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Opinion
Protein folding is an essential prerequisite for protein
function and hence cell function. Kinetic and thermody-
namic studies of small proteins that refold reversibly
were essential for developing our current understanding
of the fundamentals of protein folding mechanisms.
However, we still lack sufficient understanding to accu-
rately predict protein structures from sequences, or the
effects of disease-causing mutations. To date, model
proteins selected for folding studies represent only a
small fraction of the complexity of the proteome and are
unlikely to exhibit the breadth of folding mechanisms
used in vivo. We are in urgent need of new methods –
both theoretical and experimental – that can quantify the
folding behavior of a truly broad set of proteins under in
vivo conditions. Such a shift in focus will provide a more
comprehensive framework from which to understand
the connections between protein folding, the molecular
basis of disease, and cell function and evolution.

Our current understanding of protein folding
Proteins are central to all cellular events: they catalyze
chemical reactions, do mechanical work, and perform struc-
tural roles in the cell. Although proteins are synthesized as
long linear polymers of amino acids, each must fold into a
specific 3D structure in order to perform its cellular function.
The precise sequence of amino acids has a profound influ-
ence on the structure of a protein, and hence its function.
Indeed, pioneering experiments by Anfinsen in the 1950s
showed that the structure of a protein can be determined
exclusively by the sequence of amino acids in the polypeptide
chain [1]. Therefore, in theory when provided with the
sequence of a new protein we should be able to predict its
structure, which can help predict its function. Moreover, a
complete understanding of all physical principles that shape
protein folding and structure would enable the de novo
design of novel protein structures and functions and accu-
rate predictions of the effects of disease-causing mutations
on protein structure and folding.

Anfinsen’s observations were the wellspring of the pro-
tein folding field, and intense effort has been devoted to
determining precisely how a full-length polypeptide chain
can quickly refold to form its native structure with high
efficiency. Similar to Anfinsen, most efforts focus on study-
ing a purified protein that is first chemically denatured to
form an enormous ensemble of rapidly interconverting flex-
ible conformations (the unfolded ensemble), then diluted
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away from the denaturant in order to enable the protein to
refold and regain its biologically active structure (the native
state) (Box 1). These refolding experiments can be used to
measure protein folding rates and also protein stability,
calculated as the free energy of folding (DG8folding) [2]. An
important prerequisite for these measurements is the iden-
tification of experimental conditions under which measur-
able concentrations of reactants and products (the unfolded
ensemble and native state) exist at equilibrium, and hence is
restricted to the subset of proteins that unfold and refold
reversibly on an experimentally measurable time scale.

Our focus on proteins that refold reversibly after chemi-
cal denaturation means that the subset of proteins whose
folding properties are well understood share many struc-
tural and folding features. Many of these proteins are small
(<100 aa), single-domain, monomeric, marginally stable
(DG8folding � –15–30 kJ/mol) and fold quickly (ms–s time
scale) via concerted mechanisms that lack well-populated
intermediate conformations [3–9]. This is not surprising,
as it has been shown that proteins that are large, multi-
meric, and/or fold slowly via long-lived, partially folded
intermediate structures are more likely to misfold and
aggregate [10–13], and are therefore unsuitable for calcu-
lating DG8folding (Box 1).

Detailed studies of proteins that refold reversibly after
chemical denaturation have enabled descriptions of many
fundamental features of refolding mechanisms, including
measurements of typical rates for global hydrophobic col-
lapse and secondary structure formation [14]. Such small
proteins are also more amenable to computer simulations
than large proteins, and hence continue to provide an
invaluable bridge between experimental results and the
development of protein folding simulations and theory
[15,16]. Our extensive investigations of these model pro-
teins have now revealed common features of their refolding
mechanisms [14,17,18], including general correlations be-
tween folding rate and the length [5] or structural com-
plexity [3] of the protein, and some common folding
intermediates including the ‘molten globule’, a globally
collapsed conformation with significant secondary struc-
ture but little or no stable tertiary structure that is often
observed shortly after dilution of an unfolded protein from
denaturant [19,20]. These and other common mechanistic
features identified to date have led to speculation that
protein folding in general is now a well-understood phe-
nomenon [21–24]. However, with few notable exceptions
[25–28], our current state of knowledge has produced only
modest progress towards accurate ab initio predictions of
protein structure from sequence, design of novel proteins,
or treatments for the molecular basis of protein folding
diseases.
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Box 1. The standard set of experiments used to characterize protein folding in vitro

