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Abstract

Biomolecular condensates underlain by liquid-liquid phase separation (LLPS) of proteins

and nucleic acids can serve important biological functions; yet current understanding of

the effects of amino acid sequences on LLPS is limited. Endeavoring toward a transfer-

able, predictive coarse-grained explicit-chain model for biomolecular LLPS, we used the

N-terminal intrinsically disordered region (IDR) of the DEAD-box helicase Ddx4 as a test

case to conduct extensive multiple-chain simulations to assess the roles of electrostatic, hy-

drophobic, cation-π, and aromatic interactions in sequence-specific phase behaviors. Three

different residue-residue interaction schemes sharing the same electrostatic potential were

evaluated. We found that neither a common scheme based on amino acid hydrophobic-

ity nor one augmented with arginine/lysine-aromatic cation-π interactions can consistently

account for the available experimental LLPS data on the wildtype, a charge-scrambled mu-

tant, a phenylalanine-to-alanine (FtoA) mutant and an arginine-to-lysine (RtoK) mutant of

the Ddx4 IDR. In contrast, an interaction scheme based on contact statistics among folded

globular protein structures reproduces the overall experimental trend, including that the

RtoK mutant has a much diminished LLPS propensity. This finding underscores the impor-

tant role of π-related interactions in LLPS and that their effects are embodied to a degree

in classical statistical potentials. Protein-protein electrostatic interactions are modulated

by relative permittivity, which in general depends on protein concentration in the aqueous

medium. Analytical theory suggests that this dependence entails enhanced inter-protein

interactions in the condensed phase but more favorable protein-solvent interactions in the

dilute phase. The opposing trends lead to only a modest overall impact on LLPS.
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INTRODUCTION

A preponderance of recent advances demonstrate that liquid-liquid phase separation

(LLPS) of intrinsically disordered proteins (IDPs), proteins containing intrinsically disor-

dered regions (IDRs), folded proteins, and nucleic acids is a general biophysical mechanism

to achieve functional spatial and temporal organization of biomolecules in both intra- and

extra-cellular organismal space.1–9 LLPS underpins formation of a variety of biomolecular

condensates,10 including intracellular bodies, such as nucleoli and stress granules, that are

often referred to as membraneless organelles,4,11 and precursor of extracellular materials as

in the case of sandcastle worm adhesive12 and elastin in vertebrate tissues8. These dynamic,

phase-separated condensates perform versatile functions, as underscored by their recently

elucidated roles in synapse formation and plasticity,7,13 organization of chromatin,14 regu-

lation of translation,15,16 B cell response,17 and autophagosome formation.18 The pace of

discovery in this very active area of research has been accelerating.19–28

While experimental progress has been tremendous, theory for the physico-chemical ba-

sis of biomolecular condensates is still in its infancy. Biomolecular condensates in vivo

are complex, involving many species of proteins and nucleic acids maintained often by

non-equilibrium processes,10,19,29–31 rendering atomistic modeling impractical. Facing this

challenge, promising initial theoretical steps using coarse-grained approaches were made

to tackle simpler in-vitro LLPS systems, as their elucidation is a prerequisite for physi-

cal insights into more complex in vivo condensates. These recent efforts encompass an-

alytical theories at various levels of approximation,32–41 field theory simulations,42–45 and

lattice46–48,50 or continuum49,51–53 coarse-grained explicit-chain simulations that account for

either individual amino acid residues46,51,52,54 or, at lower structural resolution, groups of

residues55,56—including using patchy particle representations.57,58 The different theoreti-

cal/computational approaches are complementary, and were applied to address how amino

acid composition (number/fraction of hydrophobic,53 aromatic,39,59 or charged4 residues)

and the sequence pattern of charge,34,47,52 hydrophobic,49,50,53 or aromatic59 residues affect

LLPS propensity of heteropolymers as well as pertinent impact of temperature,20,42,49,53 hy-

drostatic pressure,60–62 salt,41,45 and osmolyte,27,61 offering physical insights into the LLPS

behaviors of, for example, the DEAD-box RNA helicase Ddx4,34,63 RNA-binding protein

fused in sarcoma (FUS),51 prion-like domains,59 and postsynaptic densities.62

Developing LLPS models with transferable interaction potentials applicable to a wide

range of amino acid sequences is essential for advancing fundamental physical understand-

ing of natural biomolecular condensates and engineering of bio-inspired materials.64 In this

endeavor, the rapidly expanding repertoire of experimental data offers critical assessment

of theoretical and computational approaches. Building on aforementioned progress,34,41,51,52

the present study evaluates a variety of interaction schemes for coarse-grained residue-based

chain simulations of LLPS of intrinsically disordered proteins (IDPs) or regions (IDRs), in-

cluding but not limited to schemes proposed in the literature.51 We do so by comparing their
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sequence-specific predictions against experimental data on the RNA helicase Ddx4 for which

extensive experimental data on the wildtype (WT) and three mutant sequences are avaial-

able to probe the contribution of hydrophobic, electrostatic,4 cation-π, and possibly other

π-related4,63,66 interactions to LLPS. We use these data to benchmark the relative strengths

of different types of interaction in our model. Of particular interest are the aromatic65 and

other π-related66 interactions, which have significant impact on folded protein structure,

conformational distribution of IDPs and LLPS properties,4,34,39,59,67–71 but are often not

adequately accounted for in model potentials.66 Interestingly, a simple statistical potential

based upon folded protein structures72,73 consistently accounts for the LLPS properties of all

four Ddx4 IDR sequences, but a model potential that rely solely on hydrophobicity74 does

not. This finding indicates that, at the coarse-grained level of residue-residue interactions,

IDP/IDR LLPS is governed by the same forces—including the π-related ones—that drive

protein folding. Explicit-water simulation and new analytical theory suggest, at variance

with previous analyses,35,37 that the physically expected dependence of effective permittiv-

ity on IDR concentration may have a modest instead of drastic impact on LLPS propensity

because of a tradeoff between solvent-mediated electrostatic interchain interactions and

self-interactions. These findings and their ramifications are discussed below.

RESULTS AND DISCUSSION

Our coarse-grained modeling setup follows largely the Langevin dynamics formulations

in Refs. 51, 52 for IDP LLPS. The simulation protocol features an initial slab-like condensed

configuration that allows for efficient equilibration.75 Model energy functions embodying

different physical perspectives are considered; details are in the Supporting Information.

We critically assess the models by comparing their predictions against the experimental

data on the Ddx4 IDR (Fig. S1), which indicate that all three Ddx4 IDR mutants—the

charge scrambled (CS), phenylalanine-to-alanine (FtoA), and arginine-to-lysine (RtoK)

variants—have significantly reduced LLPS propensities relative to the WT.4,63,66 The CS,

FtoA, and RtoK variants are useful probes for LLPS energetics. They were constructed

specifically to study the experimental effects of sequence charge pattern (the arrangement

of charges along the chain sequence of CS is less blocky than that in WT while the

amino acid composition is unchanged), the relative importance of aromatic/π-related vs

hydrophobic/nonpolar interactions (all 14 Phe residues in WT Ddx4 IDR are mutated to

Ala in FtoA), and the role of Arg vs Lys (all 24 Arg residues in WT IDR are mutated to

Lys in RtoK) on the LLPS of Ddx4.
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(a) (b)

Fig. 1. Comparing two amino acid residue-based coarse-grained potentials. (a) Scatter plot of 210 pairwise

contact energies (in units of kcal mol−1) in the HPS (horizontal variable) versus those in the KH (vertical

variable) model.51 Eij(r0)s are the pairwise potential energies Uaa|HPS(r) or Uaa|KH(r) (see Supporting

Information), between two residues of types i, j separated by rij = r0 where the Lennard-Jones component

of the potential is minimum (here i, j stand for labels for the 20 amino acid types). Energies of contacts

involving Arg (red), Lys (green) and Phe (yellow) are colored differently from others (blue). (b) Contact

energies between residue pairs at positions i, j of the n = 236 sequence of WT Ddx4 IDR (Ddx4N1, Ref. 4)

in the two potentials are color coded by the scales. The vertical and horizontal axes represent residue posi-

tions i, j ≤ n. The i 6= j contact energies in the HPS and KH models are provided in the two-dimensional

plot, whereas the i = j contact energies are shown alongside the model potentials’ respective color scales.

Assessing Biophysical Perspectives Embodied by Different Coarse-Grained

Interaction Schemes For Modeling Biomolecular Condensates. We consider the

potential functions in the hydrophobicity-scale (HPS) and the Kim-Hummer (KH) models

in Dignon et al.51 as well as the HPS potential with augmented cation-π terms,70 all of which

share the same bond energy term, Ubond, for chain connectivity and screened electrostatic

term, Uel, for pairs of charged residues, as described in the Supporting Information. We focus

first on the pairwise contact interactions between amino acid residues, which correspond to

the Uaa energies of either the HPS or KH model (excluding Ubond and Uel).

The HPS model assumes that the dominant driving force for IDP LLPS is hydrophobicity

as characterized by a scale for the 20 amino acid residues. Pairwise contact energy is taken

to be the sum of the hydrophobicities of the two individual residues of the pair. The HPS

model adopts the scale of Kapcha and Rossky, in which the hydrophobicity of a residue is

a composite quantity based on a binary hydrophobicity scale of the atoms in the residue.74

In contrast, the KH model76 relies on knowledge-based potentials derived from contact

statistics of folded protein structures in the Protein Data Bank (PDB). As such, it assumes

that the driving forces for IDP LLPS are essentially identical to those for protein folding at

a coarse-grained residue-by-residue level, as obtained by Miyazawa and Jernigan,73 without

singling out a priori a particular interaction type as being dominant.
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Fig. 2. Possible cation-π interaction potentials. (a) Sum of the coarse-grained HPS potential and a

model cation-π interaction with a uniform (εcπ)ij = 3.0 kcal mol−1 as a function of residue-residue distance

for the residue pairs Arg-Tyr, Arg-Phe, Arg-Trp, Lys-Tyr, Lys-Phe and Lys-Trp, wherein Tyr/Phe/Trp

are labeled as red/green/blue and Arg/Lys are represented by solid/dashed curves. (b) An aternate

cation-π potential in which Arg-Tyr/Phe/Trp is significantly more favorable (solid curve, (εcπ)ij = 1.85

kcal mol−1) than Lys-Tyr/Phe/Trp (dashed curve, (εcπ)ij = 0.65 kcal mol−1). Note that the plotted curves

here—unlike those in (a)—do not contain the HPS potential. (c) Normalized Cα–Cα distance-dependent

contact frequencies for the aforementioned six cation-π pairs (color coded as in (a)) computed using a set

of 6,943 high-resolution X-ray protein crystal structures (resolution ≤ 1.8 Å) from a previously published

non-redundant set.66 Contact pair statistics are collected from residues on different chains in a given

structure and residues separated by ≥ 50 amino acids along the same chain. Cα–Cα distances are divided

into 0.2 Å bins. For each bin, the relative frequency is the number of instances of a cation-π-like contact

(defined below) divided by the total number of residue pairs with Cα–Cα distances within the narrow

range of the bin. Thus, the shown curves quantify the tendency for a given pair of residues to engage

in cation-π interaction provided that the pair is spatially separated by a given Cα–Cα distance. Here a

cation-π-like contact is recognized if either a Lys NZ or an Arg NH1 nitrogen atom is within 3.0 Å of any

one of the points 1.7 Å above or below a sp2 carbon atom along the normal of the aromatic ring in a Tyr,

Phe, or Trp residue. This criterion is exemplified by the molecular drawing (inset) of a contact between

an Arg (top) and a Phe (bottom). Colors of the chemical bonds indicate types of atom involved, with

carbon in black, oxygen in red, and nitrogen in blue. The red dots here are points on the exterior surfaces

of the electronic orbitals farthest from the sp2 carbons in the aromatic ring. The blue, green, and red lines

emanating from a corner of the aromatic ring constitute a local coordinate frame, with the blue line being

the normal vector of the plane of the aromatic ring determined from the positions of its first three atoms.

The yellow lines mark spatial separations used to define the cation-π-like contact.

The HPS model has been applied successfully to study the FUS low-complexity-domain,77

the RNA-binding protein TDP-43,78 and the LAF-1 RGG domain as well as its charge

shuffled variants.79 A temperature-dependent version of HPS (HSP-T)49 was also able to

rationalize the experimental LLPS properties of artificial designed sequences.80 When both

the HPS and KH models were applied to FUS and LAF-1, the predicted phase diagrams

were qualitatively similar for a given sequence though they exhibited significantly differ-

ent critical temperatures,51 which should be attributable to the difference in effective en-
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ergy/temperature scale of the two models. Here we conduct a systematic assessment of

the two models’ underlying biophysical assumptions by assessing their ability to provide a

consistent rationalization of the LLPS properties of a set of IDR sequences.

The scatter plot in Fig. 1a of HPS and KH energies indicates that, despite an overall

correlation, there are significant outliers. The most conspicuous outliers are interactions

involving Arg (red), which are much less favorable in HPS than in KH. By comparison,

most of the interactions involving Pro, as depicted by the 16 outlying blue circles as well as

the single yellow and single green circles to the left of the main trend, are considerably more

favorable in HPS than in KH. Interactions involving Phe (yellow) and Lys (green) essentially

follow the main trend. Those involving Phe are favorable to various degrees in both models.

