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First principles in the life sciences: The free-energy principle, organicism, and mechanism 

Matteo Colombo & Cory Wright 

 

Abstract The free-energy principle states that all systems that resist a tendency to physical 

disintegration must minimize their free energy. Originally proposed to account for perception, 

learning, and action, the free-energy principle has been applied to the evolution, development, 

morphology, and function of the brain, and has been called a postulate, an unfalsifiable principle, a 

natural law, and an imperative. While it might afford a theoretical foundation for understanding the 

relationship between environment, life, and mind, its epistemic status and scope are unclear. Also 

unclear is how the free-energy principle relates to prominent theoretical approaches to life science 

phenomena, such as organicism and mechanicism. This paper clarifies both issues, and identifies 

limits and prospects for the free-energy principle as a first principle in the life sciences. 
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1 Introduction 

According to the free-energy principle (FEP), all systems that resist a tendency to physical 

disintegration must minimize their free energy. Originally proposed to explain how sensory cortex 

infers the causes of its inputs and learns causal regularities, FEP has been used to elucidate the 

function of action, perception, and attention, and to account for organisms’ evolution and 

development (Friston 2003, 2009, 2010a, 2013; Friston et al. 2006; Friston & Stephan 2007). 

Advocates have claimed FEP offers a “framework within which to explain the constitutive coupling 

of the brain to the body and the environment,” which provides “a normative, teleological essence to 

the synthesis of biology and information,” and which may illuminate the continuity between life 

and mind (Allen & Friston 2018: 2476). 

 Advocates present FEP as a “mandatory principle” or “imperative” for biological systems, 

and as a principle enjoying a “fundamental status” in neuroscience (Friston et al. 2006: 71; Friston 
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& Stephan 2007). The principle purportedly “applies to any biological system [...] from single-cell 

organisms to social networks” (Friston 2009: 293). These bold ascriptions have attracted attention 

in philosophy and the life sciences. However, FEP’s epistemic status remains opaque, along with its 

exact role in biological and neuroscientific theorizing. 

 Regarding its role in theorizing, FEP seemingly conflicts with tenets of two of the most 

prominent contemporary theoretical approaches in the life sciences: organicism (Gilbert & Sarkar 

2000; Soto et al. 2016) and mechanism (Brandon 1984; Bechtel & Richardson 1993/2010). 

Regarding its epistemic status, one worry is that FEP lacks explanatory power because it “is 

divorced from the biophysical reality of the nervous system” (Fiorillo 2010: 605). The principle’s 

unifying power has been called into question, too. Some have suggested that FEP provides an 

implausible model of the functional roles of perception and action (Gershman & Daw 2012; 

Colombo 2017; Klein 2018); others have argued that FEP doesn’t deliver a grand unifying theory, 

and a plurality of modeling approaches is preferable for explaining complex neurophysiological and 

cognitive phenomena (Marblestone et al. 2016; Colombo & Wright 2017). Also controversial is 

how FEP illuminates the continuity between life and mind, synthesizing biology and information—

especially if FEP is committed to some form of cognitivism (Hohwy 2016; Kirchhoff & Froese 

2017). Most basically, the inferential steps in the reasoning leading to FEP need still be laid out 

clearly and accessibly to allow for adequate evaluation. 

 According to organicists (aka ‘holists’), phenomena studied in the life sciences should be 

explained by appealing to whole organisms. Organicists often appeal to the principles of biological 

autonomy and adaptivity (Varela, Maturana, & Uribe 1974; Di Paolo & Thompson 2014; Moreno 

& Mossio 2015), organization as closure of constraints (Maturana 1975; Mossio et al. 2016), and 

variation as extended criticality (Montévil et al. 2016). While FEP borrows the formalism of 

random dynamical systems to explain the behavior and nature of organisms, organicists maintain 

that the formalisms borrowed from current theories in physics are not apt for the representation of 

life science phenomena (Longo et al. 2012). 
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 According to mechanists, phenomena studied in the life sciences should be explained by 

appealing to the component parts and operations of mechanisms, where a mechanism is a 

spatiotemporally-organized composite system producing a phenomenon (Bechtel & Richardson 

1993/2010; Darden 2006). While FEP is used to logically derive claims about structural and 

functional properties of the brain “a priori, on the basis of purely theoretical considerations” 

(Friston 2003: 1325), mechanistic philosophers argue that laws and logical deduction do not 

adequately capture explanation in the life sciences (Glennan 2017). 

 In this paper, we clarify the epistemic status of FEP by answering two sets of questions. 

First: what are the inferential steps leading to FEP? And how do they relate to one another? Second: 

what’s the relationship between FEP and central tenets of the organicist and mechanistic 

philosophies when it comes to adequate scientific representation of the phenomena of life? 

 To answer these questions, we provide a transparent reconstruction of the reasoning leading 

to FEP (§2) and then deploy a contrastive strategy to bring out salient assumptions of FEP. We 

argue that FEP is inconsistent with a tenet of organicism, specifically that the formalism and 

concepts of current physical theories are not apt for the scientific representation of organisms and 

their behaviors (§3). We also show that FEP is inconsistent with mechanistic approaches in the life 

sciences, which eschew laws and theories and take the explanatory power of scientific 

representations to be dependent on the degree of relevant biophysical detail they include. After we 

clarify the status of FEP as a first principle (§4), we conclude by suggesting that understanding 

phenomena in the life sciences should allow for incompatible approaches (§5). In particular, the 

axiomatic, idealizing, first-principles methods favored by free-energy theorists should be pursued in 

the life sciences alongside the synthetic methods favored by organicists, and the analytic methods 

favored by mechanists. 

  

2 The transcendental argument 
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Free-energy theorists formulate FEP in various ways. Depending on the exact formulation, the 

scope of application of FEP varies. One formulation has FEP focused on brains, aiming to clarify 

the functional significance of their activity and structural connectivity (Friston 2003, 2009; Friston 

et al. 2006). Another has FEP ranging over any biological entity, process, or complex system— 

including brainless organisms like single cells and plants, evolutionary processes by natural 

selection, and ecosystems—and aiming to explain how biological systems can maintain their 

physical integrity in a changing environment (Friston 2013; Hobson & Friston 2016). In yet another 

formulation, FEP applies to any complex adaptive system, including physical information systems 

and non-biological systems like social networks and artefacts (Friston 2009: 293). 

 Under any formulation, the reasoning leading to FEP has the form of a transcendental 

argument for the conclusion that FEP is a condition on the very possibility of systems maintaining 

their physical integrity and displaying adaptive behavior. Beginning with the observation that some 

systems behave adaptively, resisting a tendency to disorder, the transcendental deduction of FEP 

involves five main steps organized in two batches: 

 

(1)  If a system Σ acts selectively on the environment to avoid phase transitions and is in a 

non-equilibrium steady-state, then Σ behaves adaptively.1 

(2)  Σ behaves adaptively only if Σ preserves its physical integrity by maintaining its 

“characteristic” variables within homeostatic bounds despite environmental fluctuations.2 

                                                 
1 As explained in §2.1, equilibrium refers to thermodynamic equilibrium. A system is in a steady state if the variables 

defining the behavior of the system are unchanging with time. An equilibrium state is a special case of a steady state. (A 

system in equilibrium is one in a steady state; the converse isn’t necessarily true.) 
2 Values of these characteristic variables would be observable properties of “the extended phenotype of the organism—

its morphology, physiology, behavioural patterns, cultural patterns, and designer environments,” and would be phase 

functions of an attracting set of the organism’s states (Ramstead et al. 2017: 3). The idea is that any living system 

possesses an ‘attracting set’, i.e., a set of states towards which it will tend to evolve, for a wide variety of values of its 

initial states, and “this set of attracting states can be interpreted as the extended phenotype of the organism” (ibid). Free-

energy theorists’ transcendental deduction assumes that an attracting set in a system open to its external milieu is 

formally equivalent to a steady-state solution that is far from equilibrium. 
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(3)  Σ acts selectively on the environment to avoid phase transitions and is in a non-

equilibrium steady-state just in case Σ preserves its physical integrity by maintaining its 

“characteristic” variables within homeostatic bounds despite environmental fluctuations. 