This approach is applicable only to proteins that reversibly unfold and

refold in a two-state reaction in vitro. Conditions must be identified

that eliminate aggregation (Figure IA), a common side reaction.

Protein folding in reversible systems (Figure IB) is often monitored

using optical methods including tryptophan fluorescence emission

and circular dichroism spectroscopy. Thermodynamic stability

(DG8folding) is measured by equilibrating the protein in various

concentrations of a chemical denaturant and measuring the con-

formation spectroscopically at each denaturant concentration (Figure

IB, green). The linear transition region in the sigmoidal unfolding/

refolding titration can be extrapolated to calculate DG8folding in 0 M

denaturant. The same spectroscopic tools can be used to monitor

refolding and unfolding kinetics (Figure IB, blue). The rate constants

for folding (kf) and unfolding (ku) are dependent on the residual

denaturant concentration. By systematically varying the final dena-

turant concentration, one can construct a V-shaped chevron plot

(bottom right) where the folding and unfolding rate constants are

plotted versus the final concentration of denaturant [76]. Each ‘arm’ of

the V-shaped plot can be extrapolated to obtain the unfolding and

refolding rate constants at 0 M denaturant. For proteins that fold via a

simple one-step process, these rate constants can also be used to

calculate DG8folding.
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Figure I. (A) For most proteins, dilution of the ensemble of unfolded

conformations (U) out of denaturant results in a kinetic competition between

correct folding (N) versus aggregation. This results in <100% reversibility of the

refolding reaction, meaning that such proteins cannot be used for the

thermodynamic and kinetic analyses described below. (B) For proteins that do

refold reversibly, there are widespread assays available to study protein stability

and folding kinetics. For such assays, conditions must be identified where

folding is reversible: upon dilution, the ensemble of unfolded conformations (U)

is converted exclusively to the native structure (N) with no detectable

aggregation or hysteresis. Under these conditions, the free energy of folding

(DG8folding) can be determined either from equilibrium denaturation

measurements (left; green) or from kinetic measurements of rate constants (kf

and ku) (right; blue). Abbreviations: R, gas constant; T, temperature.
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Why is protein folding still a ‘problem’?
Why is it that, despite extensive study and the emergence
of common features, our ability to predict the folding
behavior of a protein from its sequence is still so limited?
We wondered whether the intense focus on proteins that
unfold and refold reversibly in vitro, which provide valu-
able tools for building the foundation of our understanding
of folding mechanisms, might nevertheless hamper the
development of a broader, more comprehensive under-
standing of protein folding. Unfortunately, the majority
of proteins in a proteome cannot refold reversibly after
dilution from a chemical denaturant. Instead, once taken
out of the cellular environment, chemically denatured and
diluted into a buffer designed to mimic physiologically
relevant conditions (pH, salt, etc.), most proteins misfold
and aggregate (Box 1) [29,30]. Such proteins are rarely
used as folding models, despite their widespread appear-
ance in proteomes.