However, some interactions involving Lys are attractive in HPS but repulsive in KH. For

example, Lys-Lys interaction is attractive at ≈ −0.1 kcal mol−1 for HPS but is repulsive

at ≈ +0.2 kcal mol−1 for KH. Figure 1b underscores the difference in interaction pattern

of the two models for the WT Ddx4 IDR. The KH pattern is clearly more heterogeneous

with both attractions and repulsions, whereas the HPS pattern is more uniform with no

repulsive interactions. These differences should lead to significantly different predictions in

sequence-dependent LLPS properties, as will be explored below.

Because of the importance of cation-π interactions in protein folded structure67 as well

as conformational distribution of IDP and LLPS,4,39,70,71,79 we study another set of model

interaction schemes—in addition to HPS and KH, referred to as HPS+cation-π—that aug-

ment the HPS potentials with terms specific for cation-π interactions between Arg or Lys

and the aromatic Tyr, Phe, or Trp (Fig. 2). As explained in the Supporting Information, we

consider two alternate scenarios: (i) the cation-π interaction strength is essentially uniform,

irrespective of the cation-aromatic pair (Fig. 2a), as suggested by an earlier analysis;67 and

(ii) the cation-π interaction strength is significantly stronger for Arg than for Lys (Fig. 2b).

The latter scheme is motivated by recent experiments showing that Arg to Lys substitutions

reduce LLPS propensity, as in the cases of the RtoK mutant of Ddx4 IDR66 and variants

of FUS,39 as well as a recent theoretical investigation pointing to different roles of Arg

and Lys in cation-π interactions.81 Contact statistics of PDB structures, including those

of Miyazawa and Jernigan72,73 on which the KH potential is based, may also suggest that

Arg-π attractions are stronger than Lys-π’s. Indeed, among a set of 6,943 high-resolution

X-ray protein structures,66 we find that an Arg-aromatic pair is at least 75% more likely

than a Lys-aromatic pair to be within a Cα–Cα distance of ≤ 6.5 Å (Fig. S2 of Supporting

Information), a separation that is often taken as a criterion for residue-residue contact.72

On top of that, given an Arg-aromatic and a Lys-aromatic pair are separated by the

same Cα–Cα distance (Fig. 2c), the Arg-aromatic pair (solid curves) are more likely than

the Lys-aromatic pair (dashed curves) to adopt configurations consistent with a cation-π

interaction. However, we should also emphasize that although a significantly stronger

Arg- than Lys-associated cation-π interaction is explored here as an alternate scenario, it

is probable, as argued by Gallivan and Dougherty using a comparison between Lys-like
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ammonium-benzene and Arg-like guanidinium-benzene interactions, that the strengths

of the “pure” cation-π parts of Arg- and Lys-aromatic interactions are similar despite

the relative abundance of Arg-aromatic contacts due to other factors67 such as π-π effects.66
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Fig. 3. Simulated phase behaviors of Ddx4 IDR variants in a hydrophobicity-dominant potential

augmented by cation-π interactions. (a) Sequence patterns of the wildtype (WT) and its charge-scrambled

(CS), Phe to Ala (FtoA) and Arg to Lys (RtoK) variants. Select residue types are highlighted: Ala

(orange), Asp and Glu (red), Phe (magenta), Lys (cyan), and Arg (dark blue); other residue types are not

distinguished. (b) Simulated phase diagrams of WT, CS, FtoA and RtoK Ddx4 IDR at various relative

permittivities (εr) as indicated, using the HPS model only (leftmost panel) and the HPS model augmented

with cation-π interactions (other panels on the right) with either a uniform (εcπ)ij as described in Fig. 2a

(top) or with different (εcπ)ij values for Arg and Lys as given in Fig. 2b (bottom).

Hydrophobicity, Electrostatics And Cation-π Interactions Are Insufficient By

Themselves To Rationalize Ddx4 LLPS Data In Their Entirety. We begin our as-

sessment of models by applying the HPS and HPS+cation-π potentials to simulate the

phase diagrams of the four Ddx4 IDRs (Fig. S1), the sequence patterns of which are illus-

trated in Fig. 3a. Consistent with experiments,4,63 the simulated phase diagrams (Fig. 3b)

exhibit upper critical solution temperatures (a maximum temperature above which phase

separation does not occur). We emphasize, however, that although the simulated criti-

cal temperatures are assuringly in the same range as those deduced experimentally,63 the

model temperature (in K) of our simulated phase diagrams in Figs. 3b and 4 should not be
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compared directly with experimental temperature. This is because not only of uncertain-

ties about the overall model energy scale but also because the models do not account for

the temperature dependence of effective residue-residue interactions.20,42,49 For simplicity,

our models include only temperature-independent energies as they are purposed mainly for

comparing the LLPS propensities of different amino acid sequences on the same footing

rather than for highly accurate prediction of LLPS behaviors of any individual sequence.

The leftmost panel of Fig. 3b provides the HPS phase diagrams computed using relative

permittivity εr = 80 (corresponding approximately to that of bulk water, as in Ref. 51).

They show that the predicted behaviors of the CS and FtoA variants are consistent with

experiments—that their LLPS propensities are reduced relative to WT;4,63 but the predicted

enhanced LLPS propensity of RtoK is opposite to the experimental finding of Vernon et

al. that the LLPS propensity of RtoK is lower than that of WT.66 This shortcoming of the

HPS model is a consequence of its assignment of much less favorable interactions for Arg

than for Lys, as noted in Fig. 1a.

The other panels of Fig. 3b provide the HPS+cation-π phase diagrams. They are com-

puted for εr = 80, 40, and 20 to gauge the effect of electrostatic interactions relative to other

types of interactions. The εr-dependent results serve also as a preparatory step for our subse-

quent investigation of the impact of incorporating the physical effect of IDR-concentration-

dependent permittivity35,37 on predicted LLPS properties. None of the HPS+cation-π phase

diagrams is capable of avoiding mismatch with experiment63,66 as they all predict a higher

LLPS propensity for the RtoK variant than for WT. Apparently, the bias of the HPS po-

tential against Arg interactions is so strong that it cannot be overcome by additional Arg-

aromatic interactions that are reasonably more favorable than Lys-aromatic interactions

(Fig. 2b). The εr = 80 results for both uniform and variable cation-π strength exhibit an

additional mismatch: Contrary to experiments,4,63 they predict similar LLPS propensities

for the CS variant and WT, suggesting that under this dielectric condition, electrostatic

interactions are unphysically overwhelmed by the presumed cation-π interactions. The

εr = 20 results for variable cation-π also indicate an additional mismatch, in this case they

fail to reproduce the experimental trend of a significantly lower LLPS propensity of the

FtoA variant relative to that of WT,4 probably because the relatively weak cation-π con-

tribution is overwhelmed by strong electrostatic interactions in this low-εr situation. Taken

together, although a perspective involving only electrostatic and cation-π interactions was

adequate to account for sequence-specific LLPS trend of WT and CS (and possibly also

FtoA) before the RtoK experiment was performed,34 such a perspective is incomplete when

RtoK enters the picture. Fig. 3b shows that the HPS+cation-π model, which takes into ac-

count hydrophobic, charged, and cation-π interactions, cannot account for the general trend

of available Ddx4 LLPS data. It follows that these interactions—at least when hydropho-

bicity is accorded by the particular scale74 adopted by HPS—are insufficient by themselves

to account for LLPS of IDRs in general.
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Fig. 4. Simulated phase behaviors of Ddx4 IDR variants using an interaction scheme based largely on

PDB-derived statistical potentials. Phase diagrams were computed using the KH model at three different

relative permittivities (εr).

Structure-Based Statistical Potentials Provide An Approximate Account

Of π-Related And Other Driving Forces for LLPS. In contrast to the HPS and

HPS+cation-π models, direct application of the KH model—without augmented cation-π

terms—leads to an overal trend that is consistent with experiments4,63,66 for the εr val-

ues tested, i.e., all three Ddx4 IDR variants are predicted by the KH potential to have

lower LLPS propensities than WT (Fig. 4). Illustrations of phase-separated and non-phase-

separated configurations are provided in Fig. 5. Previous computation of time-dependent

mean-square deviation of molecular coordinates have been used to verify liquid-like chain

dynamics in the condensed phase of HPS and KH models.51 Examples of similar calculation

are provided in Fig. S3 and Fig. S4 for the Ddx4 IDRs examined in the present study.

This success of the KH model suggests that empirical, knowledge-based statistical po-

tentials derived from the PDB capture key effects governing both protein folding and IDR

LLPS without prejudging the dominance of, or lack thereof, particular types of energetics

such as hydrophobicity in the HPS model. In this respect, it would not be surprising that

cation-π and other π-related interactions are reflected in these knowledge-based potentials

as well. After all, the importance of cation-π interactions in folded protein structure67 and

π-π interactions in IDR LLPS66 is recognized largely by bioinformatics analyses of the PDB.

As discussed above, a major cause of the HPS model’s shortcoming in accounting for

the LLPS of Ddx4 IDRs (Fig. 3b) is the high degree of unfavorability it ascribes to Arg

interactions. Its hydrophobicity scale is based on the atomic partial charges in the OPLS

forcefield. In that formulation, Arg is least hydrophobic with a hydrophobicity value of

+14.5, the next-least hydrophobic is Asp with +7.5, whereas Lys has +5.0, and the most

hydrophobic is Phe with −4.0 (Ref. 74). This assignment results in highly unfavorable Arg-

associated interactions relative to Lys-associated interactions. In the HPS model, when one

of the residues, i, in the pairwise energy Eij(r0) (Fig. 1a) is Arg, the average of Eij(r0) over

j for all amino acids except the charged residues Arg, Lys, Asp, and Glu is equal to −0.0762

in units of kcal mol−1, whereas the corresponding average for Lys is much more favorable at

−0.1276. When the charged residues are included, the trend is the same with the average

being −0.0677 for Arg and −0.119 for Lys. In contrast, for the KH model, the trend is
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opposite with Arg-associated interactions being much more favorable: the corresponding

average is −0.123 for Arg and −0.041 for Lys when charged residues are excluded in the

averaging and −0.0990 for Arg and −0.0161 for Lys when charge residues are included.

This trend echoes an earlier eigenvalue analysis of the Miyazawa-Jernigan energies73 (which

underlie the KH potential) indicating that Arg has a significantly larger projection than

Lys along the dominant eigenvector.87

(a)

(b)

(e)

(d)

(f)

A C D E F G H I K L M N P Q R S T V W Y

(c)
D,E R K F A Others

Fig. 5. Illustrative snapshots of Ddx4N1CS phase behaviors simulated using the KH potential for εr = 40.

(a) A non-phase-separated snapshot at model temperature 375 K, wherein the amino acid residues are

colored using the default VMD scheme100,101 as provided by the key below the snapshot. (b) Same as

(a) except the color scheme (as shown) is essentially identical to that in Fig. 3a. (c) Same as (a) and (b)

except all residues along the same chain share the same color. Neighboring chains are colored differently

to highlight the diversity of conformations in the system. (d–f) A phase-separated snapshot at model

temperature 325 K. The color schemes are the same, respectively, as those in (a–c).

Whereas correlation among hydrophobicity scales inferred from different methods is

limited82–85 with significant variations especially for the nonhydrophobic polar and charged

residues,83 the extremely low hydrophobicity assigned by HPS51,74 to Arg relative to Lys is

unusual. For instance, Lys is substantially less hydrophobic than Arg in two of the three

scales tabulated and compared in Ref. 85. In a commonly-utilized scale based on the free

energies of transfer of amino acid derivatives from water to octanol measured by Fauchère

and Plǐska86 (the third scale tabulated in Ref. 85), Arg is only slightly less hydrophobic
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(+5.72 kJ mol−1) than Lys (+5.61 kJ mol−1) and thus, essentially, Arg and Lys are deemed

to possess equally low hydrophobicities. Accordingly, this scale affords a better correlation

with the Miyazawa-Jernigan energies73 (Fig. 3b of Ref. 85) than that exhibited in Fig. 1a.

It is reasonable to expect the 210 (or more) residue-residue contact energy parameters

in PDB-structures-based potentials to contain more comprehensive energetic information

than merely the hydrophobicities of the 20 types of amino acid residues. In this regard, it is

notable that a higher propensity for Arg than Lys to engage favorably with another residue

appears to be a robust feature of PDB statistics. It holds for the cation-aromatic pairs

we analyze in Fig. S2, for the KH potential, and also for the original Miyazawa-Jernigan

energies put forth in 1985.72 According to Table V of Ref. 72, the contact energies eij
between Arg and aromatic or negatively charged residues are −3.54, −3.56, −2.75, −2.07,

and −1.98kBT , respectively, for Arg-Phe, Arg-Trp, Arg-Tyr, Arg-Glu, and Arg-Asp (kB
is Boltzmann constant, T is absolute temperature), whereas the corresponding contact

energies are weaker for Lys at −2.83, −2.49, −2.01, −1.60, and −1.32kBT , respectively, for

Lys-Phe, Lys-Trp, Lys-Tyr, Lys-Glu, and Lys-Asp. All twenty Arg interactions are more

favorable than the corresponding Lys interactions. The average eij over all Arg-associated

pairs is −2.22kBT , which is substantially more favorable than the corresponding average

of −1.4795kBT for the Lys-associated pairs. It is apparent from the present application of

KH to the Ddx4 IDRs that this feature is crucial, at least at a coarse-grained level, for an

adequate accounting of the π-related energetics of biomolecular LLPS.

