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A multifunnel energy landscape encodes the
competing a-helix and b-hairpin conformations
for a designed peptide†

Debayan Chakraborty, ‡*a Yassmine Chebarob and David J. Wales *a

Depending on the amino acid sequence, as well as the local environment, some peptides have the

capability to fold into multiple secondary structures. Conformational switching between such structures

is a key element of protein folding and aggregation. Specifically, understanding the molecular

mechanism underlying the transition from an a-helix to a b-hairpin is critical because it is thought to be

a harbinger of amyloid assembly. In this study, we explore the energy landscape for an 18-residue

peptide (DP5), designed by Araki and Tamura to exhibit equal propensities for the a-helical and b-hairpin

forms. We find that the degeneracy is encoded in the multifunnel nature of the underlying free energy

landscape. In agreement with experiment, we also observe that mutation of tyrosine at position 12 to

serine shifts the equilibrium in favor of the a-helix conformation, by altering the landscape topography.

The transition from the a-helix to the b-hairpin is a complex stepwise process, and occurs via collapsed

coil-like intermediates. Our findings suggest that even a single mutation can tune the emergent features

of the landscape, providing an efficient route to protein design. Interestingly, the transition pathways for

the conformational switch seem to be minimally perturbed upon mutation, suggesting that there could

be universal microscopic features that are conserved among different switch-competent protein

sequences.

Introduction

Anfinsen’s thermodynamic hypothesis,1 propounded more than
fifty years back, suggests that the three-dimensional organization
of protein structure is largely dictated by its amino acid sequence.
Although this idea remains one of the cornerstones of modern
molecular biology, recent discovery of protein ‘conformational
switches’ seems to challenge the notion of a sequence-to-structure
paradigm.2–6 Such plasticity usually manifests at the level of
secondary structure, with identical or similar sequences adopting
distinct folds, depending on the context or environmental
factors.7–10 One of the earliest examples of context-dependent
adaptability was provided by Kabsch and Sander through mining
a structural database.11 Subsequently, Minor and Kim showed
that an 11-residue fragment within a small protein could adopt
either a-helix or b-hairpin conformations depending on its relative

position in the primary sequence.12 In another study, Cordes and
coworkers13 demonstrated that two members of the Cro repressor
family, with elevated sequence identity, display a striking fold
switch from a-helix to b-sheet in a 25-residue segment near their
respective C-terminal regions. Aside from naturally occurring
sequences, a significant number of peptides and proteins have
been designed to meet the Paracelsus Challenge,14 where the
objective is to induce switching behavior in a globular protein
by changing no more than half the sequence. Regan and
coworkers15,16 were the first to demonstrate that a predominantly
b-sheet region within the B1 domain of IgG binding protein G
could be transformed to a four-helix bundle conformation
via rational design. Subsequently, Bryan, Orban and coworkers
successfully designed proteins with 88% sequence identity, but
different monomeric folds.17,18 These experimental successes
have been complemented by recent effort towards the in silico
design of switchable peptides.19–21

The transition from an a-helix to a b-sheet conformation
is often suggested as a precursor in protein misfolding and
aggregation, the underlying cause of many neurological
disorders.22–24 For example, the cellular prion protein primarily
consists of helices, whereas the pathological form of the protein
responsible for neurodegenerative diseases, such as bovine
spongiform encephalopathy and Creutzfeld–Jacod disease in
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humans, acquires a high b-sheet content.25 The a - b con-
formational switch could also lead to functional structures, and
is a crucial step in the folding of certain proteins, such as
src SH326 and b-lactoglobulin.27 Due to its key role in protein
folding and aggregation, there has been significant interest
in decoding the key aspects of the a - b transition, from
experiments28,29 as well as computer simulations.30–39 None-
theless, lack of sufficient microscopic insight, in terms of
both transition pathways and rates, has precluded a complete
understanding of this important conformational switch at the
molecular level.

In the present work, we investigate the a - b conforma-
tional switch in the context of an 18-residue peptide designed
by Araki and Tamura.40 Starting with an 11-residue segment
from human a-lactalbumin, which exists as an a-helix in acidic
conditions,41 the authors attempted to induce switching
behavior by adding extra residues to the C-terminal. Based
on NOESY spectra, they concluded that one of the designed
peptides (DP5), with the sequence INYWLAHAKAGYIVHWTA,
exhibits nearly equal propensity to form a-helix and b-hairpin
structures. Furthermore, mutation of the tyrosine at position 12
in DP5 to a serine (denoted as DP3) shifts the equilibrium
completely in favor of the a-helix.