Typical folding models provide incomplete
representations of proteomes
Can we extrapolate from our current understanding of
protein folding behavior to describe truly general features
of protein folding? An accurate extrapolation requires that
our model proteins represent the diversity of proteins from
338
across entire proteomes. To address this question, we
compared structural properties of 165 nonredundant pro-
teins commonly used to draw general conclusions regard-
ing protein folding mechanisms [3–9,23] (see Table S1 in
the supplementary material online) to properties of the
well-characterized Escherichia coli proteome (Figures 1A
and 2). This comparison revealed that protein folding
models capture only a small subset of protein structural
diversity, shared by only 8.4% of the E. coli proteome. The
diversity of our model proteins therefore does not accurate-
ly represent the diversity of the proteome of even a small,
simple organism. This discrepancy is most apparent for
transmembrane proteins, but proteome diversity is under-
represented even among water-soluble proteins, particu-
larly those that are large and/or multimeric (Figures 1C
and 2). Of course, proteins in a proteome can be classified
using other properties beyond those shown here, but we
consistently observed that current protein folding models
fail to adequately sample the diverse properties of the
proteome regardless of the metric used. In addition, there
is a growing appreciation that the cellular environment
introduces additional challenges – including higher tem-
peratures and protein concentrations – not present during
in vitro refolding experiments [31,32]. Paradoxically, de-
spite these challenges more proteins fold efficiently in vivo
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Figure 1. Whereas typical protein folding models exhibit properties not representative of the Escherichia coli proteome, emerging techniques can capture a broader set of

proteins. (A) The 4133 proteins from E. coli str. K-12 substr. MG1655 (NC_000913.2) were used to construct a proportional Venn diagram, with each unit area in the yellow

rectangle corresponding to one E. coli protein coding sequence. These sequences were divided by length (< or �200 aa) and analyzed for the presence of an N-terminal

signal sequence (http://www.cbs.dtu.dk/services/SignalP) (blue shading), one or more transmembrane a-helices (http://www.cbs.dtu.dk/services/TMHMM) (pink shading),

both a signal sequence and a transmembrane a-helix (purple shading), and/or a PDB entry with >95% sequence identity to at least some portion of the protein sequence

(hatched area). Note that this map underestimates the complexity of the proteome, as each protein coding sequence from the E. coli genome is treated as a separate

monomeric protein. A set of 165 nonredundant model proteins used to study protein folding (<95% sequence identity) [3–9] was also analyzed. Each protein is indicated by

a green symbol proportional to the size of one E. coli coding sequence. Seventeen of the model proteins have >95% sequence identity to an E. coli protein (dark green

symbols); the remaining 148 model proteins are from other organisms (light green symbols). In some cases these models represent individual domains or fragments taken

from larger proteins, but as it is known that removal from a larger protein context can change folding behavior [33,44] (see text), the size of the studied domain is used here.

(B) Subsets of proteins identified by proteome-wide screens designed to select other, nontraditional folding behavior were categorized as described for the 165 folding

models and compared to the properties of the E. coli proteome as in (A). Kinetically stable proteins (red symbols) were identified by protease resistance [43] or resistance to

moderate concentrations of sodium dodecyl sulfate (SDS) [42], yielding 81 nonredundant E. coli proteins. E. coli chaperone client proteins (blue symbols) represent both

DnaK substrates (category ‘enriched’ in [61]) and GroEL substrates (‘class IV’ in [60]), resulting in a set of 227 proteins. Proteins present in both sets (kinetically stable and

chaperone client) are indicated as purple symbols. Note that there is only one protein in common between the folding models (A) and kinetically stable and/or chaperone

client proteins: maltose binding protein, a kinetically stable protein [43]. (C) Size distribution for each protein group shown in (A) and (B), sorted by sequence length.
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than in vitro [29,30]. This indicates that the properties that
enable folding to proceed efficiently in vivo are not neces-
sarily sufficient to enable efficient refolding in vitro.