IDR Concentration Can Significantly Affects The Dielectric Environment Of

Condensed Droplets But Its Impact On LLPS Propensity Can Be Modest. In

recent51,52,54 and the above coarse-grained, implicit-solvent simulations of LLPS of IDRs,

electrostatic interactions are assumed, for simplicity, to operate in a uniform dielectric

medium with a position-independent εr. However, the dielectric environment is certainly

nonuniform upon LLPS: The electrostatic interaction between two charges are affected to

a larger extent by the intervening IDR materials in the condensed phase—where there is

a higher IDR concentration—than in the dilute phase. Protein materials have lower εr’s

than bulk water.88–90 Analytical treatments with effective medium theories suggest that a

decrease in effective εr with increasing IDR concentration enhances polyampholytes LLPS

in a cooperative manner because the formation of condensed phase lowers εr and that in

turn induces stronger electrostatic attractions that favor the condensed phase.35,37

In principle, LLPS of IDR chains in polarizable aqueous media can be directly simulated

using explicit-water atomic models wherein partial charges are assigned to appropriate

sites of the water and protein molecules; but such simulations are computationally

extremely costly because a large number of IDR chains are needed to model LLPS.

Here we use explicit-water atomic simulation involving only a few IDR molecules, not

to model LLPS but to estimate how the effective εr depends on IDR concentration.

We will then combine this information with analytical formulations to provide a more
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complete account of the electrostatic driving forces for LLPS. The dielectric properties

of folded proteins,88,89 their solutions,91 and related biomolecular92 and cellular93 set-

tings have long been of interest.94 For the current interest in biomolecular condensates,

their interior dielectric environments are expected to be of functional significance, e.g., as

drivers for various ions and charged molecules to preferentially partition into a condensate.95
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Fig. 6. Effects of IDR-concentration-dependent relative permittivity on phase behaviors. (a) Relative

permittivity εr(φ) values obtained by atomic simulations (symbols) using various explicit-water models (as

indicated, bottom) are shown as functions of Ddx4 volume fraction φ (φ = 1 corresponds to pure Ddx4).

The blue curve is a theoretical fit of the SPC/E, [NaCl] = 100 mM explicit-water simulated data based

on the Slab (Bragg and Pippard102) model [Eq. (34) of Ref. 37], viz., 1/εr(φ) = φ/εp + (1 − φ)/εw with

the fitted εp = 18.9 and εw = 84.5 where εp and εw are, respectively, the relative permittivity of pure

protein and pure water. The black solid, dashed, and dashed-dotted lines are approximate linear models

of εr(φ) = εpφ + εw(1 − φ) with the same εw but different εp values as indicated (top-right), resulting in

dεr(φ)/dφ slopes, respectively, of −65.6, −83.9, and −42.2. (b, c) Theoretical phase diagrams of the four

Ddx4 IDR variants were obtained by a RPA theory that incorporates an εr(φ) linear in φ. Solid, dashed,

and dashed-dotted curves correspond, as in (a), to the three different εp values used in the theory. The

electrostatic contribution to the phase behaviors is calculated here using either (b) the expression for

fel given by Eq. (S51) in Supporting Information [i.e., Eq. (68) of Ref. 35 with its self-interaction term

G2(k̃) excluded] or (c) the full expression for fel [Eq. (68) in the same reference, or equivalently Eq. (S2)].

Further details are provided in Supporting Information.

The simulations are conducted on five WT Ddx4 IDRs using GROMACS96 and the

amber99sb-ildn forcefield97 with TIP3P98 or SPC/E99 waters in boxes of different sizes for

six IDR concentrations. Relative permittivities are estimated by fluctuations of the system

dipole moment.89,91 Simulations are also performed on artificially constructed Ddx4 (aDdx4)

in which the sidechain charges of Arg, Lys, Asp, and Glu are neutralized for possible

applications when sidechain charges are treated separately from that of the background

dielectric medium. Methodological details are provided in the Supporting Information.
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Some of the simulated εr values are plotted in Fig. 6a to illustrate their dependence on

IDR volume fraction φ (the φ ∝ concentration relation and an extended set of simulated

εr’s are provided by Fig. S5, Table S1 and the text in the Supporting Information). The

difference in simulated εr(φ) for Ddx4 and aDdx4 is negligible except at very low IDR

concentration (Fig. 6a and Fig. S5), likely because the main contribution to the dielectric

effect of IDR in the atomic model is from the partial charges on the protein backbone.

Consistent with expectation,35,37 simulated εr(φ) in Fig. 6a decreases with increasing φ for

all solvent conditions considered. Permittivity is known to decrease with salt.103,104 Here

this expected effect is observed for TIP3P solution of IDR at low but not at high IDR

concentration. Interestingly, the εr(φ) simulated with SPC/E water and 100 mM NaCl

exhibits nonlinear decrease with increasing φ, which is akin to that predicted by the Bragg-

Pippard102 and Clausius-Mossotti models; but the TIP3P-simulated εr(φ) appears to be

linear in φ, which is more in line with the Maxwell Garnett and Bruggeman models.37

We utilize the salient features of the coarse-grained KH chain model for Ddx4 (Fig. 4) and

the IDR-concentration-dependent permittivities from explicit-water simulations (Fig. 6a)

to inform an analytical theory for IDR LLPS, referred to as RPA+FH, that combines a

random-phase-approximation (RPA) of charge-sequence-specific electrostatics and Flory-

Huggins (FH) mean-field treatment for the other interactions.34,35 An in-depth analysis of

our previous RPA formulation for IDR-concentration-dependent εr (Ref. 35) indicates that

only an εr(φ) linear in φ can be consistently treated by RPA (Supporting Information).

With this in mind, and considering the uncertainties of simulated εr(φ) for different water

models (Fig. 6a), three alternative linear forms of εr(φ) (straight lines in Fig. 6a) are used

for the present RPA formulation to cover reasonable variations in εr(φ).

The mean-field FH interaction parameters in our RPA+FH models for the four Ddx4

IDRs are obtained from the four sequences’ average pairwise non-electrostatic KH contact

energies. For each of the 236-residue sequences, we calculate the average of the Eij(r0)

[KH] quantity (Fig. 1a), for a given pair of residue types, over all pairs of residues on the

sequence, including a residue with itself (236 × 237/2 = 27,966 pairs total), except those

pairs involving two charged residues (Arg-Arg, Arg-Lys, Arg-Asp, Arg-Glu, Lys-Lys, Lys-

Asp, Lys-Glu, Asp-Asp, Asp-Glu, and Glu-Glu) because interactions of charged pairs are

accounted for by RPA separately. The resulting average energies in units of kcal mol−1,

−0.1047 for WT and CS, −0.0689 for FtoA, and −0.0924 for RtoK, are then input with

an overall multiplicative scaling factor into RPA+FH theories with φ-independent εr for

three different fixed εr = 80, 40, and 20. The computed RPA+FH phase diagrams are then

fitted to the corresponding phase diagrams simulated by coarse-grained KH chain models

in Fig. 4 to determine a single energy scaling factor from the best possible fit (Fig. S6).

The product of this factor and the sequence-dependent averages of Eij(r0) [KH] defined

above is now used as the enthalpic FH χ parameters in the final RPA+FH theories with

IDR-concentration-dependent εr(φ). Details of unit conversion between our explicit-chain

simulation and our analytical RPA+FH formulation are in the Supporting Information.
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In this connection, it is instructive to note that the corresponding averages of Eij(r0)

[HPS] for the HPS model are −0.1214 for WT and CS, −0.1179 for FtoA, and −0.1294 for

RtoK. In this case, the more favorable (more negative) average energy of RtoK than WT

underlies the mismatch of HPS prediction with experiment seen in Fig. 3b.

Figure 6b and c show the phase diagrams of the four Ddx4 IDRs predicted using

RPA+FH theories with three alternative IDR-concentration-dependent εr(φ) functions and

KH-derived mean-field FH parameters as prescribed above. In all cases considered, the

WT sequence (red curves) exhibit a higher propensity to LLPS than the three variants,

indicating that this general agreement with the experimental trend seen in Fig. 4 holds up

not only under the simplifying assumption of a constant εr but also when the dielectric

effect of the IDRs is taken into account. As discussed in the Supporting Information, we

have previously subtracted the self-energy term in the RPA formulation for numerical

efficiency because the term has no impact on the predicted phase diagram when εr is

a constant independent of φ because the self-energy contribution is identical for the

dilute and condensed phases. However, with an IDR-concentration-dependent εr(φ), as

for the cases considered here, the self energy—with the short-distance cutoff of Coulomb

interaction in the RPA formulation corresponding roughly to a finite Born radius105—is

physically relevant as it decreases with increasing εr, and therefore it affects the predicted

LLPS properties as manifested by the difference between Fig. 6b and 6c. It follows

that the self-energy term quantifies a tendency for an individual polyampholyte chain

to prefer the dilute phase with a higher εr—because of its more favorable electrostatic

interactions with the more polarizable environment—over the condensed phase with a

lower εr. This tendency disfavors LLPS. At the same time, the lower εr in the condensed

phase entails a stronger inter-chain attractive electrostatic force that drives the association

of polyampholyte chains. Therefore, taken together, relative to the assumption of a

constant εr, the overall impact of an IDR-concentration-dependent εr(φ) is expected to

be modest because it likely entails a partial tradeoff between these two opposing effects.

This consideration is borne out in Fig. 6b and c. When self energy is neglected in Fig. 6c,

LLPS propensities predicted using IDR-concentration-dependent εr(φ)’s are relatively high

(as characterized by the critical temperatures), comparable to those for a fixed εr = 40

in Fig. 4b. When the physical effect of self energy is accounted for in Fig. 6b, LLPS

propensities predicted using IDR-concentration-dependent εr(φ)’s are significantly lower:

overall they are comparable but slightly lower than those for a fixed εr = 80 in Fig. 4a.

Consistent with this physical picture, whereas the εr(φ) with a sharper decrease with

increasing φ leads to a higher LLPS propensity when self energy is neglected (dashed

curves have higher critical temperatures than dashed-dotted curves of the same color in

Fig. 6c), for the physically appropriate formulation that takes self energy into account, a

sharper decrease in εr(φ) with increasing φ is associated with a lower LLPS propensity

(dashed curves have lower critical temperatures than dashed-dotted curves of the same

color in Fig. 6b).
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CONCLUSION

In summary, we have gained new insights into the physical forces that drive the forma-

tion of biomolecular condensates by systematically evaluating coarse-grained, residue-based

protein chain models embodying different outlooks as to the types of interactions that are

important for LLPS of IDRs by comparing model predictions against experimental data

on WT Ddx4 IDR and its three variants. By requiring a model potential to account for

all observed relative LLPS propensities of the four sequences, we find that hydrophobicity,

electrostatic, and cation-π interactions are insufficient by themselves. Consistent ratio-

nalization of the experimental data entails significantly more favorable arginine-associated

over lysine-associated contacts, an effect that is most likely underpinned by π-π interactions.

This perspective is in line with bioinformatics analysis of LLPS propensities66 and recent

experiments on other IDRs.39,59,79 And it is reassuring that the balance of forces for LLPS

of IDRs appears to be approximately captured by common PDB-derived statistical poten-

tials developed to study protein folding and binding. We have also highlighted the reduced

electric permittivity inside condensed IDR phases. Although this effect’s overall influence

on LLPS propensity may be modest because of a tradeoff between its consequences on IDR

self energies and on inter-IDR interactions, the effect of IDR-concentration-dependent per-

mittivity by itself should be of functional importance in biology because of its potential

impact on biochemical reactions and preferential partition of certain molecules into a given

biomolecular condensate. All told, the present study serves not only to clarify the afore-

mentioned issues of general principles, it also represents a useful step toward a transferable

coarse-grained model for sequence-specific biomolecular LLPS. Many questions remain to

be further investigated in this regard. These include—and are not limited to—a proper

balance between attractive and repulsive interactions,52 devising temperature-dependent

effective interactions,49 an accurate account of small ion effects,41,106,107 and incorporation

of nucleic acids into LLPS simulations.42 Progress in these directions will deepen our un-

derstanding of fundamental molecular biological processes and will advance the design of

novel IDR-like materials as well.
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Models and Methods

COARSE-GRAINED CHAIN MODELS

The coarse-grained protein chain models in the present study basically follow those in

Refs. 51, 52, but with modified and additional features. In accordance with our previous

notation for explicit-chain simulation studies,46,52 let µ, ν = 1, 2, . . . , n be the labels for the

n IDP chains in the system, and i, j = 1, 2, . . . , N be the labels of the N residues in each

IDP chain. The total potential energy UT is a function of the residue positions, denoted

here as {Rµi}. Writing

UT = Ubond + Uel + Uaa , (S1)

where Ubond is the bond-length term for chain connectivity:

Ubond =
Kbond

2

n∑
µ=1

N−1∑
i=1

(rµi,µi+1 − l)2 (S2)

with rµi,νj ≡ |Rµi −Rνj|, l = 3.8 Å is the Cα-Cα virtual bond length [l is equivalent to a

in Eq. (3) of Ref. 52], Kbond = 10 kJ mol−1Å−2 [this value would be identical to that used

in Ref. 51 if the 10 kJ/Å2 value quoted above Eq. (1) in this reference is a typographical

error, i.e., it misses a “/mol”; by comparison, the much stiffer Kbond value used in Eq. (3) in

Ref. 52, which follows Ref. 75 with the aim of comparing with fixed-bond-length Monte Carlo

simulations, is equivalent to 23.7 MJ mol−1Å−2], and Uel is the electrostatic interaction:

Uel =
n∑

µ,ν=1

N∑
i,j=1

(µ,i) 6=(ν,j)

σµiσνje
2

4πε0εrrµi,νj
exp
(
− κrµi,νj

)
, (S3)

wherein σµi is the charge of the ith residue in units of elementary electronic charge e, (σµi is

independent of µ), ε0 is vacuum permittivity, εr is relative permittivity (dielectric constant),

and κ is the reciprocal of the Debye screening length, which is taken to be 10.0 Å in this

study (κ = 0.1 Å−1). Following Table S1 of Ref. 51, σ values for Arg and Lys are assigned

to be +1, those of Asp and Glu are −1, and that of His is +0.5. All other residues are

taken to be neutral, i.e., with σ = 0.