Several computational studies have focused on understanding
the transformation between the two prominent conformational
states of DP5 using different enhanced sampling techniques.
Okamoto and coworkers employed generalized ensemble mole-
cular dynamics, exploiting the multicanonical–multioverlap
algorithm,42 to characterize the transitions between the a-helix
and b-hairpin conformations.43 Based on a two-dimensional free
energy landscape, multiple local minima and putative transition
states were characterized, having either partial helix or hairpin
structures. It was suggested that the conformational switch to the
b-hairpin conformation is triggered by an initial unwinding of the
a-helix near the N-terminus. In subsequent work,44 Okumura
and Itoh investigated the transformation pathways of DP5
using the ‘helix strand replica exchange method’, which shares
the same formalism as Hamiltonian replica exchange. To
facilitate the conformational switch, umbrella potentials were
applied in the dihedral angle space. The authors demonstrated
that this approach is more efficient at exploring the conforma-
tional space of DP5 than temperature-based replica exchange.
Furthermore, the free energy difference between a-helix and
b-hairpin ensembles was shown to be approximately zero, in
agreement with the experimental results.40 In another study,
Mou and coworkers45 used the Wang–Landau algorithm in con-
junction with a coarse-grained peptide model to map out the free
energy landscapes for the DP5 and DP3 sequences. Their work
suggests that the interplay of dipole–dipole and hydrogen-
bonding interactions plays a key role in regulating the conforma-
tional switch, and the degeneracy of the native state. Despite
the simplicity of the peptide model employed, the study of Mou
and coworkers corroborated a key experimental finding: the
mutation of tyrosine at position 12 (DP5) to serine (DP3) lifts
the degeneracy, and shifts the balance in favor of the a-helix.
Interestingly, the b-hairpin conformation for DP3, though not

detected experimentally, appeared as a high-lying minimum on
the free energy landscape.

In the present contribution, we use the discrete path sampling
(DPS) technique46,47 to characterize the underlying energy
landscapes for the DP5 and DP3 peptides. Within the DPS
framework, transition pathways are described geometrically in
terms of interconnected minimum-transition state-minimum
triples on the underlying potential energy landscape, and an
a priori choice of reaction coordinates is unnecessary. Our study
complements previous work based on the finite temperature
string,36,48 integrated tempering49 techniques that also provide
a reaction coordinate free approach to investigate the a - b
transition.

We find that the degeneracy of the native state for the DP5
sequence is encoded by the multifunnel nature of the corres-
ponding free energy landscape, and the coexistence of the
a-helix and b-hairpin conformations leads to a low-temperature
peak in the heat capacity profile. The transition from the a-helix
to the b-hairpin occurs via collapsed coil-like intermediates.
Mutation of tyrosine at position 12 to serine (DP3 sequence)
reshapes the energy landscape, and lifts the degeneracy, in
agreement with experiment. Nonetheless, the molecular mecha-
nism underlying the a-helix to b-hairpin transition remains largely
unaltered, and closely resembles the pathways in other switchable
proteins,31,33,50 suggesting that there could be universal features
that are conserved across different sequences.

Methodology

The initial coordinates for the a-helix and b-hairpin conforma-
tions of DP5 were taken from previously reported NMR
structures40 (PDB IDs: 2DX3 and 2DX4 for the helix and hairpin
respectively). In experiments,40 the helix and hairpin states
were found to coexist at a pH of 4.5. Following previous
work43,44 the peptide terminals were left uncapped, and the
histidines were protonated to simulate the acidic conditions
employed in the experiments. The initial structure for the DP3
sequence was prepared by mutating the tyrosine-12 residue in
the DP5 structure to a serine using the mutagenesis plugin
available in PyMol.51

The peptides were modeled using a properly symmetrized
version of the AMBER99SB force-field.52 In its original form the
AMBER force-field exhibits broken symmetry, caused by some
of the improper torsion angles. To restore the symmetry of the
potential energy function we adopted the strategy described in
previous work by Malolepsza et al.53 To make the landscape
exploration efficient, and avoid potentially unimportant configura-
tions resulting from minor rearrangements of the water structure,
the solvent effects were treated implicitly using a generalized Born
solvent model.54,55 An effective salt concentration of 100 mM was
maintained using the Debye–Hückel approximation.

Molecular dynamics simulations in implicit solvent

The molecular dynamics simulations were carried out using the
GPU enabled version of the AMBER12 package.56 No cutoff was
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employed for the nonbonded interactions, and the simulations
were carried out without using periodic boundary conditions.
The temperature was maintained at 300 K by coupling the
system to a Langevin thermostat, using a collision frequency of
1 ps�1. All simulations were 100 ns in length. Snapshots from
the MD trajectories were saved every 10 ps and were locally
minimized using the GMIN code.57

The DSSP algorithm, available within the ptraj module of
AmberTools, was used to classify the secondary structure
corresponding to each residue of the DP3 and DP5 peptide
sequences.

Landscape exploration using discrete path sampling

The energy landscapes of the DP3 and DP5 peptides were mapped
out using the Discrete Path Sampling (DPS) technique.46,47 DPS is
complementary to methods based on explicit dynamics, and
provides a framework to describe the underlying landscape in
terms of databases of stationary points (minima and the transi-
tion states that connect them). As the stationary points are located
using geometry optimization in a time-independent fashion,
DPS is particularly efficient in probing conformational transitions
that occur over a wide array of time scales. It has been used to
study ‘rare event’ dynamics in a diverse range of contexts, from
protein and RNA folding58–60 to cluster rearrangements and
polymorphism,61,62 as well as self-assembly.63 In this section we
briefly discuss the key steps of DPS, and refer readers to earlier
work,46,47 which provides the detailed formalism.