(4)  Σ preserves its physical integrity by maintaining its “characteristic” variables within 

homeostatic bounds despite environmental fluctuations just in case Σ minimizes the 

informational entropy (average surprise) of its possible sensory states. 

(5)   If Σ minimizes the informational entropy of its possible sensory states, Σ minimizes the 

free energy of its possible sensory states.3 

∴ (6)  for any system Σ to maintain its physical integrity and behave adaptively despite 

environmental fluctuations, Σ must minimize its free energy. 

 

The first three claims comprise the first batch, where (1) states a sufficient condition on adaptive 

behavior, (2) states a necessary condition, and (3) functions as a bridge principle that connects 

physical and biological predicates. The bridge is derivable from the conjunction of its left-to-right 

conditional, which follows directly from (1) and (2), and the stipulation of its suppressed right-to-

left converse. The next two claims comprise the second batch, where (4) stipulatively connects 

homeostasis to information-theoretic quantities, and (5) states that free-energy minimization is a 

necessary condition on minimizing informational entropy.4 Claim (6) expresses FEP, and follows 

from the two batches of claims. 

                                                 
3 According to some formulations, any system that conserves its boundaries “can be described as” modeling its external 

milieu or “can be cast as” minimizing free energy (Hobson & Friston 2016: 246; Ramstead et al. 2017: 2). In other 

formulations, the system itself is said to be the modeler (Friston 2011). We address this confusion in §3. 
4 Premise 5 should be treated with care. First, in machine learning, free energy is a variational bound on informational 

entropy that often plays a central role in variational Bayesian inferences. Where X is an observed variable (e.g., a 

sensory sample) and Z a hidden random variable of interest (e.g., an environmental cause of a sensory sample), the idea 

behind variational Bayesian inference is to find some approximation distribution density q(Z) that is tractable and that is 

as close as possible to the true posterior distribution p(Z|X). As the approximation distribution can have its own 

parameters q(Z|), the problem of inferring the value of Z given the value of X can be understood as an optimization 

problem, in which one aims to find the parameter values that minimize some objective function and make q as close as 

possible to the posterior of interest. To measure the closeness of the two distributions q(Z) and p(Z|X), a common metric 

is the Kullback-Leibler divergence. Second, free-energy theorists argue that organisms cannot minimize the 

informational entropy of their sensory states (i.e., ‘surprisal’) directly, because this involves the intractable problem of 
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 The modal force of FEP, as well as its claim to being an a priori first principle, depend on 

free-energy theorists’ understanding of the predicate being an adaptive system, on assumptions 

about the semantic equivalence between concepts from different disciplines, and on their 

interpretation of probability. We’ll consider their understanding of adaptive living systems in §2.2, 

and put into sharper focus the other two assumptions underlying their reasoning in §3. 

 

2.1 Thermodynamics 

The argument for FEP begins with the observation that some systems maintain their physical 

integrity and display adaptive behavior amid a changing environment. Such systems are 

thermodynamically open, persisting far from their thermodynamic equilibrium state (Friston et al. 

2006: 71–72; Friston & Stephan 2007: 421–422). Systems that are thermodynamically open 

exchange matter and energy with their surroundings. For example, both snowflakes and bacteria 

exchange chemicals and energy with their surroundings. Snowflakes acquire and lose matter and 

heat under the causal pressures of their environment, and bacteria allow matter and energy to cross 

their cytoplasmic membranes. Closed systems have boundaries that matter from their surroundings 

cannot cross. Earth, for example, exchanges energy with its surroundings, but hardly any matter. 

Isolated systems exchange neither energy nor matter with their surroundings. The universe and a 

closed thermos bottle are examples of isolated systems. 

                                                                                                                                                                  
computing marginal probabilities. Instead, they argue that organisms can tractably minimize the informational entropy 

of their sensory states indirectly, by minimizing a bound called ‘variational free energy’. As Buckley et al.’s (2017) 

helpful mathematical review makes clear, this claim requires qualification, since variational free energy is a tight bound 

on surprisal only when the organism’s current ‘best guess’ of the causes of its sensory input (represented by a 

‘recognition density function’ q(Z)) is identical with the posterior density of environmental states given the organism’s 

sensory input p(Z|X). Finding an optimal recognition density that is identical with the posterior is non-trivial, and 

requires further assumptions about its form, and about the form of the dynamics in the environment. “Furthermore, 

while this process furnishes the organism with an approximation of surprisal it does not minimise it. Instead the 

organism can minimise VFE [variational free energy] further by minimising surprisal indirectly by acting on the 

environment and changing sensory input” (Buckley et al. 2017: 59). Third and finally, as one reviewer suggested, free-

energy theorists may be inclined for technical reasons to endorse, not premise 5, but its converse. If they are right and 

minimizing free energy is always sufficient for minimizing informational entropy, then the transcendental deduction 

will be invalid. We’ll return on some of these points in §2.4. 
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 Rather than properties of Σ—like being thermodynamically open, or being in equilibrium—

it may be useful to speak of (sets of) states. The term state here refers to a property instance at a 

time. Velocities, for example, are states: different objects can have different velocities over time but 

only a single velocity at any given time. A system’s states are specified by the values of sets of 

measurable macroscopic variables, including geometric, thermal, mechanical, and chemical 

properties at a given time scale, and can typically be associated with mathematical representations, 

e.g., vectors in a vector- or state-space. Such variables are related to one another in law-like ways, 

and so provide a way to deduce changes in the system’s behavior over time. 

 When systems are left to themselves and external conditions are unchanging, their states 

change until there are no net flows of matter or energy either within the system or between it and its 

surroundings. This state is thermodynamic equilibrium. Although most systems found in nature 

aren’t in equilibrium, there are important differences across systems. In comparison to snowflakes 

left to themselves, bacteria are far from their equilibrium state: while their chemical and metabolic 

properties change, the bacteria can acquire energy and nutrients, and maintain a non-equilibrium 

steady state to avoid thermodynamic equilibrium. 

 When systems change states, they undergo a process. The succession of a system’s states 

defines the process’s path or trajectory. Some processes involve abrupt discontinuous transitions 

between solid, liquid, or gaseous states of matter. These transitions are called phase transitions. 

When systems undergo phase transitions, some of their physical properties change—often resulting 

from changes in temperature, pressure, or other surrounding conditions. For example, snowflakes 

will phase transition into water droplets when external temperature reaches its melting point. Many 

biological systems also undergo phase transitions, where their morphological and metabolic profiles 

change dramatically. These transitions depend on phenotypic plasticity, which is the ability of 

biological systems with one genotype to change their phenotype in response to changing 

environmental conditions. Examples include temperature-dependent sex determination in some fish 

and reptiles, eye-spot formations in some butterflies, and insect metamorphosis. 
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 Because of the second law of thermodynamics, the path of the process undergone by a 

system isolated from all external influences eventually goes into a state of thermodynamic 

equilibrium. There are several formulations of the law (Uffink 2001). One formulation refers to 

thermodynamic entropy, which is a state variable measuring the amount of “disorder” (or 

randomness) in a system, and implies that entropies of isolated systems not in equilibrium typically 

increase over time, approaching maximum value at equilibrium. It is a function of a system’s state, 

and captured by the formula: S = k log(W). This formula describes the entropy S of a system in 

terms of the logarithm of the number of possible microstates W = {w1, w2, ..., wn} that are consistent 

with the macroscopic states of the system, where k is the Boltzmann constant. 

 Comparing snowflakes with water vapor offers one intuitive way of visualizing the notion of 

“disorder” associated with thermodynamic entropy. Water vapor in a container can have many 

possible arrangements of individual molecules consistent with the macroscopic properties of the gas 

like its volume and pressure. Because snowflakes’ molecules are constrained by crystalline bonds, 

the number of possible configurations of individual molecules consistent with the macroscopic 

properties of snowflakes is smaller. Snowflakes have less entropy than water vapor: they are less 

“disordered” (random). 