The Uaa in Eq. (S1) is the sum of pairwise interaction energies among the residues, viz.,

Uaa =
n∑

µ,ν=1

N∑
i,j=1

(µ,i)6=(ν,j)

(Uaa)µi,νj , (S4)

where (Uaa)µi,νj is the interaction between the ith residue of the µth chain with the jth

residue of the νth chain. We investigate several physically plausible Uaa functions, as follows:
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The HPS model

The hydrophobicity scale (HPS) model is identical to the one introduced by Dignon et

al.51 based on an atomic-level hydrophobicity scale devised by Kapcha and Rossky.74 The

interaction between amino-acid pairs in this model is given by

(Uaa)µi,νj = (Uaa|HPS)µi,νj ≡

{
(ULJ)µi,νj + (1− λHPS

ij )ε , if r ≤ 21/6aij

λHPS
ij (ULJ)µi,νj otherwise

(S5)

where λHPS
ij ≡ (λi + λj)/2, aij ≡ (ai + aj)/2, with λi and ai being the hydrophobicity and

diameter, respectively, of the model amino acid residue at sequence position i, as given,

respectively, by the λ and σ values in Table S1 of Ref. 51; (ULJ)µi,νj is the Lennard-Jones

(LJ) potential,

(ULJ)µi,νj = 4εij

[(
aij
rµi,νj

)12

−
(

aij
rµi,νj

)6
]
, (S6)

where the LJ well depth εij (not to be confused with the permittivities) is set to be εij = 0.2

kcal mol−1 irrespective of i, j for the HPS model, as in Ref. 51.

The HPS+cation-π models

In view of the importance of cation-π interactions in protein structure (see discussion in

the main text), we consider also a class of model potentials, Uaa|HPS+cπ’s, that augment the

HPS potential with cation-π terms for Arg-Phe, Arg-Trp, Arg-Tyr, Lys-Phe, Lys-Trp, and

Lys-Tyr residue pairs. In these interaction schemes,

(Uaa)µi,νj = (Uaa|HPS+cπ)µi,νj ≡ (Uaa|HPS)µi,νj + (Uaa|cπ)µi,νj , (S7)

where

(Uaa|cπ)µi,νj = (εcπ)ij

[(
aij
rµi,νj

)12

−
(

aij
rµi,νj

)6
]
, (S8)

and (εcπ)ij is the cation-π interaction strength, (εcπ)ij > 0 only if residue pair µi, νj is one

of the aforementioned six cation-π pairs, otherwise (εcπ)ij = 0. This simple form is adopted

from the cation-π term in Eq. (S1) of Ref. 70.

Two sets of (εcπ)ij values are analyzed in the present study:

(i) (εcπ)ij = 3.0 kcal mol−1 for all six cation-π pairs. The rationale for using a single

(εcπ)ij value is the suggestion by statistical and other inferences that the variations of

interaction strengths among the six cation-π amino acid residue pairs could be relatively

small,67,70 though subsequently we will also explore scenarios in which significant varia-

tions in cation-π interaction strengths exist among the pairs. When combined with the
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(Uaa|HPS)µi,νj contribution in Eq. (S7), (εcπ)ij = 3.0 kcal mol−1 leads to well depths for

(Uaa)µi,νj = (Uaa|HPS+cπ)µi,νj of ≈ 0.85 kcal mol−1 for Arg-Phe, Arg-Trp, Arg-Tyr, and

corresponding well depths of ≈ 0.90 kcal mol−1 for Lys-Phe, Lys-Trp, and Lys-Tyr (see

Fig. 2a of the main text). It should be noted here that we have chosen an (εcπ)ij value

significantly smaller than those used in Ref. 70 in order for the model cation-π interactions

to be more compatiable with the shallow well depths of the (Uaa|HPS)µi,νj potentials

in the HPS model, which has a maximum well depth of 0.2 kcal mol−1. Nonetheless,

the (εcπ)ij = 3.0 kcal mol−1 value still entails a cation-π interaction strength which is

about double that of electrostatic interaction when εr in Eq. (S3) corresponds to that of

bulk water (εr ≈ 80). This ratio between the strengths of cation-π and electrostatic in-

teractions in an aqueous environment conforms to a similar ratio deduced computationally.68

(ii) Different (εcπ)ij values for cation-π pairs involving Arg and pairs involving Lys, with

(εcπ)ij = 1.85 kcal mol−1 for Arg-Phe, Arg-Trp, Arg-Tyr and (εcπ)ij = 0.65 kcal mol−1

for Lys-Phe, Lys-Trp, and Lys-Tyr. This alternate model cation-π interaction scheme is

motivated by observed trends of statistical potentials derived from PDB protein structures

such as the Miyazawa-Jernigan energies72,73 used in the KH/MJ model51 (described below)

and the new analysis presented in the main text as well as recent experimental evidence,39,66

all of which suggest that cation-π interactions involving Arg is more favorable than those

involving Lys. The (εcπ)ij values in this scheme are chosen such that the combined well

depth of (Uaa|HPS+cπ)µi,νj for cation-aromatic pairs are comparable to the deepest well

depth of ≈ 0.5 kcal mol−1 in the KH/MJ model. In particular, (εcπ)ij = 1.85 kcal mol−1

leads to a combined well depth of ≈ 0.55 kcal mol−1 for terms in (Uaa|HPS+cπ)µi,νj involving

Arg-aromatic pairs, whereas (εcπ)ij = 0.65 kcal mol−1 leads to a corresponding combined

well depth of ≈ 0.3 kcal mol−1 for Lys-aromatic pairs (Fig. 2b of the main text).

The KH (KH/MJ) model

The Kim-Hummer/Miyazawa-Jernigan (KH/MJ) model corresponds to the KH model

used by Dignon et al.,51 and is based on the statistical potentials of Miyazawa and Jernigan

(MJ).73 Following Ref. 51, we refer to this model as KH in the main text and hereafter. The

basic functional form of the KH potential, Uaa|KH, is similar to that for the HPS potential

in Eq. (S5). For the KH model,

(Uaa)µi,νj = (Uaa|KH)µi,νj ≡

{
(ULJ)µi,νj + (1− λKH

ij )ε , if r ≤ 21/6aij

λKH
ij (ULJ)µi,νj otherwise

(S9)

where (ULJ)µi,νj is given by Eq. (S6), but now εij depends on i, j. Specifically, for the KH

model

εij = |α(eMJ,ij − e0)| , (S10)

where eMJ,ij is the MJ statistical potential between the residue type at position i and the
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residue type at position j, e0 is a constant shift of the energies, and

λKH
ij =

{
1 if eMJ,ij ≤ e0

−1 otherwise
. (S11)

We use α = 0.228 and e0 = −1.0 kcal mol−1 in the present study. The resulting pairwise

energies eMJ correspond to the KH-D parameter set for IDRs in Table S3 of Ref. 51.

Simulation method

Molecular (Langevin) dynamics simulations are carried out using the protocol outlined

in the “Simulation framework” section of Ref. 51, with parameters modified for the

present applications. For each simulation, we consider 100 copies of one of the four Ddx4

IDR sequences (Fig. S1), governed by one of the above coarse-grained model potential

functions. At the initial step, all the IDR chains are randomly placed in a relatively large,

300 × 300 × 300 Å3 simulation box. Energy minimization is then applied to minimize

unfavorable steric clashes among the amino acid residues. Equilibrating NPT simulation

is then performed for 50 ns at a temperature of 100 K and pressure of 1 bar, maintained

by Martyna-Tobias-Klein (MTK) thermostat and barostat108,109 with a coupling constant

of 1 ps. It should be noted that the simulation pressure does not correspond to physical

pressure because solvent (water) pressure is not accounted for in the present coarse-grained,

implicit-solvent model setup. In this regard, pressure is used entirely as an efficient com-

putational device for achieving condensed configurations as starting point of subsequent

simulations. Throughout the dynamics simulation, equations of motion are integrated

with a timestep of 10 fs and periodic boundary conditions are applied to all three spatial

dimensions. After the initial NPT step, the simulation box is compressed again for 50

ns along all three spatial dimensions at 100 K as successive NVT ensembles (P changes

during the process) using Langevin thermostat with friction coefficient 1 ps−1. The extent

of compression varies for different systems. Then the dimension along one of the three

Cartesian axes of the simulation box is expanded 20 times relative to its initial value for a

period of 50 ns while maintaing the temperature at 100 K. Equilibration NVT simulation

is then performed at the chosen temperature for 2 µs. Finally, production NVT runs are

carried out for 4 µs and the chain configurations are saved every 0.5 ns for subsequent

analysis. During the production run, the friction coefficient of the Langevin thermostat

is decreased to 0.01 ps−1 for sampling efficiency. All simulations are performed by the

HOOMD-blue software package.110,111 After the snapshots of simulated chain configurations

are collected, the procedure for constructing phase diagrams from the configurations follows

that described in the “Simulation framework” section of Ref. 51 and the “Results and

discussion” section of Ref. 52.
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EXPLICIT-WATER SIMULATION OF IDR-CONCENTRATION-DEPENDENT

PERMITTIVITY

Computational procedure

We estimate the IDR-concentration-dependent relative permittivity35,37 by atomistic

explicit-water molecular dynamic simulations performed at six Ddx4 IDR (wildtype, WT)

concentrations using GROMACS, version 2016.5.96 The simulation proceeds as follows.

Initially, a fully extended configuration of a Ddx4 IDR is prepared by PYMOL,112 to be

used as input for Packmol113 to place five Ddx4 IDRs at random locations in a cubic

simulation box. The size of the box is varied to achieve different Ddx4 IDR concentrations.

The Ddx4 IDRs are solvated by explicit water models in the simulation box. Each of

the systems so constructed is then charge neutralized by adding appropriate number of

Na+ ions. This is followed by energy minimization by steepest descent to minimize steric

clashes. Hydrogen bonds are constrained with the LINCS algorithm.114 Equation of motion

is integrated using a time step of 2 fs with the leap-frog integrator115 and cubic periodic

boundary conditions. Long spatial-range electrostatic interaction is treated with particle

mesh Ewald (PME) method116 with a grid spacing of 0.16 nm and an interpolation order

of 4. A cut-off of 1 nm is used for short-range van der Waals and electrostatic interactions.

Initial equilibration is carried out for 2 ns under NV T conditions at 300 K. Temperature

is maintained by Velocity-rescale thermostat117 with a time constant of 0.1 ps for all

simulations. This is followed by equilibration for 2 ns at 300 K under NPT conditions

under 1 atm pressure, which is maintained by a Berendsen barostat118 with a coupling

constant of 2 ps. Since the Berendsen barostat does not always yield an NPT ensemble

with high accuracy, the resulting system is equilibrated again for 1 ns as an NPT ensemble

using the Parrinello-Rahman barostat119,120 with the same coupling constant, after which

the production NPT run is carried out for 20 ns using the same Parrinello-Rahman

barostat. Configurations are saved every 1.0 ps during the production run for subsequent

analysis. In addition to simulations of Ddx4 IDR in essentially pure water (except a few

Na+ ions), we also conduct simulations with Na+ and Cl− ions at [NaCl] = 100 mM.