Within the DPS framework, the connectivity between different
endpoints (reactant and product states) on the potential energy
landscape is described in terms of discrete paths, which consist of
a sequence of minima linked by intervening transition states.
A stationary point having a single imaginary frequency is identi-
fied as a transition state, from the generalized Murrell–Laidler
definition.64 Approximate steepest-descent paths directed parallel
and antiparallel to the eigenvector corresponding to the imaginary
frequency terminate at the adjoining minima.65

As described in the previous section, an initial sample of
minima was obtained by the quenching of snapshots from the
molecular dynamics trajectories. DPS runs were carried out
to connect different local minima corresponding to the a-helix
and b-hairpin conformations, respectively. The doubly-nudged66

elastic band67,68 method was used to find initial guesses for
transition states between pairs of local minima, starting from
an image distribution obtained via the quasi-continuous inter-
polation scheme.69 This method exploits the connectivity of the
covalently bonded network and prevents unphysical chain cross-
ings in the pathway images. The transition state candidates
obtained from DNEB were accurately refined using the hybrid
eigenvector-following scheme,70 until the root-mean-square (RMS)
gradient fellow below 10�6 kcal mol�1 Å�1. The OPTIM code71

interfaced with the AMBER9 package72 was used for all the local
minimizations and transition state searches. The geometry
optimizations were carried out using a modified version of
the L-BFGS algorithm.73

The initial discrete path obtained between endpoints of
interest is usually kinetically unimportant, as it tends to be

long, and may have high intervening barriers. To locate more
relevant pathways, the stationary point databases were further
expanded using various refinement schemes. In particular, the
SHORTCUT BARRIER and SHORTCUT schemes, described in
previous work,74,75 were used to identify pathways charac-
terized by lower energy barriers, and shorter path lengths,
respectively. However, spurious frustration may be introduced
into the stationary point databases due to undersampling of
certain regions of the landscape, and manifests in the form of
low-lying minima separated from the product region by high
energy barriers. The UNTRAP scheme,74 which selects minima
for reconnection attempts based on the ratio of the potential
energy barrier to the potential energy difference to the product
region, is used to remove spurious frustration. The databases
were systematically expanded by sequential applications of
these three schemes until no further changes were observed
in terms of path lengths and barrier heights for the a-helix to
b-hairpin transition pathways.

The rate constant kSS
ba for the a-helix to b-hairpin transition

can be expressed as an infinite sum over discrete paths when
the intervening minima are treated within the steady-state
approximation, and the dynamics between adjoining minima
are assumed to be Markovian.46,47 The infinite sum is weighted
by the occupation probability of the reactant minimum as well
as the relevant branching probabilities. The product of the
branching probabilities defines the statistical weight of each
discrete path.46,47 We used Dijkstra’s shortest path algorithm,76

with edge-weights corresponding to the product of the branching
probabilities58 to extract the a-helix to b-hairpin transition path
that contributes most to the overall rate constant. The flowchart
in Fig. 1 summarizes the key details of the computational
methodology.

Analysis of free energies and global kinetics

A harmonic approximation77–79 was employed to estimate the
vibrational partition functions associated with the minima and
transition states in the stationary point databases. The canonical
partition function for local minimum i is expressed as:

ZiðTÞ ¼
nie
�Ui=kBT

h�ni=kBTð Þk (1)

In eqn (1), Ui denotes the potential energy of minimum i, ni is the
number of distinct permutation-inversion isomers of i, �ni denotes
the geometric mean of the normal mode frequencies associated
with minimum i, and k represents the number of vibrational
degrees of freedom. The overall canonical partition function is
written as a sum of contributions from the catchment basin of
each local minimum.

ZðTÞ ¼
XM
i¼1

ZiðTÞ (2)

Here, M is the number of minima present in the stationary
point database. The partition functions for the transition states
are defined in the same way as in eqn (1) and (2), but the
normal mode corresponding to the imaginary frequency is

PCCP Paper

Pu
bl

is
he

d 
on

 0
9 

D
ec

em
be

r 
20

19
. D

ow
nl

oa
de

d 
by

 L
aw

re
nc

e 
L

iv
er

m
or

e 
N

at
io

na
l L

ab
or

at
or

y 
on

 2
/2

8/
20

20
 1

2:
39

:5
2 

A
M

. 
View Article Online

https://doi.org/10.1039/c9cp04778f


1362 | Phys. Chem. Chem. Phys., 2020, 22, 1359--1370 This journal is©the Owner Societies 2020

omitted from those expressions. The occupation probabilities
and free energies were calculated from the canonical partition
function using equilibrium statistical mechanics:

Fi(T) = �kBT ln Zi(T), (3)

and

p
eq
i ðTÞ ¼

ZiðTÞ
ZðTÞ : (4)

The heat capacity, Cv can be expressed in terms of the
partition function, Z(T) using standard thermodynamic relations:

Cv ¼
@UðTÞ
@T

� �
N;V

; (5)

where U(T) is the internal energy. Using eqn (1), Cv corresponding
to the superposition partition function can be written as:

Cv ¼ kkB �
z1ðTÞ2

kBT2z0ðTÞ2
þ z2ðTÞ
kBT2z0ðTÞ

(6)

where

zrðTÞ ¼
X
i

ni Uið Þr
kBT

h�ni

� �k

e�Ui=kBT (7)

The unimolecular rate constant k†
i (T) for minimum i cross-

ing the transition state † at a temperature T is estimated using
harmonic transition state theory (TST), as:

k
y
i ðTÞ ¼

kBT

h

ZyðTÞ
ZiðTÞ

(8)