The fundamental physical and chemical principles
known to govern protein refolding in vitro will of course
also apply to larger, more complex proteins in the cellular
environment. However, if the protein folding problem was
truly solved – if we understood the whole of the physics and
chemistry that underlies protein folding – we would now be
capable of designing de novo a protein structure of any size
or complexity, and predicting the effects of disease-causing
mutations on protein structure and folding. The fact that
we cannot (see e.g., [33]) indicates that our current knowl-
edge is insufficient to solve the problem. In our opinion,
closer attention should be paid to proteins currently
regarded as unusual outliers as their mechanistic features,
which might be considered unusual among our current
folding models, could represent footholds for the develop-
ment of a more comprehensive picture of the diversity of
folding mechanisms used across the proteome as a whole.
339
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Figure 2. Protein folding models are biased towards monomeric proteins. The

multimerization state of each group of proteins shown in Figure 1 (Escherichia coli

proteome, protein folding models, kinetically stable proteins, chaperone client

proteins) was determined. For the E. coli proteome, subunit assignments in the

Uniprot database were used (30% of proteins in the E. coli proteome have

assignments; 1237 proteins). Multimerization state for the 165 nonredundant

protein folding models was assigned based on reported multimerization state in

the protein folding literature. The multimerization state is indicated for 71 of the 81

kinetically stable proteins identified in [42,43]. The multimerization state of the

chaperone client proteins was assigned using the Uniprot database. Out of the 227

nonredundant chaperone client proteins, 103 have a subunit assignment in the

Uniprot database.
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Figure 3. Examples of diversity among protein folding mechanisms. (A) Most

proteins currently used as folding models are marginally stable (black), meaning

that their folded lifetime (t1/2) is short. Lifetime can be increased in two ways. The

native structure can be stabilized thermodynamically, increasing the energetic

difference between the denatured ensemble and the native structure (increasing

DG8folding, blue). Alternatively, the energetic barrier separating the denatured

ensemble and the native conformation (DGz) can be increased (red); this will

preserve the (low) thermodynamic stability but increase the folded state lifetime.

Increasing the energy barrier yields kinetically stable proteins, which can be

identified by proteome-wide folding screens [42,43] (Figure 1B). (B) Proteins fold

from an ensemble of unfolded states, represented by the wide top of a protein

folding funnel. In simple model systems (yellow), the funnel has one energy

minimum, the native conformation. However, some proteins have a more complex

energy landscape and can adopt alternative folded structures (green). These two

folded structures may interconvert, or features of the cellular environment may

stabilize a subset of early folding intermediates, resulting in a biased accumulation

of one structure versus the other(s).
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The purpose of this article is to highlight five common
perceptions regarding protein folding mechanisms devel-
oped from studies of small model proteins that in our
opinion are unlikely to scale to the folding behavior of
all proteins, with the intent to inspire new technology
development and research approaches – both in vitro
340
and in vivo – to close these gaps and increase the predictive
power of protein folding research.

Do most proteins globally unfold/refold during their

lifetime?

For reasons described above, there has been a strong
emphasis on the study of model proteins that unfold and
refold reversibly. These proteins tend to be only marginally
stable and have fast unfolding and refolding kinetics.
These features could mean that these proteins will popu-
late the unfolded state several times over their lifetime in
the cell (Figure 3A). The marginal stability and fast kinet-
ics of most model proteins have focused considerable at-
tention on the structural properties of proteins in their
chemically denatured ensemble as a model for their un-
folded state [34] and the transition between unfolded and
native states. However, most proteins do not refold revers-
ibly. Instead, global (or even partial) unfolding can lead to
misfolding and aggregation (and/or degradation in vivo)
[35]. This suggests that proteins in general will employ
strategies to avoid unfolding over their lifetime in the cell.
Protein unfolding can be avoided by increasing protein
stability, but this tends to rigidify the native structure,
which can reduce flexibility needed for binding and cataly-
sis. An alternative option is to increase the energy barrier
between the native and denatured states, creating proteins
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that are kinetically stable but thermodynamically margin-
ally stable, or even less stable than the unfolded state
(Figure 3A). Transthyretin [36], P22 tailspike [37], and
GFP [38] are three well-studied examples of proteins with
high kinetic stability. In vitro, each of these proteins
exhibits pronounced hysteresis and hence does not refold
reversibly from a chemically denatured state. However, all
three fold efficiently in vivo, indicating the cellular envi-
ronment can alter the energy landscape for folding to
arrive at a kinetically trapped native structure. Detailed
investigations into the folding mechanisms of these pro-
teins have provided valuable insights into the kinetic
competition between folding versus aggregation, including
uncovering the effects of conformational changes within a
single polypeptide chain on aggregation propensity [39],
introducing the concept of folding mutations that can alter
partitioning between folding and aggregation without al-
tering the stability of the native state [40] and highlighting
the role of folding during translation as a mechanism to
increase folding yield in vivo [41].

