP and T P with OP , @OP ¼MP , VðPÞ ¼ VðOPÞo1.
4. Geometry and thermodynamics lead to the same
mathematical model

From both classical thermodynamics and geometry, we have
achieved the same free energy formula for a conformation
PAPðUÞ of a protein U, i.e.,

GðPÞ ¼ m1VðPÞþm2AðPÞþm3WðPÞ; mi40; i¼ 1;2;3: ð11Þ

To count the feature in Section 3.1.4, long amino acid
sequences fold into domains, we assume that the weights mi in
(11) may depend on chain length n. Hence, we modify (11) to get a
free energy formula GnðPÞ for a single chain globular protein of
length n, for each conformation P¼ [N

i ¼ 1 Bðxi; riÞ, after a normal-
ization,

GnðPÞ ¼ m1
nVðPÞþm2

nAðPÞþm3
nWðPÞ; mi

n40;

i¼ 1;2;3; m1
nþm

2
nþm

3
n ¼ 1: ð12Þ

4.1. Mathematical model: constrained minimization

By the thermodynamic principle of protein folding, the native
structure should have minimum free energy; by the global
features of native structures of globular proteins, the native
structure should simultaneously have smaller volume, smaller
surface area, and smaller hydrophobic area.

Therefore, we should carry out a constrained minimization
under both considerations, i.e., the native structure Q APðUÞ
should satisfy

GnðQ Þ ¼ min
PAPðUÞ

GnðPÞ: ð13Þ

Note that since all PAPðUÞ satisfies the steric conditions (1), the
constraints in (13) are the steric conditions (1).

4.2. The role and setting of steric conditions

Setting steric conditions is another phenomenological treat-
ment. Simply due to the large quantity of atoms in a protein, the
pairwise interactions among these atoms are too complicated to
be accurately calculated by empirical formulae, so we take the
effect and respect the observed facts, setting them as constraint
conditions in minimization.
The steric conditions are defined via the allowed minimal
atomic distances, such that for non-bonding atoms, the allowed
minimal distances are: shorter between differently charged or
polarized atoms; a little longer between non-polar ones; and
much longer (generally greater than the sum of their radii)
between the same charged ones, etc. For example, we allow
minimal distance between sulfur atoms in Cysteines to form
disulfide bonds.

Various bond lengths and angles have standard ranges; we can
just follow them and place them under the steric conditions. As
for non-bonding atoms, we will preset the allowed constant
minimal distances among all moieties of all amino acids for
different chain distances and then list them in tables labeled by
chain distances. For example, for the central carbon group CaH
and the Alanine side chain group CH3, in the table for chain
distance 5 we preset, say, DðCaH;CH3ÞZ2 Å. Then let U ¼ A1 � � �An

be an amino acid sequence such that ai is the carbon or one of the
three hydrogen atoms of CH3 in the side chain of an Alanine
residue, aj is either Ca or H of CaH such that dðai; ajÞ ¼ 5, then we
set eij ¼ 2 in (1). Consider another example, the atoms C in residue
Ak and N in residue Al will have the bond relation dijr jxi �

xjjrDijoriþrj only when l¼ kþ1; otherwise, we should use the
non-bonding relation eijr jxi � xjj.

Another important role of steric conditions is to make sure that
different amino acid sequences correspond to different con-
strained minimization problems (13). For example, two proteins
U1 and U2 may have the same chain length and even the same
amino acid distributions, i.e., each amino acid appears in the
sequences of U1 and U2 exactly the same number of times. Or
precisely, there is a permutation s : f1;2; . . . ;ng-f1;2; . . . ;ng such
that U1 ¼ A1A2 � � �An and U2 ¼ Asð1ÞAsð2Þ � � �AsðnÞ. Because of the
order difference, steric conditions in (1) are still able to
distinguish between them, so the conformation spaces PðU1Þ

and PðU2Þ are different and the minimizations in (13) for U1 and
U2 are different problems.
5. Simulation of hydrophobic area reduction

For both classical thermodynamics and geometric considera-
tions, we have emphasized the role of hydrophobic effect via the
hydrophobic surface area WðPÞ. Thus, it is important to verify that
WðPÞ indeed represents the hydrophobic effect.