In eqn (8), Z†(T) and Zi(T) denote the canonical partition
functions corresponding to minimum i and transition state †,
respectively. Summation of all the k†

i (T) values for all transition
states that connect minima i and j gives the total TST rate
constant for the transition. The equilibrium occupation prob-
abilities and the TST rate constants obtained using eqn (4) and (8),
corresponding to all the elementary transitions in the database,
were used to extract the overall rate constant for the a-helix to
b-hairpin transition from the corresponding kinetic transition
network using the new graph transformation (NGT) method.80

To alleviate any bias in the estimate of rate constants that may
arise due the original choice of endpoints, a self-consistent
lumping scheme58 was employed. This approach exploits the
separation of time scales between the overall conformational
transition, and local equilibration within the product and
reactant regions. In the regrouping scheme, structures that
are separated by free energy barriers below a certain threshold
are grouped into one macrostate. The corresponding rate
constants are then described in terms of transitions between
ensembles, rather than individual minima, thereby making
direct comparisons with experiments feasible.58,81

To quantify the complexity of the landscape, we estimate the
frustration index f̃(T) as a function of temperature.82 This
metric is a quantitative measure of how efficiently a system
relaxes to its lowest-energy structure. Self-organizing systems
are characterized by a single-funnelled landscape with low

barriers, and exhibit low levels of frustration, f̃(T). In contrast,
glassy systems, which are often synonymous with dynamical
arrest, have a highly frustrated energy landscape, and may
never relax to their lowest energy structure on the observation
time scale. Within the computational energy landscape
framework, f̃(T) is defined as:

~f ðTÞ ¼
X

iaGM

p
eq
i ðTÞ

1� p
eq
GMðTÞ

U
y
i �UGM

Ui �UGM

 !
: (9)

In eqn (9), the summation includes all minima in the database
excluding the global minimum, GM, peq

i (T) is the temperature
dependent equilibrium occupation probability of minimum i,
Ui is the potential energy of minimum i, UGM is the potential
energy of the global minimum, and U†

i is the potential energy of
the highest transition state on the lowest energy path between
minimum i and the global minimum.

Disconnectivity graphs: visualization of energy landscapes

The free energy landscapes for the DP3 and DP5 peptide sequences
were visualized in terms of disconnectivity graphs.83–86 This repre-
sentation of the landscape is powerful yet simple, and represents
the barriers between different local minima.87 A disconnectivity
graph segregates the landscape into disjoint sets of local
minima known as ‘superbasins’,83 at regular intervals of
energy. Minima within each superbasin are mutually accessible
via transition states that lie below a certain threshold, whereas
transitions out of a superbasin must surmount higher energy
barriers. Basin analysis is performed at regular energy thresholds
to yield the desired resolution. In its original form, the horizontal
axis of the disconnectivity graph is arbitrary.

Fig. 1 A flowchart summarizing the key details of the computational
methodology.
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Results and discussion
The NMR structures exhibit enhanced flexibilities

The helix and hairpin conformations of the DP5 sequence
exhibit substantial flexibility on the time scale of the MD
simulations, with average backbone RMSD from the corres-
ponding NMR structures being 5.5 Å and 6.9 Å, respectively
(ESI,† Fig. S1). Snapshots corresponding to the different
conformations identified from the MD simulations are shown
in Fig. 2.

In the helix conformation exhibiting the lowest RMSD
(aRMSD), the secondary structure of residues Y3 to A10 is
classified as a-helical according to the DSSP criterion. The
structure with the lowest RMSD in the hairpin ensemble
(bRMSD), exhibits turns near residues A6, H7, K9, A10 and
G11. Interestingly, none of the residues in bRMSD satisfy the
DSSP requirements for a b-bridge conformation. Although our
observation seems counterintuitive at first glance, it is in line
with two previous studies43,49 where it was argued that the NMR
description of a b-hairpin, based on NOE distances, need not be
commensurate with the DSSP criterion. As outlined in the
Methodology section, snapshots from the MD trajectories were
locally minimized to identify the lowest energy configurations
in the helix and hairpin ensembles, respectively. The lowest
energy helical conformation (alowest) does not have a continuous
helical region, unlike the aRMSD structure. Instead, residues Y3 to
A6 and I13 to W16 form short helical fragments, which are
separated by a turn in the middle of the sequence. Residue G11
is located at the center of this turn (Fig. S2, ESI†). This structural
feature is consistent with the notion of glycine being a ‘helix-
breaker’,88,89 and its frequent occurrence in turn/bend regions,
due to the absence of stabilizing side-chain packing interactions.
The existence of similar low-lying partial helical conformations
with a turn region was also predicted by earlier simulations43,44,49

that employed a different combination of force field and water
model. In contrast to the bRMSD conformation, which comprises
only turns, the lowest energy hairpin structure (blowest) exhibits an
antiparallel b-sheet, stabilized by hydrogen-bonding interactions
between residues L5-V14, and H7-Y12, respectively. The B factor
plots depicted in Fig. 3 indicate that different residues contribute
to the overall flexibility of the helix and hairpin conformations.
The tendency of the long a-helix to bend during the course of the
MD simulation and form partial helical structures is reflected in
the relatively high B factors associated with the residues in the
middle of the sequence. In the hairpin conformation, the residues
in the middle exhibit minimal fluctuations, whereas those closer
to the termini appear more mobile.