Many kinetically stable proteins are resistant to unfold-
ing in the presence of moderate concentrations of sodium
dodecyl sulfate (SDS) [42] and/or to protease digestion [43].
Proteome-wide screens developed to identify proteins with
these characteristics have revealed that kinetically stable
proteins sample some properties of the proteome more
effectively than typical folding models (Figures 1B, 2,
and Table S2 in the supplementary material online)
[42,43]. Indeed, these screens underrepresent small
(<200 aa) proteins, which might reflect a lower propensity
for kinetic stability among small proteins or a bias within
the screen against smaller proteins, similar to technical
limitations that impose a bias against transmembrane
proteins. Traditionally, kinetically stable proteins are
rarely selected as folding models because refolding from
a chemically denatured state in vitro can require these
proteins to populate long-lived, partially folded conforma-
tions that may be prone to aggregation. We suggest that
focusing our efforts to understanding the structural fea-
tures that confer kinetic stability, and the mechanisms
used to populate such native structures in vivo, provides an
opportunity to explore a folding strategy used by a diverse
set of proteins that can reduce aggregation in vivo.

Do larger, multidomain proteins fold like their

component domains?

The vast majority of proteins used for folding studies are
both monomeric and consist of a single structural domain
(Figures 2 and 4). By contrast, larger proteins often consist
of multiple domains. This modular architecture makes it
tempting to hypothesize that larger proteins will fold via a
hierarchical mechanism whereby local contacts first deter-
mine the folding properties of individual domains, followed
by the formation of interdomain interactions. This model
assumes that the complexities of multidomain protein fold-
ing can be reduced to the independent folding of the constit-
uent domains. Whereas such behavior has been observed for
some proteins, for others the placement of a domain within
the context of a larger multidomain protein can significantly
alter the energy landscape for folding [44], making it impos-
sible to predict the effects of disease-causing mutations or
other sequence alterations from studies of isolated domains
alone [33]. For example, whereas yeast phosphoglycerate
kinase (PGK) can be studied as two separate, independently
folding domains – both of which appear in the list of 165
model proteins (see Table S1 in the supplementary material
online) – the E. coli PGK homolog has a nearly identical
structure but unfolds five orders of magnitude more slowly,
and its C-terminal domain cannot adopt its native structure
in isolation [45]. Even for proteins composed of seemingly
‘independent’ domains connected by flexible linkers, contex-
tual effects can alter folding efficiency. For example, Ig
domains within titin form a beads-on-a-string architecture
that was shaped by gene duplication events. Concomitant
folding of two adjacent titin domains increases the likelihood
of non-native interdomain interactions akin to domain
swapping, which occur faster than the folding rate and
therefore retard accumulation of the native structure [46].
Similar non-native interdomain interactions reduce the
folding rate for calmodulin [47]. Interestingly, evolution
has reduced the sequence identity between adjacent titin
domains, which reduces the likelihood of misfolding [44].