 

2.2 From thermodynamics to homeostasis 

Free-energy theorists claim that biological systems apparently “resist” or “violate” the second law 

of thermodynamics because they maintain their physical integrity in the face of random fluctuations 

in the environment (Friston & Stephan 2007: 421–422; Ramstead et al. 2017: 2 ff.). Biological 

systems are open systems that maintain “order” (or thermodynamic entropy) by exchanging energy 

and matter with their surroundings. Upon considering all such exchanges, the total entropy of the 

system and its environment increases over time in ways that can be described by thermodynamical 

laws and principles. It’s this capacity for “negative entropy”—acting selectively upon their 
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environments and metabolizing food, which distinguishes living from non-living systems (Collier 

1986; Schrödinger 1992; Collier & Hooker 1999; Morowitz & Smith 2007; Bailly & Longo 2009). 

 A system’s capacity to act selectively upon its environment enables the system to maintain 

its physical integrity amid changing environmental conditions. Friston & Stephan (2007) illustrate 

this point with a fictitious example. They compare regular snowflakes with winged snowflakes that 

can act on their environment. Regular snowflakes are passively pushed around by environmental 

forces until their temperatures reach a certain threshold, where they undergo phase-transitions, 

losing their integrity and turning into water droplets. Because winged snowflakes can fly and keep 

certain altitudes, they can maintain their temperature within bounds and away from their melting 

point. Maintaining their temperature within certain bounds is a necessary condition for the winged 

snowflakes to keep a non-equilibrium steady state so that they may avoid a phase transition and 

disintegration. So, winged snowflakes can maintain a “relatively constant milieu” despite 

environmental changes—that is, maintain homeostasis—via behaviors that adjust to new or 

changing conditions while maintaining their macroscopic properties within bounds. Because their 

behaviors enable winged snowflakes to maintain homeostasis, those behaviors, unlike regular 

snowflakes, are said to be adaptive. 

 We have two conditions on a system’s adaptive behavior. One is in terms of 

thermodynamics: if systems act selectively upon their environments to preclude phase transitions 

and stay away from thermodynamic equilibrium, then they behave adaptively. And another is in 

terms of homeostasis: if systems behave adaptively, then they change their relationships with their 

environments to maintain vital physiological variables within certain bounds. 

 Free-energy theorists link adaptivity directly to viability, understood in terms of 

homeostasis, similarly to Ashby’s (1960: 58) account of adaptation as ultrastability did. For free-

energy theorists, “characteristics for phase-dependent measurement function”—or as Ashby called 

them, essential variables—must be kept within viable limits to prevent the system from dying 

rapidly or disintegrating from phase transitions. Like Ashby (1960), free-energy theorists relate 
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thermodynamic and biological formulations of adaptive processes (see e.g., Friston & Stephan 

2007). Specifically, free-energy theorists assume that any living system possesses a random 

dynamical attractor—a set of states towards which a dynamical system tends to evolve for a wide 

variety of initial conditions of the system’s state. This attractive set is interpreted as the system’s 

extended phenotype, which includes characteristics defining a kind of biological system. Under 

appropriate conditions, any system possessing a random dynamical attractor can be shown to be 

formally equivalent to any system at a steady state far from equilibrium, where the system’s 

“characteristic” variables are within homeostatic bounds (Friston 2012; Ramstead et al. 2017).5 In 

other words, the paths of the processes of adaptive (living) systems fall within a specific, relatively 

narrow region of all possible states in their phase space. For Friston, no less than Ashby, survival is 

equivalent to the system’s being in that narrow region. 

 With these physical and biological formulations articulated, the argument’s next step is to 

deploy the mathematics of random dynamical systems theory and information theory to answer the 

following question. What characteristics must biological systems possess to maintain their path 

within a specific (homeostatic) region that precludes phase transitions? 

 

2.3 From homeostasis to surprise 

Physical systems can be represented as sets of variables. Different values of these variables pick out 

different states of the systems. The set of all possible states of a system can be represented as a state 

space, which allows one to describe the system and its changes in time. A phase space is a 

continuous state space described with a smooth manifold. A space’s dimensionality depends on 

how many variables are needed to completely describe the target system and its dynamics. Each 

state of the system is represented with a point in the state space. Given the state of the system at any 

                                                 
5 Equating adaptation and viability renders Ashby’s concept of essential variables unclear. If essential, in what sense 

can its values be transgressed without causing death? Or, if such transgression is possible, then in what sense are they 

essential? The construct ALLOSTASIS may offer, here, a way to understand how organisms can operate outside of normal 

set-points and approximate equilibria values, without leading to the total cessation of all physiological function. 
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moment, one can use an evolution rule, which can be either deterministic or stochastic, to describe 

the next states of the system in state space. 

 Friston (2012, 2013) represents biological systems as random dynamical systems, with state 

spaces partitioned into external and internal states. External states correspond to environmental 

causes that generate sensory samples (also known as sensory input, sensory outcomes, sensory data, 

or evidence), which affect the system’s internal state. A subset of states (known as Markov 

blanket—more on this momentarily) can ground a separation between the internal states of the 

system and the external states of the environment. A further subset of these separating (blanket) 

states is distinguished as its so-called active states, where different values of an active state 

determine different positions of the system in the environment. 

 The justification for partitioning these states appeals to the construct MARKOV BLANKET 

(Friston 2013). Pearl (1988) introduced this concept in relation to Markov networks for representing 

probabilistic knowledge. Roughly, given a set of random variables N, the Markov blanket for a 

variable x ∈ N is the subset M containing all random variables that “shield” x from all the other 

variables in N. Fixing the values of the variables in M leaves x conditionally independent of all 

other random variables; hence, the Markov blanket of a random variable is the only knowledge one 

may need to predict the behavior of that variable (Pearl 1988: 97 ff.). 

 In machine learning, Markov blankets help address problems with constructing sets of 

causal models from sample data that are as small as possible, and help search these sets to find a 

true causal model (Spirtes et al. 2000). Friston (2013), however, supposes further that Markov 

blankets are objective features of the real world separating the states internal to biological systems 

from those external to them (more on this reification in §3). His mathematical representation of 

system’s exchanges with their environments involves four basic types of quantities (for a helpful 

review of the mathematical details, see Buckley et al. 2017): 
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1. a time-varying parameter Ψ = {ψ1, …, ψn} standing for environmental states that cause 

sensory samples and vary nonlinearly over time; 

2. a time-varying parameter A = {a1, …, an} that changes the way the system samples the 

environment; 

3. a variable D = {y1, …, yn}, defined as a function of the system’s active state an and 

environmental state ψn, that denotes the set of possible sensory samples that influence the 

physical state of the system; 

4. a statistical model M—which, if Gaussian, can be defined with time-varying parameters θ 

= {μ, σ2}—of how environmental causes Ψ generate sensory samples D. 

 

For biological systems, free-energy theorists state that M represents an organism’s phenotype, 

defined as “the repertoire of physiological and sensory states in which an organism can be” (Friston 

2010: 127), and add that an organism’s internal states should be formally representable using the 

time-varying parameter μ of a generative probability density function M (Friston & Stephan 2007: 

424). More specifically, internal states μ are represented by a posterior probability distribution over 

environmental causes of sensory samples; unlike μ, biological systems would not “encode” or 

“represent” M, which is (somewhat confusingly) said to be “entailed” by the organism’s phenotype 

(ibid; see also Friston 2012). In this context, entailment-talk plausibly means that M should be 

inferred from a suitable interpretation of the organism’s internal states, along with identifying the 

characteristics defining its kind. Given how free-energy theorists define phenotype, the generative 

model M provides the probability that a certain kind of system obtains any possible state in state 

space. In short, according to free-energy theorists, for any phenotype, there is a generative model M 

that renders the internal states of the phenotype as the sufficient statistics of posterior densities of 

external states under M. 

 In the winged snowflake example, external states include ambient temperature, wind 

direction, and other environmental factors that generate sensory samples (or inputs) influencing the 
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snowflake’s internal state. Internal states include its temperature and the strength of its 

microcrystals’ electrostatic bonds, but also active states like its local position in the environment at 

a time. The snowflake’s active state changes its position in the environment (i.e., this active state 

just is the state of velocity of the snowflake), so that it receives different sensory samples. Given the 

kind of system a winged snowflake happens to be, it’s improbable that states where its temperature 

is higher than 0° Celsius will obtain. 