In order to enable a potentially more direct comparison with analytical theory that does

not include the charges of amino acid residues in the estimation of effective permittivity

of the aqueoue medium,35,37 we carry out another set of simulations with Ddx4 IDR

concentrations similar to the ones for which the above protocol is applied but with the

charges of the sidechains of the charged amino acids Arg, Lys, Asp, and Glu artifically

turned off. This set of simulation data is referred to as artificial Ddx4 or aDdx4. The

same aforementioned procedure for equilibration and production is applied for this set of

simulations. The amber99sb-ildn force field97 and the TIP3P water model98 are used for

both sets of simulations. To assess the robustness of the computed εr values, all simulations

are also repeated using the SPC/E water model.99
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Relative permittivity analysis

Static relative permittivity εr (dielectric constant) is determined by the fluctuation of

the total dipole moment vector, MT, of the system via the relation89

εr =
〈M2

T〉 − 〈MT〉2

3V ε0kBT
+ 1 , (S12)

where MT ≡ (MT ·MT)1/2 is the magnitude of the system dipole moment, 〈. . . 〉 denotes

averaging over system configurations under equilibrium conditions, and V is the volume of

the simulation box. This relation, Eq. (S12), has been used to compute the static dielectric

constant of several biological systems.89,91,121 Following the formulation in Ref. 91, MT

is obtained as sum of dipole moments of individual water molecules and individual Ddx4

IDR chain molecules. Irrespective of the net charge of the molecule (water has net charge 0

whereas Ddx4 IDR has net charge ≈ −4e), the dipole moment, m, of a molecule comprising

of Nm atoms with masses ms (s = 1, 2, . . . , Nm) at positions rs with point charges qs is

given by m =
∑Nm

s qs(rs − rcm), where rcm ≡
∑Nm

s msrs/
∑Nm

s ms is the center-of-mass

position of the molecule. Accordingly, atomic ions, Na+’s and Cl−’s in our case, have

zero dipole moment in this formulation. Once the dipole moments of the water and Ddx4

molecules are determined in this manner, they are combined to yield MT which in turn

provides the system relative permittivity through Eq. (S12). Our computed εr for various

concentrations of Ddx4 IDR at different salt concentrations using both the TIP3P and

SPC/E water models are given in Table S1.
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Random-Phase-Approximation (RPA) Theory of Phase Separation
with IDR-Concentration-Dependent Permittivity

BACKGROUND

Our group has previously considered, within our RPA theory of liquid-liquid phase sep-

aration (LLPS), the effects of relative permittivity εr being dependent upon local protein

concentration;35,37 i.e., εr = εr(φm) where φm is polymer (IDR) volume fraction. An εr(φm)

necessitates changes to our earlier RPA expressions for electrostatic interaction for a con-

stant, position-independent εr, viz. [Eq. (33) of Ref. 35],

fel =
1

2

∫
d3(ka)3

(2π)3

{
ln[det(1 + ĜkÛk)]− Tr(ρ̂ Ûk)

}
. (S13)

Here, as in Ref. 35, a3 is unit volume, Ĝk is the position correlation matrix, ρ̂ is the density

operator that provides the densities of various molecular species in the system (accounting

for matter, not electric charge), and Ûk accounts for sequence-dependent Coulumb interac-

tions [the expression for Ûk is provided by Eq. (35) of Ref. 35]. For the simple illustrative

case here, which is a system of only IDR polymers without salt or counterions, Ĝk reduces to

the monomer-monomer correlation (Ĝk)ij = (ρm/N)(ĜM(kl))ij = ρm exp[−(kl)2|i−j|/6]/N ,

where ρm is monomer density, l is the length of a polymer link (virtual bond length, denoted

as b in Ref. 35), i, j = 1, 2, . . . N are monomer labels along the polymer chain with N being

the length of a chain, and ρ̂ Ûk = ρmÛk/N [Eq. (4) of Ref. 34].

When εr = εr(φm), we applied the following modified version of fel [Eq. (68) of Ref. 35]:

fel =

∫
dk̃k̃2

4π2

{
1

η
ln
[
1 + ηG1(k̃)

]
− G2(k̃)

}
, (S14)

where k̃ = kb, η = (b/a)3 and, in the absence of salt and counterions, Eqs. (69a) and (69b)

of Ref. 35 become

G1(k̃) =
4π

k̃2[1 + k̃2]T ∗0 εr(φm)

(
φm
N
〈σ|ĜM(k̃)|σ〉

)
, (S15a)

G2(k̃) =
4π

k̃2[1 + k̃2]T ∗0 εr(φm)

(
φm
N

N∑
i=1

|σi|

)
. (S15b)

As in Refs. 35 and 37, column vector |σ〉 is the charge sequence—its ith element, σi, being

the charge of the ith monomer (residue) of the IDR in units of the electronic charge e, and

〈σ| ≡ |σ〉T; T ∗0 ≡ 4πε0kBTb/e
2 is a reduced temperature. As noted above, ε0 is vacuum

permittivity, kB is Boltzmann constant, and T is absolute temperature. Previously,35,37

expressions such as above Eqs. (S14) and (S15) for εr(φm) were obtained heuristically by

replacing every instance of εr in the corresponding constant-εr expressions by εr(φm).
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CONCENTRATION-DEPENDENT PERMITTIVITY IN THE RPA CONTEXT

We now examine whether—and if so what—restrictive conditions have to be satisfied for

the heuristic prescription Eqs. (S14) and (S15) to be valid.

When εr is position-independent, the electrostatic interaction energy (potential), in units

of kBT , between two unit point charges e at positions r and r′ is given by U(r, r′) =

U(r− r′) = e2/(4πε0εrkBT |r− r′|). However, when εr is position-dependent, i.e., εr = εr(r),

in general the electrostatic potential U is not expressible in a simple close form because it

is the solution to the generalized Poisson equation

−∇r · [εr(r)∇r U(r− r′)] = 4πlBδ(r− r′) , (S16)

as noted by Wang,105 where lB = e2/(4πε0kBT ) is vacuum Bjerrum length (unlike Ref. 35,

here lB does not include εr). Thus, position dependence of εr can entail rather complex

modifications of the charge-charge interactions. It cannot be analytically treated, in general,

by simply replacing the constant εr in U(r, r′) = e2/(4πε0εrkBT |r− r′|) by εr(r) or εr(r
′).

Another concern is that, by construction, RPA theory accounts only for the lowest-order

polymer density fluctuations beyond the mean-field homogeneous density. In contrast, some

of the proposed IDR-concentration-dependent form of εr = εr(φm), such as the “slab”102 and

Clasusius-Mossotti122 models and the effective medium approximations of Maxwell Garnett

and of Bruggeman123 considered in Refs. 35, 37 involve higher-order dependence on φm,

raising questions as to whether application of these εr(φm) formula in the context of RPA

is consistent with the basic premises of RPA. We address these issues below.

DERIVATION OF RPA WITH CONCENTRATION-DEPENDENT PERMITTIVITY

Unless specified otherwise, the notation in this subsection follows that of Ref. 41, as the

following formal development is, one one hand, a restricted case of the theory in Ref. 41

in that here we do not consider salt, counterions or Kuhn-length renormalization. On the

other hand, the present analysis is an extension of the theory in Ref. 41, which is limited

to constant εr’s, to case with a position-dependent εr(r). Accordingly, we note that the

number of chains in the system, which is symbolized by n in the main text and elsewhere in

this Supporting Information, is denoted by np (following Ref. 41) in the derivation below.

In general, the Boltzmann factor for the electrostatic interaction energy of a system

with charge density ρ(r) is given by exp[−(1/2)
∫
drdr′ρ(r)U(r, r′)ρ(r′)]. (Note that the

electric charge density ρ(r) here and in subsequent development in this section should

not be confused with the matter density operator ρ̂ or its matrix elements.) We focus

first on obtaining an equivalent mathematical form of this factor that is amenable to RPA

analyses. By standard field-theoretic Hubbard-Stratonovich transformation, this factor may
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be expressed as a functional integral over a conjugate field ψ(r):

1

(det Û)1/2

{∏
r

∫
dψ(r)√

2π

}
exp

[
−1

2

∫
dr′dr′′ψ(r′)U−1(r′, r′′)ψ(r′′)− i

∫
dr′ρ(r′)ψ(r′)

]
,

(S17)

where Û denote, in matrix notation, the operator U(r, r′) [i.e., the matrix element

Ûr,r′ = U(r, r′)], U−1(r′, r′′) is the r′, r′′ matrix element of the inverse operator Û−1
of Û . By definition,

∫
dr′′U−1(r, r′′)U(r′′, r′) = δ(r − r′). Consider now the operator

−∇r′′ · [εr(r′′)∇r′′δ(r− r′′)]/(4πlB). Since∫
dr′′{∇r′′ · [εr(r′′)∇r′′δ(r− r′′)]}U(r′′, r′) =

∫
dr′′[εr(r

′′)∇r′′δ(r− r′′)] · ∇r′′U(r′′, r′)

=

∫
dr′′δ(r− r′′){∇r′′ · [εr(r′′)∇r′′U(r′′, r′)]}

(S18)

follows from repeated applications of integration by parts under the reasonable assumption

that the values of the integrand cancel or vanish at the pertinent boundaries of integration,

and by Eq. (S16) the quantity in curly brackets in the last term in Eq. (S18) is −4πlBδ(r
′′−

r′), Eq. (S18) is evaluated as −4πlB
∫
dr′′ δ(r− r′′)δ(r′′− r′) = −4πlBδ(r− r′) and therefore

−∇r′′ · [εr(r′′)∇r′′δ(r− r′′)]/(4πlB) is the r, r′′ matrix element of the inverse of Û , viz.,

U−1(r, r′′) = − 1

4πlB
∇r′′ · [εr(r′′)∇r′′δ(r− r′′)] . (S19)

Equivalently, the r′′, r matrix element of Û−1 takes the form

U−1(r′′, r) = − 1

4πlB
∇r · [εr(r)∇rδ(r

′′ − r)] . (S20)

It follows that the −(1/2)
∫
dr′dr′′ψ(r′)U−1(r′, r′′)ψ(r′′) factor in Eq. (S17) is given by

−1

2

∫
dr′dr′′ψ(r′)U−1(r′, r′′)ψ(r′′) =

1

8πlB

∫
drdr′ψ(r){∇r′ · [εr(r′)∇r′δ(r− r′)]}ψ(r′)

= − 1

8πlB

∫
drdr′ψ(r)[εr(r

′)∇r′δ(r− r′)] · [∇r′ψ(r′)]

=
1

8πlB

∫
drdr′ψ(r)[εr(r

′)∇rδ(r− r′)] · [∇r′ψ(r′)]

= − 1

8πlB

∫
drdr′εr(r

′)δ(r− r′)[∇rψ(r)] · [∇r′ψ(r′)]

= − 1

8πlB

∫
dr εr(r)[∇rψ(r)] · [∇rψ(r)]

= − 1

8πlB

∫
dr εr(r)|∇ψ(r)|2 ,

(S21)
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where the first equality follows from a mere change in the integration variable, the sec-

ond and fourth equalities from integration by parts assuming that boundary contribution

vanishes, the third equality from ∇r′δ(r− r′) = −∇rδ(r− r′), and the r subscript of ∇r

is dropped in the final expression because there is little danger of notational ambiguity.

Equation (S21) is identical to the corresponding terms in the Hamiltonians in Eq. (3) of

Ref. 124 and Eq. (2.7) of Ref. 105 for systems with an inhomogeneous dielectric medium.

We turn next to the (det Û)−1/2 factor in Eq. (S17). For any matrices A and B,

(detA)−1 = (detA−1) and (detAB) = (detA)(detB), we write (det Û)−1/2 = (det Û−1)1/2
= (det ε̂r)

1/2(det Û−10 )1/2, where Û−1’s matrix elements U−1rr′ ≡ U−1(r, r′) is given by

Eq. (S19), the r, r′ matrix elements of the operators ε̂r and Û−10 are defined, respectively, by

(ε̂r)rr′ ≡ εr(r)δ(r− r′) , (S22)

(Û−10 )rr′ ≡ −
1

4πlB
∇2

rδ(r− r′) . (S23)

Then, ε̂r Û−10 = Û−1 can be ready verified using integration by parts:

(ε̂r Û−10 )rr′ =

∫
dr′′(ε̂r)rr′′(Û−10 )r′′r′

= − 1

4πlB

∫
dr′′εr(r)δ(r− r′′)∇2

r′′δ(r
′′ − r′)

=
1

4πlB

∫
dr′′εr(r

′′)[∇r′′δ(r− r′′)] · [∇r′′δ(r
′′ − r′)]

= − 1

4πlB

∫
dr′′∇r′′ · {εr(r′′)[∇r′′δ(r− r′′)]}δ(r′′ − r′)

= − 1

4πlB
∇r′ · [εr(r′)∇r′δ(r− r′)]

= Û−1rr′ , Q.E.D.

(S24)

Because ε̂r in Eq. (S22) is a diagonal matrix,

(det ε̂r) =
∏
r

εr(r) . (S25)

Using Fourier transformation from r to k space,41

(det Û−10 ) =
∏
k 6=0

k2

4πlB
, (S26)

where k2 ≡ |k|2. Note that the k = 0 term is excluded in the above and subsequent

considerations because it does not contribute to the exponential factor in Eq. (S17) for our

electrically neutral system of overall neutral polyampholytes.
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The free energy per unit volume l3 in units of kBT of our system is given by

f =
φm
N

lnφm + (1− φm) ln(1− φm)− l3

Ω
lnZel, (S27)

where N is the chain length (number of monomers) of the polyampholyte, Ω is solution

(system) volume, φm ≡ l3npN/Ω is monomer volume fraction with np being the total

number of identical polyampholyte chains in the solution [np corresponds to the varible

n used above in the formulation for explicit-chain simulations; it should also be noted

here that the alternately defined φm = a3npN/Ω in Eq. (3) of Ref. 35—which applies to

Eqs. (S14) and (S15) in the present work—is equal to polyampholyte volume fraction only

when the size of a monomer ≈ l3 is equal to the model volume unit a3 of the model, i.e.,

when rm = 1; whereas polyampholyte volume fraction is given by rmφm in general35; for

simplicity, rm = 1 is assumed below unless specified otherwise], and Zel is the electrostatic

partition function, which may be viewed as a special case of Z ′ in Eq. (A9) of Ref. 41 with

no salt, no counterion, and v2 = 0, but now extended to εr = εr(r). Zel is given by integrals

over monomer coordinates,

Zel =

∫ np∏
α=1

N∏
τ=1

dRα,τe
−H [R] , (S28)

where Rα,τ denotes the coordinate of the τth monomer in the αth polyampholyte [Rα,τ

corresponds to the position variable Rµi defined before Eq. (S1) in the formulation for

explicit-chain simulations; the monomer label τ corresponds also to the label i in Eq. (S15b)],

and

H [R] =
3

2l2

np∑
α=1

N−1∑
τ=1

(Rα,τ+1 −Rα,τ )
2 +

1

2

np∑
α,β=1

N∑
τ,µ=1

Vτµαβ (Rα,τ ,Rβ,µ) . (S29)

The first term of H [R] is for Gaussian-chain connectivity of the polyampholyte chains and

Vτµαβ in the second term is the interaction potential energy between the τth monomer in the

αth chain and the µth monomer in the βth chain, viz.,

Vτµαβ (r, r′) = lBστσµU(r, r′) , (S30)

where στ , σµ are the charges, respectively, of monomers τ , µ along each of the np polyam-

pholyte chains. We may now rewrite Eq. (S28) as a functional integral over the charge

density ρ(r) by including in the integrand a δ-functional for ρ(r):

Zel =

∫ ∏
r

dρ(r)

∫ np∏
α=1

N∏
τ=1

dRα,τe
−H [ρ,R] δ[ρ(r)−

np∑
α=1

N∑
τ=1

στδ(r−Rα,τ )] , (S31)
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which follows from ρ(r) =
∑np

α=1

∑N
τ=1 στδ(r−Rα,τ ), whereas H [ρ,R] is defined as

H [ρ,R] =
3

2l2

np∑
α=1

N−1∑
τ=1

(Rα,τ+1 −Rα,τ )
2 +

1

2

∫
drdr′ ρ(r)U(r, r′)ρ(r′) . (S32)

Now, by applying Eqs. (S17) and (S21), the partition function Zel in Eq. (S31) may be

expressed as a functional integral over ρ(r), Rα,τ , and the conjugate fields ψ(r):

Zel =

∫ ∏
r

dρ(r)

∫ np∏
α=1

N∏
τ=1

dRα,τ exp

[
− 3

2l2

np∑
α=1

N−1∑
τ=1

(Rα,τ+1 −Rα,τ )
2

]
× 1

(det Û)1/2

{∏
r

∫
dψ(r)√

2π

}
exp

[
− 1

8πlB

∫
dr εr(r)|∇ψ(r)|2 − i

∫
dr′ρ(r′)ψ(r′)

]

× δ[ρ(r)−
np∑
α=1

N∑
τ=1

στδ(r−Rα,τ )] .