A related question is the extent to which protein folding
thermodynamics and kinetics are affected by the assembly
of subunits into a multimeric protein. Studies of intrinsi-
cally disordered proteins have shown that folding and
binding can be interdependent processes [48,49]. It will
be valuable to adapt these approaches to study more subtle
effects of subunit interactions on the thermodynamics that
govern the folding of multimeric proteins with ordered
subunits. More broadly, the complex and crowded environ-
ment of the cell provides numerous opportunities for non-
specific binding events not captured during refolding of a
purified protein in vitro [50], but our understanding of how
protein sequences might have evolved to minimize or
modulate these non-native interactions is still in its infan-
cy. We predict that negative design strategies such as these
– strategies that suppress aggregation and unproductive
nonspecific interactions, rather than stabilize the native
structure – will play an increasingly important role as we
move towards the de novo design of larger, multidomain
and multimeric proteins.

Do most proteins populate only a single native

structure?

Anfinsen showed that RNase can refold to its native, active
protein structure after chemical denaturation, presumably
because this structure represents the global energy mini-
mum on a funnel-like energy landscape (Figure 3B, yel-
low). Most folding models share this feature of a
thermodynamically controlled folding pathway. But there
are now many examples of proteins with multiple, distinct
‘native’ conformations separated by large energy barriers
[51,52] (Figure 3B, green), including a-lytic protease,
whose folding properties are well characterized [53] but
which is rarely included in general analyses of protein
folding behavior. For proteins such as a-lytic protease that
fold under kinetic control, the conversion between these
alternative folded structures is often an essential, regulat-
ed component of the functional cycle of these proteins [54–
56]. Although it is not yet known what fraction of the
proteome can populate two or more alternative folded
341
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Figure 4. Proteins identified by in vivo assays and folding ‘outliers’ are structurally more complex than typical folding models. PDB ID codes are indicated in parentheses.

Subunits of multimeric proteins are shown in different colors, and cofactors (in myoglobin and fumarate reductase) are shown in red. Most models used to study protein

folding (A) are smaller and less complex than proteins representing diverse properties from the Escherichia coli proteome (B). Of the E. coli proteins shown here, purine

nucleoside phosphorylase (a hexamer) and phosphoglycerate kinase (a monomer) were identified in the screen for kinetically stable proteins [43], aspartate-b-

semialdehyde dehydrogenase (a dimer) was identified in the screen for chaperone client proteins [60], and the outer membrane protein TolC (a trimer) was identified in

screens for both kinetic stability and chaperone clients [42,61]. Lactose permease (a monomer) is an a-helical transmembrane protein. Two subunits of the tetrameric

fumarate reductase contain transmembrane a-helices (shown in green and pink). The soluble subunits of fumarate reductase (shown in blue and yellow) were identified in

the screens for chaperone clients [60,61].
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states, our tendency to avoid selecting such proteins as
folding models hampers their discovery and hence our
understanding of the mechanisms that underlie these
folding pathways.

To what extent do molecular chaperones affect protein

folding in vivo?

In the cell, proteins fold in an environment that includes
molecular chaperones, a class of proteins that has evolved to
facilitate the folding and/or suppress the aggregation of
other proteins [57–59]. When these proteins were first
identified, it was initially thought that chaperones – some
of which are essential for cell viability – would explain the
higher efficiency of protein folding in vivo versus in vitro.
More recently however, quantitative proteomics have
revealed that the substrate repertoire for molecular chaper-
ones is fairly narrow under normal growth conditions [60–
62], and hence cannot fully explain the higher efficiency of
folding in vivo. Yet, although chaperones contribute to the
productive folding of only 10–20% of the proteome, their
substrates represent a much more diverse subset of proteins
than current folding models (Figure 1B and Table S3 in the
supplementary material online). These obligate chaperone
substrates therefore provide an excellent opportunity to
342
explore the features of folding mechanisms and native
structures that lead to chaperone recruitment in vivo,
versus those that do not. However, because these proteins
are unlikely to refold reversibly we will need alternative
approaches to study such mechanisms, for example, by
exploiting experiments that can quantify the kinetic parti-
tioning between folding and aggregation, or by developing
single-molecule experiments that enable a protein to fold at
or near infinite dilution, thereby reducing intermolecular
interactions between substrate proteins that can lead to
aggregation [63,64].