 With respect to cells, external states include ambient temperature and pH. These states 

generate sensory samples (i.e., energy arrays impinging on organisms’ sensory surfaces) that 

influence the state of transmembrane receptors. The cell’s internal states include the concentration 

of intracellular metabolites, but also active states, like the motion of flagella at times, that change 

how the cell’s environment influences the cell’s receptors. Given the kind of system a cell happens 

to be, it’s improbable that states where its temperature is higher than 50° Celsius will obtain. 

 Given the four basic quantities (for external, sensory, active, and internal states of a 

biological system) and their relationships of probabilistic conditional (in)dependence, one can 

examine what characteristics a random dynamical system must possess so that its physical states 

“are confined to a bounded subset of states and remain there indefinitely” (Friston 2012: 2106). 

This subset of states in state space is a random dynamical attractor corresponding to a set of (non-

equilibrium) steady states, where levels of variables representing the sensory states of the system—

like temperature, pH, glucose, blood oxygenation, etc.—are within homeostatic bounds. To learn 

what characteristics biological systems must possess if they are to maintain their path within a 

specific (homeostatic) region that precludes phase transitions, free-energy theorists ask what 

dynamics such systems must exhibit for a random dynamical attractor to obtain. 

 If one then stipulates that “biological systems move around in their state space, but revisit a 

limited number of states” that correspond to homeostatic steady states far from equilibrium (Friston 

2013: 11), then, of all possible obtaining states, there’s a small number that they will achieve in 
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their lifetime with a high probability. All other possible states will be obtained with an exceedingly 

low probability. 

 To capture this idea formally, free-energy theorists use the information-theoretic concept 

SURPRISE. The average surprise of sampling some outcome corresponds to Shannon’s entropy, 

which is formally similar to the thermodynamic concept ENTROPY. Specifically, the surprise of 

sampling some sensory outcome can be represented with the negative log probability: −log p(Y = 

yt+1 | at, M). This measure quantifies the improbability that a system M samples a sensory outcome 

yn, given internal state µt and its action at. If the sampled sensory outcome is “incompatible” with M 

and at, then the sensory sample yt+1 is surprising. If there’s a high probability that biological systems 

are found at any point in their lifetime in homeostatic states, then environmentally-generated 

sensory samples will be unsurprising. Sensory samples generated by all other states in the 

environment will be highly surprising. 

 

2.4 From surprise to free energy 

If one stipulatively defines adaptively-behaving system as any system whose behavior minimizes 

the average surprise of its possible states, then actual systems behaving adaptively must sample 

unsurprising sensory outcomes. That is, the system’s objective is to maximize model evidence p(Y 

= yt+1 | M), or minimize surprise –log p(Y = yt+1 | at, M). This means, formally, that the system must 

select actions that optimize the function 

 

G(at) = log ∫ p(Y = yt+1, Ψ = ψt+1 | at) dΨ 

 

where p(Y = yt+1, Ψ = ψt+1 | A = at) is the joint density of sensory samples Y and their generating 

causes Ψ in the environment, conditioned on action and on a phenotype.6 This density factors into a 

                                                 
6 We have simplified by dropping the dependence on M. 
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likelihood p(Y = yt+1 | Ψ = ψt+1, A = at) and prior density p(Ψ = ψt+1), which jointly specify the 

generative model “entailed by” the system’s phenotype. Optimizing G(at) requires changes in 

actions or in the parameter μ that represents the internal state of systems with phenotype M. 

 However, optimizing G(at) involves an intractable marginalization over (hidden) 

environmental states Ψ. To overcome computational intractability, a variational (or ensemble) 

density q(Ψ, μ) can be introduced to define another quantity that is greater than surprise. This 

quantity—called free energy—provides a bound on the integral mentioned above, and is a function 

of sensory samples and internal states of the system. It is defined thus:7 

 

F(yt+1, μt+1 | at) = −log <p(Y = yt+1, Ψ = ψt+1 | A = at)>q + log <q(Ψ = ψt+1; μt+1)>q 

 

Under certain assumptions (cf., Dayan et al 1995; MacKay 1995), optimizing F(yt+1, μt+1 | at) is 

computationally tractable. In the context of FEP, this optimization involves changes only to internal 

parameters μ or to the action parameter a, which can be controlled by the system. 

 Because the free-energy function F is greater than G, by acting on the environment to 

minimize the free energy of their sensory samples, biological systems would indirectly avoid 

surprising sensory states. If they avoid surprising sensory states, biological systems may attain a 

homeostatic state; and by selecting actions that attain homeostatic states, biological systems will 

thereby behave adaptively. And by FEP, any system that minimizes the free energy of its sensory 

states with respect to action, or its internal parameters, would avoid phase transitions, which would 

make its physical disintegration unlikely. 

 

3 FEP and organicism 

                                                 
7 <.>q represents the expectation under the variational density q. 
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Having articulated the steps involved in the reasoning to FEP, let’s examine two dimensions along 

which FEP and organicism appear inconsistent: their understanding of how, adaptive organisms 

should be represented, and their interpretation of probability. 

 

3.1 How to represent organisms? 

Free-energy theorists formulate FEP using the traditional modeling tools of random dynamical 

systems in thermodynamics, and represent organisms’ adaptive dynamics as trajectories through 

attractive non-equilibrium states in phase space. For organicists, however, organisms’ adaptive 

dynamics cannot be adequately represented with this tool predefined over the “characteristic” 

variables individuating kinds of biological systems (Longo et al. 2012). 

 Organicists have different options for justifying this claim. They may deny the existence of 

an organism’s characteristics, or deny that characteristic variables (if they exist) can be reliably 

identified for any kind of biological system interacting with the environment. Another option is to 

emphasize that the mathematical tools used to represent and explain biological phenomena are 

merely that—abstract mathematical tools. For instance, Chater & Oaksford argue, albeit in a 

different context, that imputing these modeling tools to the phenomena themselves by requiring 

organisms to perform these calculations mischaracterizes how such principles are used to explain 

behavior: 

 

the theory of aerodynamics is a crucial component of explaining why birds can fly. But clearly 

birds know nothing about aerodynamics, and the computational intractability of aerodynamic 

calculations does not in any way prevent birds from flying. Similarly, [systems] do not need to 

calculate their optimal behavior functions to behave adaptively. They simply have to use 

successful algorithms; they do not have to be able to make the calculations that would show 

that these algorithms are successful. (2000: 110) 
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The suggestion is that these tools aren’t part of organisms’ biological or cognitive equipment. If so, 

this would bear directly on the posit of free energy, which free-energy theorists introduce because 

the optimization problem described in §2.4 is intractable. Yet, if there’s no imperative for 

organisms to compute solutions to the optimization problem, then the motivation to posit free 

energy dissipates. 

 Free-energy theorists assume that organisms are ergodic: their phase averages (i.e., average 

values of specified functions of their microscopic states) are identical to averages over time of 

quantities measurable from microscopic states. For ergodic systems, the dynamics of a system’s 

microstates—e.g., its biomolecular kinematics—are sufficiently random, and the coupling between 

the system and the external states in its environment is sufficiently slow, such that the microscopic 

dynamics of the system’s states can be replaced by a random sample from the ensemble density of 

the microscopic states. This ensemble density assigns a probability to each possible microscopic 

configuration, and can be used to derive predictions about macroscopic properties of the system as 

those expected in the ensemble. To assign probabilities to all microscopic configurations, the 

system is assumed to start in any microscopic state and traverse all possible microscopic states in 

phase space. Given ergodicity, for any region of phase space, the average time the system spends in 

that region is proportional to the region’s size. Ergodic systems will repeatedly revisit the 

neighborhoods of attracting states. So, if organisms are ergodic, they can be represented as random 

dynamical attractors in phase space. If such ergodic dynamical systems also possess a Markov 

blanket, then “[they’ll] appear to actively maintain their structural and dynamical integrity” (Friston 

2013: 10). Under certain conditions, such systems necessarily minimize their free energy. 

 Organicists will be quick to note that organisms, at all levels of organization above the level 

of molecules, cannot explore all possible paths. “Not only will we not make all possible proteins of 

length 200 or 2000, we will not make all possible organs, organisms, social systems, [... t]here is an 

indefinite hierarchy of non-ergodicity as the complexity of the objects we consider increases” 
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(Kauffman 2013: 167). For organicists, ergodicity is biologically irrelevant simply because 

organisms are non-ergodic (Longo et al. 2012). 