(S33)

After performing the
∏

r dρ(r) functional integrals in the above expression, Zel becomes

Zel =

∫ np∏
α=1

N∏
τ=1

dRα,τ
1

(det Û)1/2

{∏
r

∫
dψ(r)√

2π

}
e−H [ψ,R] , (S34)

where

H [ψ,R] =
3

2l2

np∑
α=1

N−1∑
τ=1

(Rα,τ+1 −Rα,τ )
2 +

1

8πlB

∫
dr εr(r)|∇ψ(r)|2 + i

np∑
α=1

N∑
τ=1

στψ(Rα,τ ) .

(S35)

We now proceed to evaluate the (det Û)−1/2 factor in Eq. (S34) via the aforementioned

relations (det Û)−1/2 = (det Û−1)1/2 and Û−1 = ε̂r Û−10 . Using Eq. (S25) and applying the

correspondence ∑
r

→ Nr

Ω

∫
dr (S36)

where Nr is formally the number of r positions in the system, we may write

√
det ε̂r =

∏
r

√
εr(r) = exp

{
1

2

∑
r

ln[εr(r)]

}
= exp

{
Nr

2Ω

∫
dr ln[εr(r)]

}
. (S37)

For reasons to be enunciated below, consider the case in which εr(r) is a linear combination

of polyampholyte and water relative permittivites, i.e.,

εr(r) = εpφm(r) + εw[1− φm(r)] = εw + ε′φm(r) , (S38)
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where εp and εw are, respectively, the relative permittivities of polymer and water, and

ε′ = εp − εw. Since the position-dependent monomer density

φm(r) = l3
np∑
α=1

N∑
τ=1

δ (r−Rα,τ ) , (S39)

ln[εr(r)] = ln εw + ln

[
1 +

ε′

εw
φm(r)

]
= ln εw + ln

[
1 +

ε′l3

εw

np∑
α=1

N∑
τ=1

δ (r−Rα,τ )

]
.

(S40)

To be consistent with RPA which accounts only for lowest-order polymer density fluctua-

tions, we approximate the above expression for ln[εr(r)] by including terms only up to the

one linear in φm, viz.,

ln[εr(r)] ≈ ln εw +
ε′l3

εw

np∑
α=1

N∑
τ=1

δ (r−Rα,τ ) . (S41)

Hence the argument of the exponential function in Eq. (S37) is given by

Nr

2Ω

∫
dr ln[εr(r)] ≈Nr

2
ln εw +

Nrε
′l3npN

2εwΩ
=
Nr

2
ln εw +

Nrε
′

2εw
φm

≈Nr

2
ln εw +

Nr

2
ln

(
1 +

ε′

εw
φm

)
=
Nr

2
ln[εr(φm)] ,

(S42)

where the position-independent φm ≡ l3
∫
dr
∑np

α=1

∑N
τ=1 δ(r − Rα,τ ) = l3npN/Ω is the

overall average monomer volume fraction, the second approximate relation is in line with

that in Eq. (S41), and the last equality follows from definition Eq. (S38). In formulations

involving a size-dependent mean-field lattice model with φm defined in terms of unit volume

a3 6= l3 (Ref. 35), the actual average monomer volume fraction φ is given by φ = rmφm
where rm is the monomer size factor, in which case εr(φm) is understood to represent the

εr expression in which all φm is replaced by φ = rmφm; i.e., εr(φm)→ εr(φm → φ = rmφm).

With Eq. (S42), further application of Eqs. (S26) and (S37) yields

(det Û)−1/2 =
√

det ε̂r

√
det Û−10 ≈

[√
εr(φm)

]Nr ∏
k 6=0

√
k2

4πlB

=
∏
k 6=0

√
k2[εr(φm)]Nr/(Nr−1)

4πlB
≈
∏
k 6=0

√
k2εr(φm)

4πlB

(S43)
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for the (det Û)−1/2 factor in Eq. (S34). To arrive at this expression, we made use of the fact

that the total number of reciprocal space positions k is Nr (same as the total number of

coordinate space positions r when k = 0 is included in the count), and that Nr � 1. It

follows that Zel in Eq. (S34) may be written as

Zel =

∏
k 6=0

√
k2εr(φm)

4πlB


∫ np∏

α=1

N∏
τ=1

dRα,τ

{∏
r

∫
dψ(r)√

2π

}
e−H [ψ,R] , (S44)

where H [ψ,R] is given by Eq. (S35) with εr(r) given by Eq. (S38):

H [ψ,R] =
εw

8πlB

∫
dr [∇ψ(r)]2 +

ε′

8πlB

∫
dr φm(r) [∇ψ(r)]2

+
3

2l2

np∑
α=1

N−1∑
τ=1

(Rα,τ+1 −Rα,τ )
2 + i

np∑
α=1

N∑
τ=1

στψ(Rα,τ )

=
εw

8πlB

∫
dr [∇ψ(r)]2 +

np∑
α=1

{
3

2l2

N−1∑
τ=1

(Rα,τ+1 −Rα,τ )
2

+
N∑
τ=1

[
iστψ(Rα,τ ) +

ε′l3

8πlB
[∇ψ(Rα,τ )]

2

]}
,

(S45)

where Eq. (S39) for φm(r) have been applied to yield the last equality. Utilizing the Fourier

transformation ψk = (Ω/Nr)
∑

r ψ(r) exp(−ik · r) of the conjugate field ψ(r) [which may

then be expressed as the inverse transformation of ψk, i.e., ψ(r) = (1/Ω)
∑

k ψk exp(ik · r)]

and the
∑

r ↔ (Nr/Ω)
∫
dr correspondence in Eq. (S36), the first term in the above

Eq. (S45) can be rewritten as

εw
8πlB

∫
dr [∇ψ(r)]2 → εw

8πlB

(
Ω

Nr

)∑
r

[(
1

Ω

∑
k

ψk∇e−ik·r
)
·

(
1

Ω

∑
k′

ψk′∇e−ik′·r

)]

= − εwΩ

8πlB

1

Ω2

∑
k

∑
k′

ψk(k · k′)ψk′δk+k′

=
1

2Ω

∑
k

εwk
2

4πlB
ψkψ−k =

1

2Ω

∑
k 6=0

εwk
2

4πlB
ψkψ−k ,

(S46)

where the last equality follows because the k = 0 term vanishes by virtue of the k2 fac-

tor. The remaining terms of H [ψ,R] in Eq. (S45) can be rewritten as the summation of

contributions from np independent polymers, as follows. Consider the partition function

Qp[ψ] =

∫
D [R]e−Hp[ψ,R] (S47)
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for a single polymer, where D [R] =
∏N

τ=1 dRτ , and

Hp[ψ,R] ≡ 3

2l2

N−1∑
τ=1

(Rτ+1 −Rτ )
2

+
N∑
τ=1

[
i

Ω

∑
k

στψke
−ik·Rτ − ε′l3

8πlB

1

Ω2

∑
k

∑
k′

(k · k′)ψkψk′e−i(k+k′)·Rτ

]

=
3

2l2

N−1∑
τ=1

(Rτ+1 −Rτ )
2

+
N∑
τ=1

[
i

Ω

∑
k 6=0

στψke
−ik·Rτ − ε′l3

8πlB

1

Ω2

∑
k,k′ 6=0

(k · k′)ψkψk′e−i(k+k′)·Rτ

]
.

(S48)

Note that the label α in Rα,τ is dropped in
∏N

τ=1 dRτ and Eq. (S48) because the pertinent

integration is only over the monomer coordinates of a single polymer chain. The k,k′ = 0

terms can be excluded in the summations of the last line of Eq. (S48) because in the first

summation
∑N

τ=1 στ = 0 for the overall neutral polyampholytes considered here and the

(k · k′) factor in the second summation means that the k,k′ = 0 terms are identically zero.

Utilizing the definition of ψ(r) to ψk Fourier transformation stated after Eq. (S45), it can

readily be verified that Hp[ψ,R] is precisely the k-space version of the quantity enclosed in

curly brackets on the right hand side of Eq. (S45). Upon changing the functional integration

variables ψ(r) in Eq. (S44) to ψk and including the k-independent functional Jacobian

|δψ(r)/δψk| (which have no effect on the configurational distribution of the system),{∏
r

∫
dψ(r)√

2π

}
→

{∏
k

∫ √
Nr

2πΩ2
dψk

}
(S49)

formally, and thus Eq. (S44) can now be recast in the equivalent form

Zel =

∏
k 6=0

√
k2εr(φm)

4πlB


{∏

k

∫ √
Nr

2πΩ2
dψk

}
exp

[
− 1

2Ω

∑
k 6=0

εwk
2

4πlB
ψkψ−k

]

×
∫ np∏

α=1

{
N∏
τ=1

dRτ exp (−Hp[ψ,R])

}
,

(S50)

where we have made use of the fact that in the above expression, the first exponential

factor [from Eq. (S46)] is independent of Rα,τ , and the quantity enclosed in the last set of

curly brakets [from Eq. (S48)] is identical for all np values of α, thus the entire last line of

Eq. (S50) is equal to np lnQp[ψ] in accordance with Eq. (S47). Because, as argued above,

there is no k = 0 contribution to Hp[ψ,R], the
∏

k(Nr/2πΩ2)1/2
∫
dψk functional integral in

Eq. (S50) may be restricted to
∏

k 6=0(Nr/2πΩ2)1/2
∫
dψk with no impact on configurational
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distribution. Therefore, Zel takes the simplified form:

Zel =

∏
k 6=0

∫ √
Nr

2πΩ2
dψk

√
εr(φm)k2

4πlB

 e−H [ψk] , (S51)

where

H [ψk] =
1

2Ω

∑
k 6=0

εwk
2

4πlB
ψkψ−k − np lnQp[ψ] . (S52)

We are now in a position to apply RPA by expanding lnQp around ψk = 0 up to second

order in ψk,41 namely

lnQp[ψ] ≈ lnQp[ψ = 0] +
∑
k

(
δ lnQp
δψk

)
ψ=0

ψk +
1

2

∑
k,k′

(
δ2 lnQp
δψkδψk′

)
ψ=0

ψkψk′ , (S53)

wherein the zeroth order term (first term on the right hand side) is a constant that plays

no role in determining configurational distribution. The first order term(
δ lnQp
δψk

)
ψ=0

=
1

Qp[ψ = 0]

δQp
δψk

∣∣∣∣
ψ=0

=
N∑
τ=1

〈
− i

Ω
στe

−ik·Rτ + 2× ε′l3

8πlB

1

Ω2
k ·
∑
k′ 6=0

k′ψk′e−i(k+k′)·Rτ

〉
ψ=0

=− i

Ω

N∑
τ=1

στ
〈
e−ik·Rτ

〉
ψ=0

=0

(S54)

as well. Here, the average 〈...〉ψ=0 is over monomer coordinates [R] and evaluated at ψk = 0,

the third equality follows because the second term in the second line of the above equation

contains a factor of ψ that is set to zero, and the last equality is a consequence of the overall

neutrality of the polyampholytes in the system we considered (
∑N

τ=1 στ = 0). The second

order term in the above Eq. (S53) is given by(
δ2 lnQp
δψkδψk′

)
ψ=0

=
1

Qp[ψ = 0]

δ2Qp
δψkδψ′k

∣∣∣∣
ψ=0

− 1

Qp[ψ = 0]

δQp
δψk

∣∣∣∣
ψ=0

× 1

Qp[ψ = 0]

δQp
δψ′k

∣∣∣∣
ψ=0

=
1

Qp[ψ = 0]