We will carry out simulations that reduce the hydrophobic
area WðPÞ alone to see whether or not it can produce secondary
structures. If it does so, then we can conclude that the WðPÞ is
really correlated to hydrophobic effect. Since WðPÞ is not free
energy, just like in Chan and Dill (1989, 1990) (HP lattice model),
and (Maritan et al., 2000) (tube model), our simulations are solely
for the purpose of searching for the folding code, not the
prediction of protein structures.

We will use the fastest descending method to reduce the
hydrophobic area WðPÞ. Let U be a protein molecule and
bi; i¼ 1; . . . ; L the rotatable torsion axis of U, fi the current torsion
angle of bi, U¼ ðf1; . . . ;fLÞ. Then for fixed standard bond
lengths and bond angles, we can identify the conformation PAPðUÞ
by specifying all of its torsion angles U¼ ðf1; . . . ;fLÞ. Thus
WðPÞ ¼WðUÞ ¼Wðf1; . . . ;fLÞ, and the gradient is
DWðPÞ ¼ ð@W=@f1; . . . ; @W=@fLÞ.

From a random initial conformation, we change U simulta-
neously proportional to �DW , i.e., new angles will be
UðtÞ ¼U� tDW , where t40 is adjustable to make the new
conformation satisfy the steric conditions. Repeating this
until we find a conformation that either has DW ¼ 0

!
or can

no longer be moved along �DW without violating steric
conditions. The former is an interior stationary conformation, the
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latter is a boundary stationary conformation. We then record
this conformation and start anew until we have accumulated
enough stationary conformations. The gradient DW is calculated
as

@W

@fi

¼�2

Z
WP

HðXi�NÞdH2þ

Z
G

Z�Xi �

dfP

dt
jXMP

fP j

0
B@

1
CAdH1; i¼ 1; . . . ; L;

ð14Þ

where Xi is the vector field in R3 induced by the rotation around
bi, N the inward unit normal vector of MP , � the inner product in
R3, H the mean curvature of MP , G the boundary of WP , Z the unit
outward conormal vector of G (tangent to WP and perpendicular
to G), fPðxÞ ¼ distðx;HPÞ � distðx; P\HPÞ, xAR3, XMP

fP the projec-
tion of the gradient XfP to tangent planes of MP , and H1 and H2

the Haussdorff measures. The mathematical proof of (14) will be
given elsewhere. The integrated analytic formulae such as (14) on
the molecular surface MP are given in Fang and Jing (2008).

The amino acid sequences used in simulations are HYPOTHE-
TICAL PROTEIN RPA1889, of 123 residues, PDB code 2i9c;
HYPOTHETICAL PROTEIN SP_1588, of 127 residues, PDB code
2hng; and CONSERVED HYPOTHETICAL ALANINE RICH PROTEIN
RV2844, of 162 residues, PDB code 2ib0. They were CASP7 targets
t0382, t0383, t0385, the simulation results were obtained before
the experiment data were published.

The same simulations also applied recently to 1poa, PHOS-
PHOLIPASE A2, of 118 residues; 1aac, AMICYANIN, of 105 residues;
1rro, RAT ONCOMODULIN, of 108 residues; 2end, ENDONUCLEASE
V, of 137 residues; and 4fgf, BASIC FIBROBLAST GROWTH FACTOR,
of 124 residues.

We used the common structure analysis software RasMol
(2009) to qualify the secondary structure of conformations
generated by our minimization procedure. Figs. 3–5 show the
RasMol outputs to three of such conformations.