Mutating the glycine at position 11 to alanine (MT-ALA11
sequence), which is known to be a ‘helix-promoter’, does not
reduce helix bending, and the B factors associated with the
residues in the middle of the sequence remain relatively high
(Fig. S3, ESI†). We confirmed that the elevated B factors are not
due the enhanced conformational fluctuations inherent in
implicit solvent molecular dynamics trajectories, as similar
trends were also observed in explicit solvent simulations
(Fig. S4, ESI†). Turn propensity at position 11, which seems
to be the primary cause of helix bending in DP5, is somewhat
reduced in MT-ALA11. However, residues 7–9 exhibit an
elevated turn propensity. Surprisingly, the C-terminus segment
of MT-ALA11 (residues 12–18) displays a relatively lower
preference for both a- and 310 helices compared to the DP5
sequence (Fig. S5, ESI†). The lowest potential energy structure
in the helix ensemble, obtained after systematically quenching
snapshots from the MD trajectory, exhibits an a-helix only at
the N-terminus. The b-hairpin structure seems to be substan-
tially destabilized for MT-ALA11. Unlike DP5, the lowest
potential energy structure sampled in trajectories initiated
from a b-hairpin is in fact a partial helix (Fig. S6, ESI†).

Although standard molecular dynamics provides insight
into conformational dynamics occurring over short time scales,
it is prone to kinetic trapping, especially for landscapes featuring
broken ergodicity.65,90 To enhance the sampling for the DP5
sequence, and obtain mechanistic insight into the a 2 b
conformational switch, DPS simulations were seeded from
the structures depicted in Fig. 2. After initial paths were
characterized between the a-helix and b-hairpin structures,

Fig. 2 Different conformations for the DP5 sequence identified from the
MD simulations. (a) The aRMSD conformation, which exhibits a RMSD of
1.3 Å from the NMR structure (2DX3). (b) The lowest energy a-helix
conformation. (c) The b-hairpin conformation exhibiting the lowest RMSD
from the NMR structure (2DX4). (d) The lowest energy b-hairpin
conformation.

Fig. 3 The estimated B factors at 300 K for the helix and hairpin
conformations.
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the rest of the local minima constituting the helix and hairpin
ensembles identified from the MD simulations were syste-
matically added to the stationary point databases (kinetic
transition network). This step involved connection-making
attempts between the different minima in the helix and hairpin
ensembles, and alowest/blowest or aRMSD/bRMSD, whichever was
closer to the selected minimum in terms of Euclidean distance.
The stationary point databases were further expanded by refining
the initial discrete paths using the schemes described in the
Methodology section, following the procedure outlined in Fig. 1.
The network is deemed to be converged when the length of the
‘fastest path’ between the a-helix and the b-hairpin structures, as
well as the rate constant for the corresponding transition, remain
invariant with respect to the addition of new stationary points.
The smallest transition network satisfying this criterion consisted
of 50 640 minima and 71 563 transition states.

A multifunnel energy landscape encodes alternate secondary
structures

The free energy landscape computed at 300 K for the DP5
sequence, described in terms of ensembles of stationary points,
is depicted in the form of a disconnectivity graph in Fig. 4.
The branches are colored according to the type of secondary
structure, identified by the DSSP algorithm. Specifically, blue
branches lead to minima in which at least six residues are
classified as helical; red branches correspond to minima that
adopt hairpin-like structures, with at least six residues adopting
a b-bridge orientation; green branches correspond to turn
structures that do not have any residue classified as helical or
b-bridge; all other branches are colored black. Although the
segregation based on secondary structure is good, it is far from
perfect. The intermixing of colors in different regions of the
graph indicates that structural metrics alone are insufficient to
faithfully represent the complex features of the landscape.91

Here, the use of ‘secondary structure’ is merely to aid visualization,
and we stress that unless a robust kinetic metric, such as the
recursive regrouping scheme58 is used to distinguish different
states, a misleading picture of the kinetics may be obtained.87,92

The landscape exhibits multifunnel character, with the low-
lying region dominated by ensembles corresponding to partial
helices, long a-helix, hairpins with b-bridges, and structures
exhibiting turns. Snapshots of peptide conformations consti-
tuting the different ensembles are shown superimposed on
the disconnectivity graph (Fig. 4). The lowest energy a-helix
(snapshot i) and b-hairpin (snapshot g) structures identified
from MD simulations lie at the bottom of the major blue and
red funnels, respectively. The ensembles populating the two
funnels are structurally heterogeneous. In addition to confor-
mations similar to alowest, the partial helix funnel also contains
structures exhibiting either an a-helix or a 310-helix exclusively
at the N-terminus, a-helix or 310-helix exclusively at the
C-terminus, 310 helices at both termini, or an a-helix at one
terminus and a 310-helix at the other. In Fig. 4, we show two of
the variants (snapshots h and j), and the rest are included in
the ESI† (Fig. S7). Within the red funnel comprising the blowest

structure (snapshot g), we identified several hairpins that do

not have any b-bridges, but exhibit turn regions (snapshot f).
Unlike the turn structures denoted by the green branches
(snapshot c), these hairpins retain nearly all the canonical
hydrogen-bonds that are present in blowest (Fig. S8, ESI†).
Conformations similar to bRMSD (snapshot e) populate the top
of the hairpin funnel. The landscape also features a prominent
subfunnel, populated by hairpins exhibiting an alternative
b-sheet structure (snapshot d). Here, the b-sheet is downshifted
by two residues and twisted out-of-plane. Compared to blowest,
the b-sheet is slightly longer, extending across three residues on
either strand. Long a-helix structures constitute the bottom of
the narrow blue funnel. Unlike the major funnels, the struc-
tural variation near the funnel bottom is minimal, with nearly
all helices exhibiting only minor differences in the internal
degrees of freedom. The aRMSD structure (snapshot a) is desta-
bilized with respect to the long helix, and lies at the top of the
funnel.