δ2Qp
δψkδψ′k

∣∣∣∣
ψ=0

=
1

Ω2

ε′l3

4πlB
k · k′

N∑
τ=1

〈
e−i(k+k′)·Rτ

〉
ψ=0
− 1

Ω2

N∑
τ,µ=1

στσµ

〈
e−i(k·Rτ+k′Rµ)

〉
ψ=0

,

(S55)
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where the second equality follows from Eq. (S54). The two R-averages over Gaussian chain

configurations in the above Eq. (S55) may be evaluated as follows. For
〈
e−i(k+k′)·Rτ

〉
ψ=0

,

only a single monomer coordinate variable Rτ is involved and thus it is uncontrained and

R-averaging entails only a single integration of Rτ over the entire system volume Ω. The

correspondence
∫
dRτ ↔ (Ω/Nr)

∑
Rτ

yields
〈
e−i(k+k′)·Rτ

〉
ψ=0

= δk,−k′ . Next, to compute〈
e−i(k·Rτ+k′Rµ)

〉
ψ=0

, we rewrite it as
〈
e−ik·(Rτ−Rµ)e−i(k+k′)·Rµ)

〉
ψ=0

, which indicates that the

R-averaging involves integrating over two monomer coordinates, one is unconstrained and

the other is constrained by the Gaussian chain statistics for two points separated by a

contour length l|τ − µ|. Without loss of generality, we select Rµ to be the unconstrained

coordinates. As for the first average, summing over Rµ using the
∫
dRµ ↔ (Ω/Nr)

∑
Rµ

correspondence yields the Kronecker δk,−k′ . In accordance with the Gaussian statistics

governed by the 3/2l2
∑N−1

τ=1 (Rτ+1−Rτ )
2 term ofHp[ψ,R] in Eq. (S48), Rτ−Rµ is weighted

by exp(−3|Rτ − Rµ|2/2l2|τ − µ|), and therefore the R-averaging of e−ik·(Rτ−Rµ) yields

exp(−k2l2|τ − µ|/6). These considerations allow us to arrive at the expression(
δ2 lnQp
δψkδψk′

)
ψ=0

= −δk,−k
′

Ω2

[
ε′Nl3k2

4πlB
+ 〈σ|ĜM(kl)|σ〉

]
(S56)

for Eq. (S55), where [ĜM(kl)]τµ = exp[−(kl)2|τ−µ|/6] as defined above. Therefore, accord-

ing to Eqs. (S53) and (S54), the np lnQp[ψ] term in Eq. (S52) is given by

np lnQp[ψ] ≈ 1

2
np
∑
k,k′

(
δ2 lnQp
δψkδψk′

)
ψ=0

ψkψk′

= − np
2Ω2

∑
k,k′

δk,−k′

[
ε′Nl3k2

4πlB
+ 〈σ|ĜM(kl)|σ〉

]
ψkψk′

= − 1

2Ω

∑
k 6=0

[
ε′φmk

2

4πlB
+
φm
Nl3
〈σ|ĜM(kl)|σ〉

]
ψkψ−k ,

(S57)

where we have used the definition of polymer volume fraction φm = l3npN/Ω, and the fact

that the k = 0 terms vanishes: the first term because of the k2 factor and the second term

because of the overall neutrality of the polyampholytes, i.e.,
∑

τ στ = 0, and [ĜM(0)]τµ = 1.

Combining this result with Eq. (S52), we arrive at

H [ψk] ≈ 1

2Ω

∑
k 6=0

[
(εw + ε′φm)k2

4πlB
+
φm
Nl3
〈σ|ĜM(kl)|σ〉

]
ψkψ−k

=
1

2Ω

∑
k 6=0

[
εr(φm)k2

4πlB
+
φm
Nl3
〈σ|ĜM(kl)|σ〉

]
ψkψ−k ,

(S58)

where we have made use of the above definition of εr(φm) which is linear in φm. We may now

evaluate Zel by performing the functional integral
∏

k 6=0

∫
dψk in Eq. (S51). Because the
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ψk’s are Fourier transformations of the real-valued field ψ(r), ψ∗k = ψ−k and
∏

k 6=0

∫
dψk =∏

k>0

∫
dψk

∫
dψ∗k, where the k > 0 notation means that the product or summation excludes

the origin and is over k = (k1, k2, k3) but not −k = (−k1,−k2,−k3). This can be effectuated

by first excluding (k1, k2, k3) = (0, 0, 0) and then restricting the product or sum to k1 ≥ 0

(or to k2 ≥ 0 or to k3 ≥ 0). Expressing ψk in terms of its real part ψR
k and imaginary part

ψI
k, i.e., ψk = ψR

k + iψI
k and ψ∗k = ψR

k − iψI
k where ψR

k and ψI
k are real numbers, one obtains∏

k>0

∫
dψk

∫
dψ∗k =

∏
k>0 2

∫∞
−∞ dψ

R
k

∫∞
−∞ dψ

I
k. Since ψkψ−k = (ψR

k )2 + (ψI
k)2,

Zel =

{∏
k>0

(
Nr

πΩ2

)[
εr(φm)k2

4πlB

] ∫ ∞
−∞

dψR
k

∫ ∞
−∞

dψI
k

}

× exp

{
1

Ω

∑
k>0

[
εr(φm)k2

4πlB
+
φm
Nl3
〈σ|ĜM(kl)|σ〉

] [
(ψR

k )2 + (ψI
k)2
]}

=
∏
k>0

(
Nr

πΩ2

)[
εr(φm)k2

4πlB

]
× πΩ

[
εr(φm)k2

4πlB
+
φm
Nl3
〈σ|ĜM(kl)|σ〉

]−1
=
∏
k 6=0

√
Nr

Ω

[
1 +

4πlB
εr(φm)k2

φm
Nl3
〈σ|ĜM(kl)|σ〉

]−1/2
.

(S59)

Hence, up to an additive constant ∝ Nr ln(Nr/Ω) that does not affect configurational

distribution, the electrostatic contribution to the free energy in Eq. (S27) is equal to

fel ≡ −
l3

Ω
lnZel = − l

3

Ω

∑
k 6=0

ln

[
1 +

4πlB
εr(φm)k2

φm
Nl3
〈σ|ĜM(kl)|σ〉

]−1/2
→ l3

2

∫
d3k

(2π)3
ln

[
1 +

4πlB
εr(φm)k2

φm
Nl3
〈σ|ĜM(kl)|σ〉

]
,

(S60)

where we have applied the correspondence

1

Ω

∑
k

→
∫

d3k

(2π)3
(S61)

and noted that the k → 0 contribution vanishes inside the integral in Eq. (S60) because

d3k ∝ k2dk and thus
∑

k 6=0 may be approximated by Ω
∫
d3k/(2π)3 for this quantity. The

last expression in Eq. (S60) is formally identical to the one we obtained previously by

heuristically replacing the position- and φm-independent εr in simple RPA theory with

εr(φm) [Eq. (S14)]. This can be readily verified by setting b = a = l, hence η = 1 in

Eqs. (S14) and (S15), and noting that (1/2)d3k/(2π)3 = k2dk/4π2, in which case the last

line of Eq. (S60) is seen to be equal to Eq. (S14) with the G1(k̃) term [Eq. (S15a)] present but

the G2(k̃) term [Eq. (S15b)] omitted (no subtraction of self interaction) as well as k̃2(1+ k̃2)

→ k̃2 (no short-range cutoff for Coulomb interaction).
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In other words, the heuristic RPA formulas for εr → εr(φm) in Eqs. (S14) and (S15)

can be rigorously established in the context of RPA approximation provided that εr is a

linear function of φm. Indeed, if εr was a more complicated function of φm, the last term

in Eq. (S45) would have individual interaction terms, such as δ(Rα,τ − Rβ,µ), etc., that

involve different polymer chains, and that would necessitate an additional summation
∑

α

over polymer chains instead of a single
∑

τ over monomers on a single chain. In that case,

the subsequent simplification in terms of the single-chain partition function Qp [Eq. (S50)]

and thus the RPA expansion of lnQp [Eq. (S53)] cannot proceed in the manner described

above. Therefore, it remains unclear whether Eq. (S60) holds in general for εr(φm) that is

not linear in φm.

In our previous applications, we considered a Coulomb potential with a physical short-

range cutoff by the modification

U(r, r′) =
lB

εr|r− r′|
→ U(r, r′) =

lB
εr|r− r′|

(
1− e−|r−r′|/l

)
(S62)

[cf. Eq. (6) of Ref. 34; Eq. (34) of Ref. 35], which for constant, position-independent εr
results in a fel with 1/k2 replaced by 1/[k2(1 + k2)]. In the context of a general position-

dependent εr, this feature can in principle be accounted for by introducing an εr(|r−r′|), but

the necessary formalism has not been developed. In the present work, we incorporate this

feature by simply replacing the 1/k2 factor by 1/[k2(1+k2)] in Eq. (S60) so as to capture this

physical property as much as possible and place our present results on an essentially equal

footing with our earlier results for position-independent εr. Mathematically, this procedure

may be viewed as a regularization for “ultraviolet” large-k (i.e., small-|r − r′|) divergence.

As such, it does serve to impart a physical short-spatial-range cutoff, though it may not

correspond exactly to any particularly modified form of fel in Eq. (S62) that is applicable

to a general position-dependent εr(r).

Taking all of the above into consideration, we use the general formula in Eqs. (S14) and

(S15) above (which allows for a 6= b = l and thus η = (b/a)3 6= 1 and rm 6= 1) for comparing

RPA theory against explicit-chain simulation, with the understanding that εr must be a

linear function of polymer volume fraction φ = rmφm. Following previous practice,34,35

the electrostatic self-interaction term G2(k̃) = 4πlBφm/[k
2(1 + k2b2)εr(φm)Nb3]

∑N
τ=1 |στ | is

subtracted in Eq. (S14). In the context of a position-dependent εr(r), however, we recognize

that this term can be physically significant for capturing the polyampholyte chains’ varying

preference for different dielectric environments.90 Hence we consider also an electrostatic

free energy

f
[self]
el ≡

∫
dk̃k̃2

4π2η
ln
[
1 + ηG1(k̃)

]
= a3

∫
dkk2

4π2
ln

[
1 +

b3

a3
G1(kb)

]
(S63)

that includes (does not substract) electrostatic self-interaction, and use both Eq. (S14) and
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Eq. (S63) in our comparison of analytical theory with chain simulation.

UNIT CONVERSION FOR COMPARISON WITH EXPLICIT-CHAIN SIMULATIONS

The theory-predicted phase diagrams (coexistence curves) in in Fig. S6 of the Supporting

Information for position- and IDR concentration-independent εr are computed numerically

using the RPA+FH model described in Ref. 35. Specifically, translational and mixing

entropy is given by Eqs. (13) and (14), the RPA formula for fel is provided by Eqs. (39)

and (40), and the augmented FH term is the one in Eq. (61) of this reference. Values of the

parameters in these formulas are adapted to the present application, as follows:

• a: Unit length of the model. We set the unit volume, a3, to be that of the volume

occupied by a water molecule in pure water, i.e., φpure
w = ρpurew × a3 = 1, where the

number density of pure water ρpurew = 106 g m−3NA/18.01528 g where 106 g m−3 is

density of water, NA = 6.02214086 × 1023 is Avogadro’s constant and 18.01528 g is

molar mass of water. Thus, a = (1/ρpurew )1/3 = 3.104 Å= 3.104× 10−10m.

• b: The Cα–Cα virtual bond length of polypeptides b = l = 3.8 Å= 3.8× 10−10m.

• η [in Eq. (39) of Ref. 35]: From the above values for a and b, η = (b/a)3 =

(3.8/3.104)3 = 1.835.

• rm (monomer size factor in Eq. (14) of Ref. 35): The rm ratio between the size of

one amino acid residue in Ddx4 IDR and the unit volume a3 is obtained as follows.

Because the density of pure protein = 1, 587 mg ml−1, number of amino acid residues

(monomers) in Ddx4 IDR is N = 241, and the molar mass of Ddx4 IDR is 25, 883

(Ref. 63), the monomer (amino acid residue) number density of pure protein is given

by

ρpurem = (1.587× 106) g m−3 × 241×NA/25, 833 g . (S64)

Since the volume fraction φ of pure protein is unity by definition, i.e., φ = ρm×rm×a3,
it follows that

rm = (a3ρpurem )−1 = ρpurew /ρpurem =
25833

18.0
· 1

1.587
· 1

241
= 3.752 . (S65)

• rs and rc [size factors for salt and counterions, respectively, in Eq. (14) of Ref. 35]:

Both rs and rc are set to 1.

The conversion between the φm = npNa
3/Ω in analytical theory to Ddx4 concentration,

[Ddx4], in units of mg/ml (mg ml−1), is given by

φm =
{

[Ddx4(mg/ml)]× 1000 g/mg × 236/(Ddx4 molar mass in g)
}
×NA × a3 , (S66)
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where N = 236 is the chain length of the Ddx4 IDRs, (Ddx4 molar mass in g) of the four

Ddx4 IDR sequences are 25412.48, 25412.48, 24346.80, and 24740.48, respectively, for WT,

CS, FtoA, and RtoK.63 It should be noted that there is a slight mismatch in the lengths

of Ddx4 IDRs (236 vs 241) because a Ddx4N1 sequence with six amino acids added to

its C-terminus as a tag was used in experiments.4,63 Nonetheless, N = 236 is adopted in

Eq. (S66) because the N = 236 sequence published in Ref. 4 is used in our simulations.