It is significant that these secondary structures and hydrogen
bonds are generated by reducing a major part of a global
continuous free energy function alone. Moreover, the presentation
of conformation is the most realistic all atom CPK model. We
neither calculated the Fi and Ci angles nor paid any special
Fig. 3. RasMol output of a resulting structure of simulation of hydrophobic area reducti

turns, and 37 hydrogen bonds in the structure. Helices were anticipated because rotat

moieties in consecutive residues to turn and hide behind the hydrophilic moieties; exa

local geometry and no effort was tried to imitate any chemical relationship besides the

model and tube model inferred from their simulations, our simulation results prove uneq

The hydrophilic moieties covalently bonded to them then form intramolecular hydro

structure. This result may contribute to resolving the long standing dispute about wheth

in protein folding. This output is for Target T0382 of CASP7, HYPOTHETICAL PROTEIN R

published. The simulation was run on a 686 CPU with clock speed of 730-Mhz; the tim
attention to the Cas’ positions and residue propensities to
secondary structures, nor pursued hydrogen bond formation.
Under such a simulation, secondary structures and hydrogen
bonds can still be produced and be recognized by objective
software such as RasMol. Such a result has never been reported
before. Indeed, pairwise interaction models without explicitly
pursuing hydrogen bonds cannot produce secondary structures
(Hubner and Shakhnovic, 2005).

The appearance of hydrogen bonds while reducing the
hydrophobic area may contribute to resolving a decades long
dispute concerning the dominant force in protein folding:
intramolecular hydrogen bonds or hydrophobic effect? Since
hydrogen bonds automatically appear while reducing hydropho-
bic area alone, we may infer that assuming that intramolecular
hydrogen bonds are the driving force of protein folding is
unnecessary. For the history of this debate, see for example:
Pauling et al. (1951), Kauzmann (1959), Tanford (1978), Chan and
Dill (1989, 1990), Dill (1990), Chandler (2005), Bolen and Rose
(2008) and Dill et al. (2008).

To rule out the possibility that these secondary structures and
hydrogen bonds are just random products, we made statistical
significance tests.
6. Statistical significance tests of our simulation results

We perform a random simulation to get the random data for
comparison. Both random and hydrophobic area reduction
simulations use the change of dihedral angles UðtÞ ¼U� tDW

to get new conformations, where t40 is adjustable to make the
new conformation satisfy the steric conditions. The difference is
that for the hydrophobic area reduction simulation, the gradient
DWðPÞ ¼ ð@W=@f1; . . . ; @W=@fLÞ is calculated by formula (14) and
for random simulation DW ¼DU¼ ðdf1; . . . ; dfLÞ are just random
values. Both simulations generated 500 structures for 2i9c. We
selected the best 50 structures for each of the two kinds of
simulations. Selection is done by manually checking the results
and picking out those with near globular shape.
on. It shows that in this 123 residue protein chain, there are 2 helices, 6 strands, 21

ion of a torsion angle to shrink the local hydrophobic area will push hydrophobic

ctly what is required to form a helix. Since the simulation paid no attention to any

steric conditions, the appearance of hydrogen bonds is extra awarding. Like the HP

uivocally that hydrophobic effect pushes hydrophobic moieties to hide from water.

gen bonds. Therefore, secondary structures are produced to stabilize the whole

er hydrophobic effect or intramolecular hydrogen bonding is the main driving force

PA1889, PDB code 2i9c. The simulation was done before the target structure was

e used from a random conformation to a stationary conformation is less than 1 h.
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Fig. 4. RasMol output of a resulting structure of simulation of 1poa reducing hydrophobic area alone. It shows that there are 63 hydrogen bonds, 6 helices, 2 strands, and 21

turns.

Fig. 5. RasMol output of a resulting structure of simulation of 2end reducing hydrophobic area alone. It shows that there are 65 hydrogen bonds, 5 helices, 0 strands, and 27

turns.

Table 1
Statistical summary of 50 hydrophobic area reducing simulation structures of 2i9c.

Min. First Qu. Median Mean Third Qu. Max.