Do other aspects of the cellular environment affect

protein folding in vivo?

Our growing appreciation of the contributions of the cellular
environment to protein folding has inspired the develop-
ment of exciting new experimental approaches, including
specific fluorescence and isotope labeling strategies that can
explore the effects of this complex environment on protein
folding thermodynamics and kinetics [65–67]. To date,
many of these studies have relied on the same model pro-
teins favored for in vitro refolding experiments. Perhaps not
surprisingly, in some cases the cellular environment has
minimal effects on the folding of these proteins, versus
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refolding in vitro; these proteins were selected as folding
models in part due to their ability to fold robustly under a
wide range of conditions. What is less clear is how other,
more diverse types of proteins might exploit properties of the
cellular environment to modulate their energy landscape for
folding and increase folding efficiency. For example, the
folding mechanism for a very small protein might not be
altered by folding vectorially (from N to C terminus) during
translation or secretion. By contrast, longer proteins take
longer to synthesize – and secrete – and therefore spend
more time with the N-terminal portion of the protein avail-
able for folding prior to the appearance of the C terminus.
Indeed, several larger proteins are now known to have co-
translational folding mechanisms in which the energy land-
scape for folding is significantly altered versus refolding in
vitro, leading to the population of folding intermediates not
detected during refolding in vitro. These differences often
include significant amounts of native-like structure forma-
tion for the most N-terminal portions of the nascent protein
chain even after tens or hundreds of C-terminal residues
have been added to the growing polypeptide chain
[41,68,69]. Ideally, computer simulations would enable
modeling of co-translational folding processes and the for-
mulation of experimentally testable hypotheses regarding
these altered energy landscapes. Unfortunately, the com-
plexities of both longer proteins and the cellular environ-
ment greatly increase the complexity of computer
simulations, although progress is being made in these direc-
tions [70,71].

Concluding remarks and future perspectives
Similar to many biological mechanisms, protein folding is a
complex, multifaceted process. In vitro refolding studies of
small proteins have played an invaluable role in developing
our understanding of many fundamental aspects of this
process. However, the folding problem is not yet solved,
and the technical constraints of any one approach will
render it insufficient to fully understand such a complex
process. Hence, in our opinion the field of protein folding is
currently ‘mature’ only in the sense that we have extracted
much of the information available from our established
methods and model systems. A comprehensive understand-
ing of protein folding, particularly in the cell, will require
addressing additional phenomena that are not amenable to
detection using our current models and approaches.

For these reasons, we advise extreme caution before
concluding that the folding behavior of a protein appears to
be an unusual outlier. Proteomes contain thousands of
proteins, and to date only a small fraction of their diversity
has been explored through folding studies. Given that our
selection of model proteins to date has been far from
general, it remains an open question to what extent un-
usual ‘outlier’ folding mechanisms contribute to the folding
properties of the proteome as a whole. Studying more
diverse proteins, such as those identified from proteome-
wide screens that do not require reversible refolding (Fig-
ures 1B and 4), would enable us to build upon the funda-
mental laws of physics and chemistry that form the
foundation of our current understanding of protein folding
in vitro, and learn how the cellular environment exploits
those laws in order to build functional cells.
We predict an exciting revolution on the horizon, as the
field of protein folding develops the new experimental
approaches needed to describe the folding properties of
an increasingly diverse set of model proteins and explore
the influence of the cellular environment on these proteins.
In addition to the examples described above, we are heart-
ened by the recent development of new techniques to study
the folding features of transmembrane proteins [72–75],
which represent a significant fraction of all proteomes
(Figure 1) but by and large have been refractory to tradi-
tional approaches to study protein refolding in vitro. Once
new methods and model systems are in place, we will be
able to explore the folding of all corners of the proteome and
develop a truly general understanding of how proteins fold.
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