In the context of our approximate analytical theory and coarse-grained chain model, the

numerical difference between using N = 236 and N = 241 is not expected to be insignificant.

The mean-field Flory-Huggins (FH) χ parameters of non-electrostatic interactions for

the four Ddx4 IDR sequences are obtained from averaging the KH potential energies εij(r0)

(= Eij(r0) [KH] in Fig. 1a of main text) for a given sequence (seq) over all i, j pairs of

sequence positions except those entailing a charge-charge interaction [i.e., RR (Arg-Arg),

RK (Arg-Lys), RD (Arg-Asp), RE (Arg-Glu), KK (Lys-Lys), KD (Lys-Asp), KE (Lys-Glu),

DD (Asp-Asp), DE (Asp-Glu), EE (Glu-Glu); see main-text], yielding 〈E〉KH,seq = −0.1047,

−0.1047, −0.0689, and −0.0924 kcal mol−1, respectively, for seq = WT, CS, FtoA, and

RtoK. These average sequence-dependent mean-field non-electroatic interaction energies

〈E〉KH,seq’s are converted to the FH χ = εh/T
∗ in Eq. (61) of Ref. 35 as follows:

1. Convert per-mole units to per-interaction units:

〈E〉KH,seq[(J/amino acid pair)]

=
{
〈E〉KH,seq[(kcal/mole of amino acid pairs)]/NA

}
× 1000 cal/kcal× 4.18 J/cal .

(S67)

2. Convert to the reduced variables used in analytical theory:

(z/2)× 〈E〉KH,seq[(J/amino acid pair)]/(kBT ) = −εh/T ∗ , (S68)

where T ∗ is the reduced temperature given by eq. (38) in Ref. 35 (see below) and

z is a FH geometric factor representing the maximal number of monomers (amino

acid residues) that are spatial nearest neighbors to a given monomer; e.g., z = 6 for

three-dimensional simple cubic lattices. We obtain z/2 = 4.3 by fitting our RPA+FH

predictions to our explicit-chain simulation results.

3. Convert absolute temperature T in K to the reduced temperature T ∗:

1

T ∗
=

e2

4πε0εrkBb

1

T
, (S69)

where the electronic charge e = 1.6 × 10−19 C, ε0 = 8.854 × 10−12 C V−1m,

b = 3.8 × 10−10 m, and εr = 80, 40, or 20 in accordance with the corresponding
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simulations with position- and IDR concentration-independent relative permittivities.

Note that T ∗ = εrT
∗
0 where T ∗0 is defined after Eq. (S15) above and in Eq. (67) of

Ref. 35.

4. Convert 〈E〉KH,seq to FH εh:

Based on the above consideration,

εh = −T ∗
(z

2

) 〈E〉KH,seq[(J/amino acid pair)]

kBT

= −
(

4πε0εrb

e2

)(
z

2

)
×
{
〈E〉KH,seq[(kcal/mole of amino acid pairs)]/NA

}
× 1000 cal/kcal× 4.18 J/cal

= −4π × (8.854× 10−12)× (3.8× 10−10)

(1.6× 10−19)2
4.3× 1000× 4.18

(6.02214086× 1023)

× εr〈E〉KH,seq[(kcal/mole of amino acid pairs)]

= −0.04929× εr × 〈E〉KH,seq[(kcal/mole of amino acid pairs)] .

(S70)

Accordingly, the εh values for WT, CS, FtoA, and RtoK Ddx4 IDRs are, respectively, εh =

0.413, 0.413, 0.272, and 0.364 when εr = 80; εh = 0.206, 0.206, 0.136, and 0.182 when

εr = 40; and εh = 0.103, 0.103, 0.068, and 0.091 when εr = 20.

Note that εh decreases with decreasing εr because the reduced temperature T ∗ in

Eq. (S69) is proportional to εr. In this formulation using T ∗, the result of decreasing εr is

a reduction in the strength of favorable FH interactions relative to that of the electrostatic

interactions, which is equivalent to the physical situation (with temperature measured in K)

of enhanced electrostatic interactions under a reduced εr while keeping the non-electrostatic

interactions unchanged.
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Supporting Figures

WT:
MGDEDWEAEINPHMSSYVPIFEKDRYSGENGDNFNRTPASSSEMDDGPSR
RDHFMKSGFASGRNFGNRDAGECNKRDNTSTMGGFGVGKSFGNRGFSNSR
FEDGDSSGFWRESSNDCEDNPTRNRGFSKRGGYRDGNNSEASGPYRRGGR
GSFRGCRGGFGLGSPNNDLDPDECMQRTGGLFGSRRPVLSGTGNGDTSQS
RSGSGSERGGYKGLNEEVITGSGKNSWKSEAEGGES

CS:
MGDRDWRAEINPHMSSYVPIFEKDRYSGENGRNFNDTPASSSEMRDGPSE
RDHFMKSGFASGDNFGNRDAGKCNERDNTSTMGGFGVGKSFGNEGFSNSR
FERGDSSGFWRESSNDCRDNPTRNDGFSDRGGYEKGNNSEASGPYERGGR
GSFDGCRGGFGLGSPNNRLDPRECMQRTGGLFGSDRPVLSGTGNGDTSQS
RSGSGSERGGYKGLNEKVITGSGENSWKSEARGGES

FtoA:
MGDEDWEAEINPHMSSYVPIAEKDRYSGENGDNANRTPASSSEMDDGPSR
RDHAMKSGAASGRNAGNRDAGECNKRDNTSTMGGAGVGKSAGNRGASNSR
AEDGDSSGAWRESSNDCEDNPTRNRGASKRGGYRDGNNSEASGPYRRGGR
GSARGCRGGAGLGSPNNDLDPDECMQRTGGLAGSRRPVLSGTGNGDTSQS
RSGSGSERGGYKGLNEEVITGSGKNSWKSEAEGGES

RtoK:
MGDEDWEAEINPHMSSYVPIFEKDKYSGENGDNFNKTPASSSEMDDGPSK
KDHFMKSGFASGKNFGNKDAGECNKKDNTSTMGGFGVGKSFGNKGFSNSK
FEDGDSSGFWKESSNDCEDNPTKNKGFSKKGGYKDGNNSEASGPYKKGGK
GSFKGCKGGFGLGSPNNDLDPDECMQKTGGLFGSKKPVLSGTGNGDTSQS
KSGSGSEKGGYKGLNEEVITGSGKNSWKSEAEGGES

Fig. S1: The amino acid sequences (residues given by one-letter code) of the 236-residue

Ddx4 IDR (wildtype, WT) and its charge scrambled (CS) variant (introduced by Nott et

al.4), phenylalanine-to-alanine variant (FtoA) (corresponds to the 14FtoA in Brady et al.63

and Vernon et al.66) and arginine-to-lysine (RtoK) variant66 considered in the present study.
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(a) Tyr (b) Phe (c) Trp

Fig. S2: Statistics of cation-π-like contacts. Distributions of Cα–Cα distance between a

positively charged residue [arginine (solid curve) or lysine (dashed curve)] and an aromatic

residue [tyrosine (a), phenylalanine (b), or tryptophan (c)] are obtained from the same

dataset of 6,943 high-resolution X-ray structures (from a non-redundant set66) used in

Fig. 2 of the main text. The bin size for Cα–Cα distance and the color code for different

residue pairs are also identical to those in Fig. 2. For a given residue pair [Arg-Tyr,

Lys-Tyr (a); Arg-Phe, Lys-Phe (b); or Arg-Trp, Lys-Trp (c)], the relative frequency of

a given Cα–Cα distance bin is the total number of instances in the dataset in which

the Cα–Cα distance between the given pair of residues falls within the bin, normalized

(divided) by the product of the two total numbers of residues in the dataset for the two

residues making up the pair. Cumulative relative frequency at a given distance is the sum

of relative frequencies for distances lower or equal to the given distance. Here, cumulative

relative frequencies are reported up to Cα–Cα distance of 6.5 Å, which is illustrative of

common criteria for a residue-residue contact. The plotted distributions show clearly

that arginine-aromatic contacts are consistently and significantly more numerous than

lysine-aromatic contacts when compared on the same footing, suggesting strongly that

the overall arginine-aromatic interactions are energetically more favorable than the overall

lysine-aromatic interactions.72
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Fig. S3: Verification of liquid-like dynamics of simulated condensed phases. As in Dignon

et al.,51 a relevant time-dependent mean-square deviation MSD(t) of molecular coordinates

was simulated to provide evidence for liquid-like behavior in our model systems, viz.,125

MSD(t) =
1

n

〈 n∑
µ=1

∣∣∣[rµ,CM(t+ t0)− rCM(t+ t0)
]
−
[
rµ,CM(t0)− rCM(t0)

]∣∣∣2〉
t0

,

where µ = 1, 2, . . . , n labels the model IDR chains, n is the total number of IDR chains

in the simulation system, rµ,CM =
∑N

i=1mirµi/
∑N

i=1mi is the center-of-mass position of

the µth chain, with mi being the mass of the ith bead (residue) along an IDR chain, rCM

=
∑n

µ=1 rµ,CM/n is the center-of-mass of the entire collection of n chains, and the average is

over the initial time point t0. By subtracting drifts in molecular coordinates arising solely

from the diffusion of the entire system’s center of mass (see Fig. S4), the above-defined

MSD(t) values, which are provided by the circles in the plots, are a useful measure of the

liquidity of our simulated system. Diffusion coefficients, D = {limt→∞ d[MSD(t)]/dt}/6,

were then estimated, as indicated by the fitted straight line in each plot. Shown examples

for the four Ddx4 IDR variants were simulated using the KH model with relative permittivity

εr = 40 at the indicated temperatures, each of which is lower than the respective system’s

critical temperature. The magnitudes of our simulated Ds are similar to those simulated by

Dignon et al. for their model FUS systems (Fig. S12 of Ref. 51). Note that our simulated

Ds for the model Ddx4 IDR systems are, not unexpectedly, approximately three orders

of magnitude higher than the corresponding experimental values63 because a unphysically

low friction coefficient was necessitated in our Langevin dynamics simulations in order to

accelerate sampling and also because a coarse-grained representation of the IDRs was used.
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Fig. S4: Center-of-mass diffusion of the simulated Ddx4 IDR systems. Data are from the

same systems as those in Fig. S3. The solid curves provide the mean-square deviation of

the center-of-mass positions of the IDRs without subtracting the the center-of-mass position

of the entire system, in which case

MSD(t) =
1

n

〈 n∑
µ=1

∣∣∣rµ,CM(t+ t0)− rµ,CM(t0)
∣∣∣2〉

t0

,

whereas the dashed curves represent the diffusion of the center of mass of the entire system

of n IDRs, given by MSD(t) = 〈|rCM(t + t0) − rCM(t0)〉t0 . Echoing the findings in Fig. S3,

a comparison of the solid and dashed curves in the present figure indicates that there is

significant diffusion of individual IDRs relative to the center of mass of the entire collection

of IDR chains.
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Fig. S5: Simulated IDR-concentration-dependent relative permittivity. Shown results—

part of which are also provided in Fig. 6(a) of the main text—are for the WT Ddx4 IDR.

Simulations were conducted using the SPC/E water model with 100 mM NaCl (circles),

the TIP3P water model without salt (squares), and the TIP3P model with 100 mM NaCl

(diamonds). Red symbols represent εr values simulated using the full force field, whereas

blue symbols denote εr values simulated while the electric charges on the sidechains of

arginine, lysine, glutamic acid, and aspartic acid are artifically turned off. The εr values

plotted here are tabulated in Table S1.
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Fig. S6: Comparing analytical theory with simulation for sequence-dependent liquid-liquid

phase separation of model Ddx4 systems. Phase diagrams simulated using the explicit-chain

KH model under different permittivities (εr) for the four Ddx4 IDRs from Fig. 4 of the main

text are replotted here as dashed curves. Predicted phase diagrams by the RPA+FH theory

that afford the best overall fit, at z/2 = 4.3, are shown as solid curves.
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Table S1: IDR-concentration-dependent relative permittivity, εr, simulated for WT Ddx4

IDR using the SPC/E and TIP3P atomic models of water at T = 300 K.

SPC/E + saltb TIP3P, no salt TIP3P + saltb

[Ddx4]a εr [Ddx4]a εr [Ddx4]a εr

51.1 79.0 51.3 108.2 50.5 107.7

(52.04) (71.5) (51.1) (92.8) (52.7) (89.5)

101.8 65.4 101.9 93.4 100.6 89.1

(103.6) (61.5) (103.0) (85.9) (104.9) (85.8)

204.3 56.2 205.8 79.7 202.4 78.3

(207.3) (55.0) (206.5) (78.2) (209.9) (76.4)

302.5 53.6 307.0 72.2 299.4 68.6

(306.4) (49.2) (315.0) (70.5) (311.0) (70.5)

403.1 48.0 414.1 55.9 400.1 57.7

(408.7) (45.0) (424.6) (54.9) (413.3) (59.3)

531.6 37.0 545.2 46.7 529.4 50.0

(536.9) (36.1) (543.8) (47.1) (543.7) (47.3)

a Concentrations (in mg/ml) and simulated εr values given in bold font are for systems

that apply the full force field; those given in ordinary roman (non-bold) font and in paren-

theses are for systems in which the electric charges on the sidechains of arginine, lysine,

glutamic acid, and aspartic acid of WT Ddx4 IDR are artifically turned off.
b [NaCl] = 100 mM.
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