 If ergodicity were biologically irrelevant, and the average of any measure of the state of an 

organism doesn’t converge over a sufficient period of time, then it is misleading to represent an 

organism’s phenotype with an invariant, ergodic ensemble density that specifies the probability, for 

any possible microstate, that the organism is in a certain macrostate. And it would also be 

biologically irrelevant to note that, under ergodic assumptions, the long-term average of surprise is 

entropy. For organicists, FEP would thus be misleading and biologically irrelevant. 

 Free-energy theorists, however, would counter by asserting that the notion of an attracting 

set itself implies ergodicity. So, if all living systems possess an attracting set, then they must be 

ergodic too; and if those systems are ergodic, then they will possess characteristic measureable 

properties. For free-energy theorists, the dynamics of such systems will appear to place an upper 

bound on their informational entropy, and to maximize the evidence for a model M of external 

states “entailed” by their characteristic properties. This behavior—they would conclude—can be 

expressed as approximate Bayesian (active) inference about the causes of sensory input in terms of 

minimizing variational free energy.8 

 On the other hand, organicists have argued that organisms constitute historically grounded 

constraints on energy flows, where their phase space continually changes, and so organicists deny 

that living systems are aptly represented with a classical phase space. Since attracting sets are 

subsets of classically predefined phase spaces, organicists deny the assumption that all living 

systems’ characteristic behavior is aptly represented with an attracting set. Hence, for organicists, 

the implication from attracting sets to ergodicity is a red herring. 

                                                 
8 This inference-optimization bridge, which we also mentioned in fn. 4, is a powerful feature of variational methods that 

treat statistical inference problems as optimization problems. Minimizing variational free energy can thus be understood 

as approximate Bayesian inference, in the sense that minimizing free energy is formally equivalent to optimizing a 

variational bound on Bayesian model evidence. 
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Representing organisms and their dynamics while idealizing away from their non-ergodic 

status would prevent taking seriously the historical considerations of lineage that are essential to 

understanding what organisms are, and how they change over time. If historical considerations and 

lineage matter to understanding organisms and their dynamics, then biological systems should be 

represented as “specific” and their trajectories as “generic.” Instead, free-energy theorists get it 

backward: physical systems are “generic,” while their trajectories “specific” (Longo & Montévil 

2013: ch. 7). 

 If physical systems were “generic,” then different types of systems could be individuated by 

properties such as mass, charge, temperature, or momentum. Position and momentum, for example, 

define mechanical systems. The mathematical representation of physical systems of the same type 

will preserve formal symmetries between their defining characteristics.9 Each symmetry in 

mathematical representation implies that certain physical properties of the system, such as total 

kinetic energy, are conserved and remain unchanged as the system evolves over time (Gross 1996). 

However, for tokens of the same type of physical system, trajectories (or paths) would be “specific” 

since they are uniquely determined by the rules of the system’s evolution given its initial state. 

 In free-energy theorists’ representations, organisms are “generic.” Their representation in 

terms of actions, internal states, and generative models preserves symmetries in formulations of 

FEP. Trajectories in the phase space of organisms would be “specific” according to FEP, because 

solutions of FEP for a given kind of organism yield a unique trajectory in phase space given the 

initial state of the organism.10 Properties of organisms like lineage and heritability would just be an 

expression of a specific trajectory on a generic manifold, namely the attracting set. 

                                                 
9 For example, in Newtonian mechanics, given two bodies with the same mass starting from rest and moving in 

opposite directions with different velocities along the same axis, the total kinetic energy of the systems comprised of the 

two bodies remains the same if the velocities are interchanged. That is, the solution of the equation yielding the total 

kinetic energy will be the same if the velocities of the two bodies are interchanged. 
10 Friston (2012) relates this result to the principle of least action (PLA). In Hamilton’s formulation, action is defined as 

the integral along possible paths of a system’s process connecting two specified states. According to PLA, the actual 

path of the process between initial and final states in a specified time is a dynamical system’s trajectory in phase space, 

which is found “by imagining all possible trajectories that the system could conceivably take, computing the action for 

each of these trajectories, and selecting one that makes the action locally stationary” (Gray 2009). 
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 For Longo & colleagues (2012), organisms should instead be represented as “specific,” 

while their trajectories “generic.” Because of their historicity and materiality, organisms wouldn’t 

possess general characteristics that allow for mathematically invariant representations. They write, 

 

In biology, symmetries at the phenotypic level, are continually changed, beginning with the 

least mitosis, up to the “structural bifurcations” which yield speciations in evolution. Thus, 

there are no biological symmetries that are a priori preserved. […] There are no sufficiently 

stable mathematical regularities and transformations to allow an equational and lawlike 

description entailing the phylogenetic and ontogenetic trajectories. (2012: 1390) 

 

So, from an organicist’s perspective, organisms cannot—unlike non-living physical systems—be 

represented with a fixed phase space and rules of evolution predefined over some set of 

“characteristic,” mathematically invariant variables. 

 The disagreement between free-energy theorists and organicists cuts deeper still. Free-

energy theorists take an adaptationist and selectionist standpoint in biology, whereby “selection 

explains how biological systems arise and the only outstanding issue is what characteristics they 

must possess” (Friston & Stephan 2007: 423). Central to the organicist approach is instead a critical 

rejection of the adaptationist and selectionist perspective, which—they argue—is insufficient for 

explaining the autonomy of living beings, and their capacities to regulate their processes in relation 

to environmental conditions registered as viable or unviable, improving or deteriorating (Di Paolo 

& Thompson 2014; Moreno & Mossio 2015). 

 Furthermore, following Ashby (1940), FEP emphasizes homeostatic stability as the core 

feature of organisms. Accordingly, organisms should be represented as random dynamical 

attractors. Contemporary organicists like Longo & colleagues emphasize that organisms are 

fundamentally ever-changing processes, maintained in relatively stable conditions by further 

processes. Longo & Montévil (2013), for instance, advance the idea that organisms should be 
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represented as attaining extended critical phase transitions. Free-energy theorists generally construe 

undergoing a phase transition as equivalent to biological disintegration and death—although there 

are several examples of phase transitions in biology, such as metamorphosis, that are consistent 

with an attracting set, and, arguably, with the FEP too (Clark 2017). 

 Even so, Longo & Montévil (2013) argue that organisms’ adaptive behavior should be 

represented as a continuous critical transition from one phase to another, whereby organisms are 

continuously reconstructed with variations in their dynamic couplings with ecosystems. The basic 

idea is that ancestry continuously co-constitutes and reshapes organisms as well as by their 

interactions with ecosystems. This idea fits a growing wealth of evidence concerning phenotypic 

plasticity, whereby organisms with the same genotype can generate differing phenotypes through 

their interactions with the environment, which recreate novel conditions of existence passed on to 

their descendants (Montévil et al. 2016). 

 Free-energy theorists would again note that evolution, and natural selection in particular, is 

also a free-energy minimizing process (Hobson & Friston 2016; Ramstead et al. 2017). But, for 

organicists, selectionism, and the fixation on surprise-minimizing processes obscure the 

historically-grounded, environmentally co-constituted nature of biological adaptivity. 

 One last dimension of disagreement concerns the interpretation of the probabilities involved 

in scientific representations of changing organisms. In free-energy theorists’ accounts, probability 

plays a central role. Adaptive organisms are said to be embodied generative models of their 

environments, where a generative model M specifies the probability that a certain external state, 

sensory input, and internal state occur together (Friston 2013). Organisms are said to have Markov 

blankets separating their internal states from the external environment, defined over a set of random 

variables and a probability measure (Kirchhoff et al. 2018). Furthermore, Friston (2009, 2010) 

claims FEP entails the Bayesian brain hypothesis, which implies that nervous systems represent 

probability distributions, store generative models and prior probabilistic knowledge about the 

world, and that neural networks can perform statistical inferences based on these probabilities 
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(Knill & Pouget 2004; Colombo & Seriès 2012). Finally, free energy itself is a bound on surprise 

(or information entropy), and surprise is a probabilistic measure of the uncertainty of sampling 

some sensory data, given a generative model. 