HBond 13.00 28.50 36.00 37.50 46.75 63.00

Helices 0.00 0.00 1.00 1.62 3.00 4.00

Strands 0.00 0.00 2.00 3.04 6.00 10.00

Turns 9.00 17.25 20.00 18.72 21.00 24.00

Res in helices 0.00 0.00 4.50 5.78 11.75 18.00

Res in strands 0.00 0.00 4.00 3.96 6.00 17.00

Longest helix 0.00 0.00 3.00 2.78 4.00 9.00

Longest strand 0.00 0.00 1.00 1.08 2.00 3.00

Table 2
Statistical summary of 50 random simulation structures of 2i9c.

Min. First Qu. Median Mean Third Qu. Max.

HBond 18.00 26.00 30.00 29.64 33.00 43.00

Helices 0.00 0.00 1.00 0.72 1.00 2.00

Strands 0.00 0.00 3.00 2.24 3.00 7.00

Turns 18.00 21.25 23.50 23.56 25.00 31.00

Res in helices 0.00 0.00 0.00 1.08 2.00 4.00

Res in strands 0.00 0.00 0.00 1.12 2.00 4.00

Longest helix 0.00 0.00 3.00 2.00 3.00 4.00

Longest strand 0.00 0.00 0.00 0.50 1.00 2.00

Table 3

Comparison results. D�value is defined as D¼max�1oxo1jSN1
ðxÞ � SN2

ðxÞj, where

SNi
are the cumulative distribution functions of the simulated and random

samples.

D�value p�value Different

HBond 0.44 0.000125 Yes

Helices 0.36 0.003068 Yes

Strands 0.4 0.000671 Yes

Turns 0.54 9:311� 10�7 Yes

Res in helices 0.42 0.000295 Yes

Res in strands 0.48 1:99� 10�5 Yes

Longest helix 0.2 0.270 No

Longest strand 0.32 0.01195 Yes

The p�value is calculated by QKS

ffiffiffiffiffiffiffiffiffiffiffiffi
N1 N2

N1 þN2

q
D

� �
, where QKSðlÞ ¼ 2

P1
j ¼ 1ð�1Þj�1e�2j2l2

.

In our case N1 ¼N2 ¼ 50. Yes or no is according to whether or not poa¼ 0:05.
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We compare the two kinds of simulations in following aspects:
1, number of hydrogen bonds; 2, number of helices; 3, number of
strands; 4, number of turns; 5, number of residues in helices; 6,
number of residues in strands; 7, length of the longest helices; 8,
length of the longest strands. Statistical summaries of these
8 items are listed in Tables 1 and 2 above.

Since we do not know the statistical distributions of these
samples, we use the two-sample Kolmogorov–Smirnov test that
neither requires the distributions to be known nor that the
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distributions be normal, nor the variances be equal (Press et al.,
1992, pp. 623–625).

For each of the 8 characters listed above, the null hypothesis is
that there is no significant difference between the two kinds of
simulations, while the alternative hypothesis is that they are
significantly different. The significance level is set to be a¼ 0:05.

A summary of testing results is given in Table 3. We see that
except for the length of the longest helix having no difference, all
tests show that there are significant differences between the two
kinds of simulation structures.
7. Conclusion

A continuous free energy formula for globular proteins and a
mathematical model based on it are discussed. Hydrophobic effect
plays an essential role. Its main effect, hydrophobic core, is
quantified by hydrophobic surface area WðPÞ. The pairwise
interactions among the atoms in a protein molecule are put into
steric conditions (1) which play the important constraint role in
the minimization process of the mathematical model. Another
role of the steric conditions is to distinguish similar amino acid
sequences.

All conformations are given as an all atom (including hydrogen
atoms) CPK model P¼ [N

i ¼ 1 Bðxi; riÞ, each atom is a ball Bðxi; riÞ.
Hence the model is not a coarse grained model.

Minimizing WðPÞ shows that it is sufficient to produce
statistically significant native like secondary structures and
hydrogen bonds in the proteins simulated.

The free energy formula is independently derived both from
the classical thermodynamic formula for cavities in water plus the
hydrophobic effect; and from geometric consideration of pursuing
the conformation that fits best the global geometric features of
native structures of globular proteins. The free energy formula
achieved by both considerations, thermodynamics and geometry,
are coincidentally identical. This is not purely coincidence.
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