The organization of the landscape is largely consistent with
the free energy surfaces obtained from thermodynamic sampling
in previous work.43–45,49 Based on the relative equilibrium

Fig. 4 The free energy landscape for the DP5 sequence computed at
300 K. Blue branches lead to helical structures, while red branches
typically lead to hairpin structures. Some representative snapshots from
the different structural ensembles are also shown: aRMSD (a), long a-helix
(b), turn structure (c), b-sheet structure (d), bRMSD (e), low-energy hairpin
without b-bridge, but consisting of hydrogen bonds (f), blowest (g), partial
helix with an a-helix at the N-terminus (h), partial helix with a-helices at
both termini (i), partial helix with a 310-helix at the N-terminus (j).
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populations, these studies concluded that the long a-helix
structure is destabilized with respect to the hairpin and the
partial helical structures. In contrast, we predict the long
a-helix to be a competing structure on the landscape, separated
from the hairpin and partial helices by large barriers. The
shape of the landscape in the vicinity of the long helix
compared to the organization near the partial helix and hairpin
conformations hints at a possible cause for this discrepancy.
The narrowness of the funnel leading to the long helix may
make it kinetically inaccessible from the denatured state, which
is substantially populated in previous simulations due to
the relatively high temperatures employed in thermodynamic
sampling. On the other hand, relaxation to the partial helical
and hairpin states is likely to be more favorable upon tempera-
ture quenches due to the larger basins of attraction associated
with the corresponding minima. A similar situation is often
encountered in simulations of atomic clusters exhibiting
competing morphologies, and has been extensively studied
using the landscape framework.85,93 The topography of the
landscape further indicates that during dynamical simulations
initiated from the NMR-like helix conformation, the system has
a high probability of escaping the basin of attraction of the long
helix, and would then evolve towards metastable states that
resemble the partial helices in the major blue funnel. This
dynamical feature is therefore an emergent property of
the landscape, and is accurately captured by our initial MD
simulations.

The free energy difference between the long a-helix and
the lowest energy b-hairpin conformation is approximately
0.4 kcal mol�1 (E0.6kBT), consistent with the coexistence of
these two folds observed experimentally.40 Previous simula-
tions also reported a negligible difference in free energy
between the a-helix and b-hairpin conformations.43,45 Local
equilibration within the helix and hairpins is faster compared
to the a- b transition, which is associated with a rate constant
of 2.7 � 10�9 s�1, obtained with a regrouping threshold58 of
3.0 kcal mol�1 at 300 K. Thus, the two quasi-degenerate
conformations of DP5 are stable on the observation time scales.
As discussed above, the partial helical basin consists of structures
that were previously found using thermodynamic sampling,43,44

and were also visited on the time scale of our MD simulations. If
the partial helical state is selected as representative of the helix
ensemble, then the free energy difference between the helix and
hairpin conformations is estimated to be 0.9 kcal mol�1

(E1.5kBT). However, the transition between the partial helix and
the b-hairpin is predicted to be faster, with an associated rate
constant of 0.45 � 10�1 s�1 at 300 K.

The transformation from the long a-helix to the b hairpin
requires rather complex structural reorganization, and is
described here in terms of the ‘fastest path’ in the transition
network (Fig. 5). Residue G11, which was found to act as
a ‘helix-breaker’, also plays a critical role in initiating the
conformational switch. In the early stage of the transformation,
the contiguous helical structure is disrupted by the formation
of a kink at G11. Subsequently, the helix unfolds from the
C-terminal region, with the concomitant loss of hydrogen-
bonding interactions between residues that are separated by
four positions along the chain, namely A8-Y12, K9-I13, A10-V14
and I13-T17. Next, the N-terminal region unfolds, with disrup-
tion of hydrogen-bonding interactions between Y3-H7, and
L5-K9. The loss of key hydrogen-bonding interactions causes
the helix to bend substantially. At this stage, the middle of the
sequence still retains some a-helical character, and a 310 helix
is formed near the C-terminal region, between residues Y12 and
V14. Subsequently, the a-helix in the middle unfolds to form a
turn region centered around G11, and a new hydrogen-bonding
interaction results between the distant residues Y3 and H15.
This helical structure, with a turn region in the middle, is
similar to the conformations that constitute the partial helical
basin (Fig. 4). Unwinding of the residual helical fragments
leads to collapsed coil intermediates exhibiting mostly turn
regions. The next stage of the transformation is characterized
by the formation of the hydrophobic core of the hairpin, and a
subsequent conformational search for the native-like contacts.
The formation of the first native hydrogen-bond between L5
and V14 drives the zippering of the rest of the hairpin stem. The
final phase is primarily dominated by internal reorganization of
the b-bridges to native-like conformations. Overall, the pathway for
the a - b transition is in accord with previous findings based on
complementary simulation techniques.31,33,36,38,44