 Neglect of both the differing scope of distinct formulations of FEP (as applied to non-

biological adaptive systems, organisms, or brains at a certain time scale) and the interpretations of 

the probabilities in different formulations of FEP has generated disagreement—particularly about 

whether FEP is committed to positing mental representations and to an essentially inferential 

picture of cognition. To move the debate forward, at least two questions should be distinguished. 

First, should we understand FEP as a modeler’s tool to characterize and predict adaptive behavior, 

or should it be understood as an objective feature of target systems? Second, in determining the 

scope of FEP, how should the probabilities it posits be interpreted? Should they be understood 

epistemically or physically? 

 Some researchers in the organicist tradition seem to interpret the probabilities involved in 

FEP physically, as the frequency or propensity of the occurrence of some event (e.g., Bruineberg et 

al. 2018; Kirchhoff & Froese 2017). When FEP targets brains, these researchers reject the idea that 

brains literally represent probabilities and draw inferences. Other researchers have interpreted the 

probabilities involved in FEP epistemically, as rational degrees of belief in the occurrence of some 

event and the willingness to act on this belief. When FEP targets brains, these researchers tend to 

suggest that brains literally represent probabilities, possess Markov blankets, and draw inferences 

(e.g., Hohwy 2016). For his part, Friston (2013) seems to interpret the probabilities involved in FEP 

as objective features of real-world systems; they aren’t just modeling tools. When FEP targets 

brains, he claims that brains represent probabilities about the occurrence of events, and that brains 

make inferences about the causes of their sensory inputs, based on neurally encoded statistical 

models (Friston 2011, 2013). 

 Let’s consider the first idea. In formulating FEP, one need initially specify a system’s phase 

space (or sample space) and a desired equilibrium state distribution over it. One can then optimize 
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the equilibrium state distribution by minimizing the free energy of samples generated by the 

environment with respect to actions and a generative model. The system—claims Friston (2011, 

2013)—will then appear to sample its environment as if it were aiming at maximizing the evidence 

for its own existence. However, the construction of explanations thereof may fall short when the 

explanatory goal is construed as specifying the real nature of biological explananda; and where the 

functional capacities attributed to those systems prove intractable, resorting to ‘as if’ explanation 

won’t circumvent the problem, even when the computations involved are construed as subsymbolic, 

offline, heuristic, or approximate (van Rooij et al. 2018). 

 The desired steady-state distribution is, by definition, just the organism’s evolved 

equilibrium state distribution. This means that minimizing free energy would be equivalent to 

maximizing expected adaptive value: surprising states would just be, by definition, maladaptive. 

One way to support this definition is to note that organisms, and brains, are immersed in a 

“statistical bath” of energy arrays from the environment impinging on their sensory surfaces. These 

energy arrays would sculpt phenotypes, associated with a certain equilibrium steady-state 

distribution, which the organism would update as a function of its sensory samples. 

 However, organicists will argue that defining adaptivity as unsurprisingness is misguided 

and relies on implausible assumptions. With Longo & colleagues (2012), one may note that a 

desired equilibrium state distribution is only definable on a predefined phase space. If it’s not 

possible to predefine a phase space for biological systems, the definition will be undercut—and 

with it, the justification for believing that the probabilities involved in FEP are not mere modeling 

tools but are objective features of living systems. 

 Furthermore, leaving on the side free-energy theorists’ selectionist perspective, one may 

find implausible that surprising events should always be maladaptive. Using Gershman & Daw’s 

examples, “[s]hould the first amphibian out of water dive back in? If a wolf eats deer not because he 

is hungry, but because he is attracted to the equilibrium state of his ancestors, would a sudden 

bonanza of deer inspire him to eat only the amount to which he is accustomed?” (2012: 306). If 
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adaptivity is stipulatively defined in terms of minimization of surprise, then some instances of 

adaptive behavior will consist in seeking out novel situations that may provide systems the 

opportunity to resolve expected surprise. 

 Let’s assume that the probabilities involved in FEP aren’t simply modelers’ tools, and turn 

to the second question about how to interpret these probabilities. In its maximal scope formulation, 

the probabilities involved in FEP should be interpreted physically, as objective propensities or 

frequencies. (After all, it makes little sense to say that an amoeba has a certain degree of belief that 

a bacterium is in the premises.) Physical interpretations of probabilities cohere both with how 

probabilities are generally understood in statistical mechanics, as well as with the suggestion that 

inference talk is inapposite to the behavior of organisms like an amoeba or bacterium, understood as 

dynamical systems coupled with their environment (Bruineberg et al. 2018).11 Finally, a propensity-

based interpretation clarifies the sense in which FEP isn’t a tautology, just like it isn’t a tautology to 

say that dice produce odd numbers more often than threes—more on tautology and FEP in §4.1. 

Propensities of free-energy minimizing organisms to survive, or of dice to fall equally often on each 

side, permit fallible predictions about their behaviors. 

 Yet, a propensity interpretation of the probabilities involved in FEP raises several issues. 

One is that it’s opaque what sort of property a propensity is. If propensities are causal tendencies, 

                                                 
11 The notion of inference in FEP also requires clarification. Bruineberg et al. claim that, “[w]ithin the Free Energy 

framework, the notion of ‘inference’ is much more minimal and does not involve any propositions: any dynamical 

system A coupled with another B can be said to “infer” the “hidden cause” of its “input” (the dynamics of B) when it 

reliably co-varies with the dynamics of B and it is robust to the noise inherent in the coupling” (2018: 2436). They 

invoke Huygens’s case of the synchronization of two pendulum clocks to illustrate this “minimal” sense of inference. 

Three points in response. First, whether or not the concept INFERENCE in FEP involves propositions depends how to 

understand the probabilities featuring in the free energy framework. If these probabilities are modelers’ tools without 

actual counterparts in target systems, then INFERENCE may involve propositions, viz., those propositions entertained by 

scientists when they make inferences about target systems on the basis of the mathematics of random dynamic systems 

theory. Second, reliable covariance robust to noise falls within the extension, not of the concept INFERENCE, but of some 

successor notion; so Bruineberg et al. have not illustrated a “minimal sense” so much as they’ve just changed the 

subject; and doing so may do an injustice to actual scientific practice, where the topic of statistical inference for 

dynamical systems is studied extensively across several fields. Third, Huygens observed phase/-opposition coupling 

between two pendulum clocks hanging from a beam or from a board sitting on two chairs. But FEP is formulated within 

the mathematics of random dynamical systems, and Huygens’s case has not been aptly represented as a problem in 

parameter estimation in dynamical systems—a problem that FEP is supposed to help solve (see Oliveira & Melo 2015). 

So, the question of how INFERENCE should be understood within the free-energy framework is not settled by Bruineberg 

et al.’s claim. 
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then they should be asymmetric and diachronic relationships just like causal relationships. But then 

they cannot be probabilities, since conditional probabilities are symmetric. If propensities are long-

run relative frequencies, then a reference class should be defined. For biological organisms, such a 

reference class would correspond to a phase space; but if a phase space cannot be predefined for an 

organism, the probabilities involved in FEP cannot be defined. 

 Suppose instead that the probabilities in FEP are understood epistemically as rational 

degrees of belief. This interpretation is most plausible when FEP is restricted to whole, cognitively-

sophisticated animals, i.e., to creatures possessing mental representations and capacities for rational 

inference. Organisms would thus act adaptively by minimizing a free-energy bound defined over 

internal, graded, epistemic states representing events in the environment. 

 While this interpretation wouldn’t mitigate the problem of defining a phase space (or sample 

space) for organisms, Friston and colleagues surmise that “sustained exposure to environmental 

inputs causes the internal structure of the brain to recapitulate the causal structure of those inputs. In 

turn, this enables efficient perceptual inference” (Friston et al. 2006: 77). This suggestion risks 

obfuscating that adaptive pressures on biological observers are generally unrelated to the accuracy 

of their epistemic states. The suggestion is also at odds with orthodox Bayesianism, since it 

dovetails the assumption that Bayesian inference is “efficient” or optimal just in case one’s prior 

beliefs match the actual statistics of the environment (Feldman 2017). 

 

4 FEP and mechanism 

We now turn to mechanistic philosophy, and argue that FEP is inconsistent with mechanism along 

two dimensions of representation: the dependence of explanatory force on describing mechanisms 

and the rejection of the idea that life science phenomena can be adequately explained through an 

axiomatic, physics-first approach. 

 

4.1 How to explain life phenomena? 
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Free-energy theorists appeal to FEP  to attempt explanations of various phenomena, including 

Hebb’s rule and spike-timing dependent plasticity, the multiplicity and hierarchical organization of 

cortical layers, their reciprocal connection with distinct feedforward and feedback properties, and 

the existence of adaptation and repetition suppression (Friston 2010a). Such explanations are 

thought of axiomatically, as logical deductions from sets of axioms and formulae (Friston 2012). 

Stipulative definitions, like living system as an attracting set in a phase space or adaptive behavior 

as behavior that reduces average surprise, provide the bridge principles that connect theoretical 

predicates from different disciplines, and that allow free-energy theorists to attempt the deductions 

needed to claim reductions of other principles to FEP. In their sweeping attempt to explain these 

and other phenomena, and to reduce their theories and principles to FEP, free-energy theorists have 

also claimed for their theory another virtue: a grand theoretical unification (Friston 2010a; Hohwy 

2014). 

 In presenting these features, FEP is apparently at odds with mechanists’ emphasis that life 

science phenomena should be explained by appeal to mechanisms, and that adequate strategies for 

explanation in the life sciences should involve decomposing these mechanisms into component 

parts and operations and providing an account of how these parts and operations work together to 

produce the phenomenon. 

 FEP and mechanism are related by their common emphasis on function. Both free-energy 

theorists and mechanists can agree that FEP provides an idealized functional principle. Where they 

diverge is on the issues of whether and when functional accounts of biological phenomena suffice 

for adequate explanation, or whether structural details of component parts and mechanistic 

organization are also necessary for such functional accounts to have explanatory power. 

 Progress in the life sciences—and especially the cognitive and behavioral sciences—often 

begins by empirically identifying and adequately describing a functional capacity. Descriptions of 

that capacity then allow for the method of functional analysis, wherein that capacity is functionally 

decomposed in terms of its constituent properties, processes, and components. Functional properties 
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of a system have traditionally been individuated by their relations to inputs, outputs, and other 

internal properties of the system under investigation—that is, by their causal role. By redescribing 

systems’ capacities in terms of their functional properties and dispositions, functional analysis 

offers scientists a way to tackle the target phenomenon. But it also offers the potential for prediction 

and explanation, as empirical applications of FEP demonstrate (e.g., Bastos et al 2012). 

 FEP provides a functional analysis of adaptive behavior, in the sense that it derives from a 

stipulation that such behaviors must be surprise-minimizing. In the abstract, FEP requires an 

interplay between four sets variables: sensory samples D that influence a system Σ’s internal states, 

and active states A that influence the external states of the local environment Ψ. The mathematical 

dependencies between <Σ (D, A), Ψ> define free energy over Σ as a function of D and an 

approximate probabilistic representation of its causes—the thought being that a system’s capacity to 

adapt to its environment can be functionally analyzed in terms of suppression of free energy, via 

internal representations that readjust state changes in its transducers (to maintain or improve 

perceptual fidelity) or effectors (to maintain or promote successful control). 

 For their part, mechanists have argued at length that functional analyses lack explanatory 

power, as they are mechanism sketches. The notion of a mechanism sketch is that of an incomplete 

representation of (the function of) a mechanism, in which some relevant aspects—either component 

parts or their operations, or their organization—are omitted from the explanation. Biological or 

cognitive functions may be decomposed into their constituent properties, processes, or subroutines; 

and decomposition may detail a capacity as a nexus of functional relationships between variables 

standing for component operations, without thereby specifying how the capacity is actually 

realized. Mechanists acknowledge that functional decompositions of capacities into modeled causal 

and non-causal operations within a mechanism constrain the possible structures and configurations 

that might perform those operations; but they are equally keen to emphasize that structural 

decompositions into modeled components within a mechanism can also constrain the possible 

functions and configurations performed. Details about the relevant physiological and anatomical 
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components of mechanisms are necessary to filling in mechanism sketches by localizing each 

operation to its respective component part (Bechtel & Richardson 1993/2010). 

 Free-energy theorists’ functional analyses appeal to states and dynamics that idealize away 

from the biophysical details of the structural complexity of actual systems. While functional 

analyses may be construed as mechanism sketches, FEP itself doesn’t provide in any obvious sense 

a sketch of a mechanism, since it swings free of the need to supply any microstructural, biophysical, 

or anatomical detail. Mechanists would therefore conclude that FEP lacks explanatory power 

(Kaplan & Craver 2011). 

 Free-energy theorists may reply that FEP defines a class of process models that provide 

hypotheses about how spatiotemporally organized components and operations in biological systems 

might carry out free-energy minimization. For example, some have suggested that predictive coding 

is one mechanism by which FEP works, in which hierarchically-structured neuronal assemblies 

engage in message-passing operations (Friston 2009; Bastos et al. 2012). Higher-order neuronal 

assemblies would output predictions of the states of lower-order assemblies, which are then 

compared with the actual states of the lower-order assemblies to form prediction errors that are 

passed back up the hierarchy to update the predictions from higher-order neural assemblies. The 

recurrent exchange of signals between adjacent neural assemblies resolves prediction error at each 

level, resulting in hierarchically deep, neurally-encoded “accounts” of sensory inputs. 

 While it may go some way toward meeting the demands of filling out a mechanism sketch, 

this suggestion is inadequate for mechanists. First, predictive coding is only one of several possible 

algorithms that may be used to optimize energy functions. Since many of them might be empirically 

adequate but difficult to disentangle, concerns of underdetermination may emerge. Second, while 

predictive coding has been used to model some aspects of visual perception (Rao & Ballard 1999), 

“the experimental evidence for it seems currently inconclusive in the sense that it does not rule out 

Bayesian inference with a direct variable code, potentially in combination with a variety of non-

probabilistic processes” (Aitchison & Lengyel 2017: 224). Third, because FEP is intended to 
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generalize beyond organisms with a nervous system, predictive coding would need to be a 

mechanism by which all adaptive systems work—from bacteria, to winged snowflakes and bladder 

cells, to plants and social networks. Obviously, for such a wide array of systems, appealing to 

message passing in neuronal hierarchies as a relevant mechanism by which they operate is 

insufficiently general. Fourth and finally, even if issues of underdetermination were put aside and 

the experimental evidence for predictive coding were overwhelming, and even if it were shown to 

be the generalized mechanism by which all adaptive systems work, mechanists would be positioned 

to claim that filling out the mechanism sketch is what matters: appeals to the mechanism of 

predictive coding—not FEP—are what provides explanatory depth. For mechanists, functional 

descriptions of capacities that require mechanistic analysis to achieve this depth can be important 

principles, but not foundational ones that do the heavy lifting in ultimately explaining biological 

phenomena. 

 Free-energy theorists may simply reject the idea that adequate scientific representation of 

life science phenomena must target the component parts and operations and internal organization of 

mechanisms. They may refer to Chirimuuta’s (2017) work, which contends that several 

explanatorily adequate models in computational neuroscience are non-mechanistic. The models 

Chirimuuta considers would be instances of “efficient coding explanation,” which, abstracting away 

from biophysical specifics, would answer why certain neuronal systems should behave in the ways 

described by the models. Based on design principles informing the model, such explanations would 

thus identify the functional utility of general patterns of behaviors instantiated by neural systems. 

 Similarly, free-energy theorists may argue that FEP is an optimality principle in the life 

sciences (cf., Rice 2015). FEP, along with the class of process models it defines, provides us with 

idealized, coarse-grained descriptions of certain factors and functional variables, which leverage 

varieties of realization types against the drive to detail lower-level biomechanical structures 

essentially involved in producing target explananda-phenomena. FEP, and the class of process 

models it defines, would omit causal-mechanical detail and make biologically unrealistic 
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assumption to focus attention on very general observable patterns displayed by biological systems, 

but also by any other system behaving adaptively. Given that aim—they might claim—it’s 

misguided to charge FEP for not providing us with mechanistic information. 