Fig. 5 Left: The a to b transition for the DP5 peptide sequence. The mechanism is described in terms of the path that contributes maximally to the global
dynamics. Here, s is the integrated path length. Right: The transition from a partial helix conformation (snapshot i in Fig. 4) to the b hairpin. Some
representative structures encountered along the pathways are shown superimposed.
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The conformational transition from the partial a-helix struc-
ture to the b hairpin involves shorter paths, characterized by lower
potential energy barriers (Fig. 5). The a-helical fragment at the C-
terminus unwinds first, to form a 310 helix. Subsequently, the a-
helix near the N-terminus unfolds completely. The random coil
intermediate formed en route to the b-hairpin exhibits near
perfect alignment of the opposing strands, and is predisposed
to form the native hairpin contacts in a rapid downhill fashion.
This rapid rearrangement to the hairpin structure is in stark
contrast to the multiple collapse and expansion stages of random
coil intermediates in pathways originating at the full a-helix.

Reshaping the landscape via mutation

Mutating the tyrosine at position 12 to serine (DP3 sequence)
has a pronounced effect on the organization of the free energy
landscape (Fig. 6). The corresponding kinetic transition
network consists of 48 383 minima and 68 038 transition states.
The degeneracy between the a-helix and b structures in DP5 is
absent. The free energy global minimum at 300 K is a long

a-helix structure (snapshot h), which is stabilized with respect
to the lowest energy b-hairpin structure (snapshot c) by approxi-
mately 3.2 kcal mol�1 (E5.3kBT). An array of hydrogen-bonds
between residues separated by four positions along the
sequence stabilizes the long a-helix structure. The mutation,
in fact, seems to perturb the hydrogen-bonding pattern
minimally, as the helix retains most of the interactions found
in the DP5 sequence (Fig. S9 and Table S1, ESI†). In contrast,
the hydrogen-bonds stabilizing the hairpin conformation for
DP5 are lost upon mutation (Fig. S10, ESI†), resulting in a
deformed b-sheet structure (snapshot c) for DP3. As is evident
from Fig. 6, the b-hairpin conformations are not only thermo-
dynamically unfavorable relative to the full helix structure, but
are also kinetically inaccessible from the full helix due to
the large intervening free energy barriers separating the two
funnels. Using a regrouping threshold58 of 3.0 kcal mol�1, the
rate constant for the transition from the full a-helix to the
b-hairpin is estimated to be 7.8 � 10�15 s�1 at 300 K, which is
several orders of magnitude lower than that for the DP5
sequence. A combination of thermodynamic and kinetic factors
therefore explain why the b-hairpin conformation was not
detected, and consequently no conformational switching was
observed, on the time scale of the NMR experiment.40

The free energy landscape of DP3 also features a diverse
range of partial helix structures (snapshots f, i, and j), which
exhibit a bend in the middle of the sequence, and either 310 or
a helices at the termini. However, they are no longer competing
structures on the landscape, and exist mostly as high-lying
minima at the top of the helix funnel. Interestingly, upon
mutation, the overall population of turn structures seems to
increase as compared to the DP5 sequence, and a major funnel
(denoted by green branches in Fig. 6) comprising exclusively
turn structures emerges on the landscape. In many of the
low-lying turn conformations within the green funnel, the two
strands are approximately aligned as for a b-hairpin structure
(snapshot e), but the canonical hydrogen-bonding interactions,
which provide additional stability, are absent.

The heat capacity profiles, and the frustration index (Fig. 7)
provide further insight into how mutation reshapes the free
energy landscape. For the DP5 sequence, the competition
between the a-helix and b-hairpin conformations results in a
prominent peak in the low temperature region of the heat
capacity curve. Such solid–solid type transitions are reminiscent
of cluster isomerizations,93 in which the interplay between
enthalpy and entropy switches the free energy global minimum
with temperature. Upon mutation, the low temperature peak
disappears, indicating that the mutant sequence, DP3, no longer
supports the degeneracy. At high temperatures, unwinding of
the a-helix near the terminals occurs for both sequences. This
transition corresponds to a shoulder in the heat capacity profile
for the DP5 sequence. In contrast, for DP3, helix unwinding is
associated with a broad peak, indicating that a higher change in
internal energy is required for unwinding due to the increased
depth of the helix funnel. The f̃(T) for the DP5 sequence is at least
an order of magnitude higher than the DP3 sequence at lower
temperatures, in line with the multifunnel character of the free

Fig. 6 The free energy landscape for the DP3 sequence computed
at 300 K. The color coding is same as in Fig. 4. Some representative
snapshots from the different structural ensembles are also shown: turn
structures (a, d, and e), beta hairpin structures (b and c), partial helix
structures (f, i and j), a bent helix (g), and the full a-helix (h).
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energy landscape supporting competing structures. On the other
hand, the lower f̃(T) for DP3 suggests the multifunnel character
is diminished substantially upon mutation, and consequently
the quasi-degeneracy between the a-helix and b-hairpin
conformations is broken. Our observations recapitulate the
findings of previous studies that have attributed multifunctio-
nality and coexistence of different folds to the multifunnel
nature of the underlying landscape, and an evolutionary
optimization of frustration.50,94–96