 

4.2 FEP as a first principle? 

As we have seen, explanations derived from FEP abstract away and distort most of the mechanistic 

features of their target phenomena. But if FEP doesn’t aim at uncovering mechanisms or difference-

makers, then what’s its epistemic status vis-à-vis mechanistic explanation, exactly? 

 Unfortunately, FEP’s epistemic status is muddled. It has been called an unfalsifiable 

platitude, an imperative, a tautology, a stipulative definition, paradigm, law of the life sciences, law 

of nature, an a priori first principle, a unifying explanation, and a simple postulate or axiom. Wiese 

& Metzinger assert that “FEP can be regarded as the fundamental theory, which can combine the 

different features of predictive processing described above within a single, formally rigorous 

framework” (2017: 12). Friston and collaborators contend that “free energy minimization may be an 

imperative for all self-organizing biological systems” (2012: 2117), and that “the whole point of 

[FEP] is to unify all adaptive autopoietic and self-organizing behavior under one simple imperative; 

avoid surprises and you will last longer […]”, which is a principle so basic that “there is no need to 

recourse to any other principles” (Friston et al. 2012), and “The tautology here is deliberate, it 

appeals to exactly the same tautology in natural selection (Why am I here? – because I have 

adaptive fitness: Why do I have adaptive fitness? – because I am here). Like adaptive fitness, the 

free-energy formulation is not a mechanism or magic recipe for life; it is just a characterization of 

biological systems that exist” (ibid.). For his part, Allen (2018: 19) characterizes FEP as a 

normative theory, an axiomatic, self-evidently true natural law, and a tautologically true axiom, 

likening it to a paradigm, framework, and a research programme as well. 

 This rhetorical jumble makes it harder to understand the status of FEP as a first principle, 

and thus the contrast between FEP and mechanism. So, some clarification is called for. To begin, 
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one should not follow Allen or Wiese & Metzinger in confusing principles with theories, 

paradigms, and research programmes, since these technical terms refer to different species of 

scientific representations, with different properties and scientific and philosophical purposes. 

Likewise, that any self-conserving system, via environmental exchanges, must, as necessary 

condition on the possibility of maximizing its adaptivity, minimize an information-theoretic bound 

on a negative log probability is an intriguing thought—but not one that qualifies as a platitude or a 

truism, under any normal understanding of those concepts. 

 One plausible thought is that FEP is a first principle because it’s an axiom or postulate: 

“[t]he free-energy principle is a simple postulate that has complicated ramifications” (Friston 2011: 

91), and again, “FEP derives [is?] a normative, a priori first principle from a provable definition of 

living systems” (Allen & Friston 2018: 2473).12 And in fact, as mentioned, free-energy theorists 

spin off an enormous variety of derivations from FEP. In that sense, FEP may be said to play the 

role of a first principle. But while the free-energy theorists in the life sciences utilize an axiomatic 

approach grounded in the mathematics of theoretical physics (Friston 2012), FEP is a principle that 

is itself derived from other statements and definitions. So, it is not an underived axiom or postulate, 

strictly speaking. By implication, principles like FEP need not be underived axioms to play the role 

of first principle in the life sciences. 

Free-energy theorists often characterize FEP as a principle in the life sciences because it’s 

“tautological,” even “unfalsifiable.” Such claims are not easily interpreted. If FEP were a tautology, 

then free energy theorists may have a triviality problem. As Klein remarks, “[a]ppeal to apparent 

tautologies should trouble you. For whatever tautologies do, they don’t explain why things happen” 

(2018: 2552). Tautologies may offer a starting point for explaining the end goal states of optimal 

systems, but the empirical adequacy of models with added biophysical causal detail is far removed 

                                                 
12 It’s unclear in what sense the definition of living system as an attracting set is “provable.” Definitions are 

commonly restatements that do not stand in need of proof, or are even capable of being proved. More 

plausibly, Friston & colleagues want to claim that the definition they propose is legitimate—though it’s not 

obvious what criteria of legitimacy should be in place to evaluate this claim. 
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from triviality. And the attempted explanations relying on FEP do not involve anything like the 

decomposition and localization of biophysical mechanisms underlying adaptive behavior. 

 Similarly, falsifiability is normally treated as a hallmark of any scientific claim; so if 

principles must be falsifiable to be scientific and FEP is unfalsifiable, then FEP is not a scientific 

principle. What’s intended cannot be that FEP is unfalsifiable because it’s merely stipulated; for 

while there are stipulative definitions involved in the transcendental argument, FEP is not one of 

them. Similarly, what’s intended cannot be that FEP is unfalsifiable because it fails to be truth-apt, 

since it would then not be a law-like generalization, and could not serve as the conclusion of a 

transcendental argument. Presumably, then, FEP is like all other scientific principles in being truth-

apt, such as Archimedes’s principle describing basic relationships in fluid dynamics. But unlike 

other principles such as Galileo’s principle describing the periodicity of pendula, which 

subsequently enjoyed more accurate and precise formulations, it seems that what’s intended is that 

principles like FEP or Hamilton’s PLA survive all scrutiny of their pedigree and have truth-values 

that cannot be improved upon. In that sense, FEP might be a constraint that mechanist explanations 

in the life sciences must honor, in so far as life scientists aim to determine which values of some 

energy functional constitute the best available solution—given certain design constraints—to the 

problem of maintaining the path of a target biological system in state space within a specific 

(homeostatic) region that precludes phase transitions. Claims of tautologousness and 

unfalsifiability, in addition to being interpretively difficult, just lead to further questions about its 

epistemic status, such as whether free-energy theorists, in taking FEP to be a necessary condition on 

the possibility of adaptive behavior, thereby take FEP to be some kind of necessary truth. 

 Unlike what advocates have claimed (e.g., Hohwy 2014), FEP-based theorizing is not 

consistent with mechanists’ idea that the power of an explanation depends on its capacity to 

uncover the mechanism of a target phenomenon. But unlike what mechanists will reply, the 

response is not obviously just to claim, “so much the worse for FEP”. This apparent inconsistency 

is methodologically good: the boom of research relying on FEP just highlights there is room for 
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deductive systematization and physics-first approaches in life science theorizing (see also Gurova 

2011). Rather than aiming to represent difference-makers of life science phenomena, FEP instead 

aims to represent, in the language of information theory and random dynamical systems theory, 

what characteristics complex systems must possess for self-maintenance and self-regulation. 

  

5 Conclusion: a plurality of principles 

Living organisms are complex, adaptive systems that present both robust regularities but also 

constant variation. Understanding their regularities and variations requires conceptual frameworks 

in which knowledge from physics, chemistry, biology, ecology, and ethology can be synthesized, 

using tools from mathematics and computational theory. The diversity of expertise involved in 

understanding brains and organisms, and the fragmentation in present-day neuroscience and 

biology, highlights the need for principles that could afford a common intellectual framework for 

researchers from different communities to work together to answers questions of common concern. 

 FEP is an impressive candidate for one such first principle aiming to ground general, 

idealized models for tracking one fundamental pattern underlying the robust regularities and 

constant variation displayed by complex and diverse phenomena in the life sciences. FEP 

symbolizes what a first-principle, physics-first, axiomatic approach to the life sciences can look 

like, while it has crystallized the notion of prediction-error minimization in philosophical and 

scientific debates as a central theoretical posit to understanding life and mind. 

 In this paper, we have identified apparent disagreements between FEP and basic tenets of 

organicism and mechanicism concerning the scientific representation of life phenomena. The 

incompatibility between these different approaches should not suggest that only one of these 

approaches can aptly represent the phenomena of life. These different approaches are meant to 

fulfill different epistemic aims of different communities of life scientists; and these aims may be 

best pursued separately, with a diverse array of tools for piecemeal modeling, prediction, and 

understanding of target phenomena. 
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 Motivated by the kind of pragmatic, epistemic pluralism endorsed by fundamental inquiries 

like Smith & Morowitz (2016) and by philosophers of the life sciences like Mitchell (2002), we 

conclude with a note of caution against indulging in metaphysical speculation on the basis of 

scientific tools for modeling and representations of the phenomena of life (cf., Potochnik 2017: 

§7.2). While we may legitimately and productively argue about the aptness of a tool for its intended 

purposes, the risk of confusion is high when philosophers and scientists directly reads off 

metaphysical conclusions about the nature of life and mind from usage of epistemic tools. 
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