Despite the loss of degeneracy upon mutation, it is still
instructive to assess the microscopic mechanism underlying
the transformation between the full a-helix and the b confor-
mation (Fig. 8). As expected, the intervening potential energy
barriers are somewhat higher compared to the DP5 sequence
(Fig. S11, ESI†). In the early phase of the transition pathway,
the helix bends in the middle to form structures similar to
snapshot g, which lies near the bottom of the helix funnel
(Fig. 6). This step is followed by the unwinding of the a-helix
to form 310 helices first near the N-terminus, and then near the
C-terminus, resulting in conformations similar to snapshots f
and i shown in Fig. 6. Subsequently, all helical fragments
are broken to form collapsed coil-like structures, exhibiting
mostly turn regions. The middle of the transition pathway is
dominated mostly by conformational fluctuations of these

structures and the search for b-hairpin type contacts. During
the last stages of the pathway, the strands approximately
align, and contacts are established between residues H7
and S12, and L5 and H15 to form a high energy b hairpin
structure. Finally, the L5-H15 contact is broken, and the
b-sheet downshifts to form the low-energy b-hairpin (snapshot
c in Fig. 6). Interestingly, the alteration of the landscape
topography upon mutation does not perturb the transition
mechanism appreciably.

Mutation of glycine at position 11 to alanine (MT-ALA11)
should also reshape the landscape significantly. In fact, for
MT-ALA11, the conformational switch from the b-hairpin to
a-helix is accelerated sufficiently to be observed on the time
scale of implicit solvent MD simulations (Fig. S12, ESI†).
We anticipate that the reverse process would be much slower
compared to the DP5 sequence due to the suppressed turn
propensity for residue 11. To draw conclusive insights into
the relative populations of secondary structures, as well as
transition mechanisms, a systematic characterization of the
landscape is required, beyond the scope of the present work.
Instead, we provide some testable predictions for MT-ALA11
based on exploratory simulations: we surmise that the
degeneracy between the b-hairpin and a-helical structures is
likely to be lost, with the latter dominating the equilibrium
population, much like DP3. Nonetheless, the local topography
of the landscape, as well as the relative ordering of the minima
in the vicinity of the long a-helix structure, ought to be similar
to DP5. Trajectories initialized from the NMR-like helix
conformation (for MT-ALA11, glycine at position 11 is mutated
to an alanine, while leaving the helix structure unperturbed)
meet similar fates on comparable time scales. The lowest
energy long a-helix structure is likely to be situated at the
bottom of a narrow funnel, and has possibly not been detected
by the MD simulations due to limited sampling.

In light of the present study, and several others on proteins
of varying complexity,33,50,97,98 it seems that despite sequence-
specific effects, there are common themes underlying the a to b
transition mechanism, where insight at the molecular level may
be crucial for decoding the key aspects of protein folding and
aggregation.

Fig. 7 Left: The normalized heat capacity profile, Cv/N computed from the database of minima for the DP5 sequence (red), and DP3 sequence (green).
Here, Cv is in units of kcal mol�1 K�1, and is scaled by the number of atoms, N. Right: Frustration index, f̃(T), as a function of temperature for the DP5
sequence (red) and the DP3 sequence (green).

Fig. 8 The a to b transition for the DP3 peptide sequence. Here, s is the
integrated path length. The mechanism is described in terms of the path
that contributes maximally to the global dynamics.
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Conclusion

In this work, we have shown that a multifunnelled free energy
landscape encodes quasi-degeneracy between the a-helix and
b-hairpin conformations for a designed peptide sequence. The
coexistence of these folds results in a low-temperature peak in
the heat capacity profile, which is reminiscent of solid–solid
type transitions observed in atomic and molecular clusters,93 as
well as biomolecular switches.99–101 Mutation of tyrosine at
position 12 to a serine alters the landscape topography signifi-
cantly, and lifts the degeneracy, in agreement with the experi-
ment of Araki and Tamura.40 As expected, the mutant sequence
no longer exhibits any thermodynamic or kinetic signatures of
competition between the a-helix and b-hairpin conformations.
The loss of degeneracy is traced to the overall destabilization
of the b-hairpin conformation, which results from the disrup-
tion of key hydrogen-bonding interactions upon mutation.
Interestingly, mutation does not seem to alter the microscopic
details of the transition mechanism between the a-helix and
the b-hairpin conformations substantially, suggesting that
there could be generic features of this transformation that are
conserved across different sequences.
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68 G. Henkelman and H. Jònsson, J. Chem. Phys., 1999, 111,
7010–7022.

69 D. J. Wales and J. M. Carr, J. Chem. Theory Comput., 2012, 8,
5020–5034.

70 L. J. Munro and D. J. Wales, Phys. Rev. B: Condens. Matter
Mater. Phys., 1999, 59, 3969–3980.

71 D. J. Wales, OPTIM: A program for optimising geometries and
calculating pathways, http://www-wales.ch.cam.ac.uk/soft
ware.html.

72 D. A. Case, T. A. Darden, T. Cheatham, C. L. Simmerling,
J. Wang, R. E. Duke, R. Luo, R. C. Walker, W. Zhang,
K. M. Merz, B. Roberts, S. Hayik, A. Roitberg, G. Seabra,
J. Swails, A. W. Goetz and I. Kolossváry, AMBER 9, 2006,
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