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Abstract

Proteins are essential for maintaining life. For example, knowing the struc-

ture of a protein, cell regulatory mechanisms of organisms can be modeled,

supporting the development of disease treatments or the understanding of rela-

tionships between protein structures and food attributes. However, discovering

the structure of a protein can be a difficult and expensive task, since it is hard

to explore the large search to predict even a small protein. Template-based

methods (coarse-grained, homology, threading etc) depend on Prior Knowledge

(PK) of proteins determined using other methods as X-Ray Crystallography

or Nuclear Magnetic Resonance. On the other hand, template-free methods

(full-atom and ab initio) rely on atoms physical-chemical properties to predict

protein structures. In comparison with other approaches, the Estimation of Dis-

tribution Algorithms (EDAs) can require significant less PK, suggesting that it

could be adequate for proteins of low-level of PK. Finding an EDA able to han-

dle both prediction quality and computational time is a difficult task, since they

are strong inversely correlated. We developed an EDA specific for the ab ini-

tio Protein Structure Prediction (PSP) problem using full-atom representation.

We developed one univariate and two bivariate probabilistic models in order to

design a proper EDA for PSP. The bivariate models make relationships between
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dihedral angles φ and ψ within an amino acid. Furthermore, we compared the

proposed EDA with other approaches from the literature. We noticed that even

a relatively simple algorithm such as Random Walk can find the correct solution,

but it would require a large amount of prior knowledge (biased prediction). On

the other hand, our EDA was able to correctly predict with no prior knowledge

at all, characterizing such a prediction as pure ab initio.

Keywords: Estimation of Distribution Algorithm, Protein Structure

Prediction, ab initio, full-atom, van der Waals energy,

Expectation-Maximization.

1. Introduction

From the discovery of a new disease until the development of its cure can

take about ten years and involve costs of five billion dollars [1]. One of the main

reasons for this amount of money and time needed is the problem of finding the

tertiary structure of the protein responsible for the disease. Most of the existing

methods to determine the protein structures are experimental. They attempt

to look at the proteins as they are present in nature. For instance, the X-

Ray Crystallography experimental method shoots an x-ray beam into a protein

crystal. Then it creates a diffraction map of hydrogen atoms and together with

information of the primary structure of the protein, it is possible to construct

the tertiary structure. The Nuclear Magnetic Resonance needs a solution of

high concentration containing the target protein. This solution is submitted

to a process that will excite the atom spins and, depending on how much the

atoms will move to a different spin state, it is possible to construct the tertiary

structure of a protein. Both of these experimental methods have disadvantages

and they cannot always determine the tertiary structure of a protein [2].

Thus, in order to avoid the high costs and time needed by experimental

methods, computational methods (in silico) have been created. The method

to determine the primary structure of proteins is well established nowadays,

but as we know, the equivalent tertiary structure is not. Thus, from the se-
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quence of amino acids, computational methods attempt to look into the search

space in order to find feasible protein configurations. We know that proteins

in nature stabilize with the minimum energy state. Therefore, computational

methods look for protein configurations that represent the minimum energy

state. It means that we are predicting the protein structure. This problem

is known as Protein Structure Prediction (PSP). There are two main compu-

tational approaches to predict proteins. One uses knowledge of proteins that

were determined using other methods, as experimental, to infer the new ones

(called template-based). Other, as used in this work, is called template-free. It

does not use information about any existing structures to predict the new ones.

Instead, it uses energy potentials so it can evaluate how good a configuration

is. Then, when a configuration with a lower energy value is found, we will have

a hypothesis that we found the correct structure. However, the search space of

protein configurations is huge and this task cannot be performed using exact

methods [3].

Our goal is to find the correct set of the dihedral angles φ, ψ, χ’s (Section 2.1),

i.e. the variables of the problem, that will yield the protein configurations with

the lowest possible energy. Thus, this can be treated as an optimization problem

in which we want to minimize the energy of a protein configuration (our fitness)

changing the dihedral angles (the variables). There are different ways that one

can represent the protein configurations in the computer. One could use a

coarse-grain representation of amino acid, called HP model [4], but it cannot

represent the protein for practical purposes. Therefore, we use the full-atom

model considering all atoms of the protein configurations [5].

Despite the efforts of the in silico methods in trying to find the correct

protein configurations, an appropriate algorithm that can work properly in a

pure ab initio way is still missing, which is especially relevant when one wants

to predict a protein that has low similarity with the known structures. There

are some Evolutionary Algorithms (EA) and other optimization approaches with

useful results for PSP [6, 7, 8, 9]. The better the optimization technique, the

better will be its chances of finding proper solutions. Nevertheless, this is not
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a trivial task since the optimization algorithm has to deal with the large search

space of possible 3D protein structures in an efficient manner.

Thus, considering the characteristics of the PSP problem, we build an Esti-

mation of Distribution Algorithm (EDA) [10] specially designed for such a prob-

lem. Basically, an EDA constructs models of the distribution of variable values

from promising regions of the search space in order to improve the optimiza-

tion process. To sample better solutions, we need to have a good probabilistic

model. First, we developed a Univariate model-based Optimization algorithm

(UNIO). Secondly, taking advantage of properties of the problem we are tack-

ling, we modeled the [φ, ψ] within the same residue as correlated, yielding a

bivariate probabilistic model. We proposed two different ways to estimate a

probability distribution for each pair of variables: (i) Kernel Density Estima-

tion model-based Optimization (KDEO) [11] and (ii) Finite Gaussian Mixtures

model-based Optimization (FGMO) [12]. That yielded three novel different

EDAs for PSP: UNIO, KDEO and FGMO.

In order to evaluate our probabilistic models, we measured three aspects:

the quality of the protein configurations (RMSD, root-mean-square deviation)

[13], the computational time consumption and the energy values of the pre-

dicted structures (Section 4). As we expected, the bivariate models (KDEO and

FGMO) were able to find better solutions in terms of the energy and RMSD.

Furthermore, we made a comparison between KDEO and specifically other opti-

mization approaches from the literature, Random Walk (RW) [14], Monte Carlo

(MC) [15], Genetic Algorithm (GA) [16] and Differential Evolution (DE) [17].

We discovered that all of these optimization techniques were able to find the

correct protein configuration, of a specific case, when there is enough previous

knowledge about a promising region of the search space. For instance, RW is

known as a poor optimization technique, thus, in order to find the correct protein

configuration, we introduced a bias, reducing the search space to a neighborhood

of the dihedral angles of the native protein. On the other hand, the proposed

EDA can, in general, find adequate solutions without search space reduction,

that is, without bias. Therefore, we may concluded that the proposed EDA
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is more adequate than other investigated approaches when predicting proteins

with low similarity to known structures.

In the next section, we present the Protein Structure Prediction problem. In

Section 3, we present our proposed EDA for PSP. Then, the results are shown

in Section 4. Finally, the conclusions of this work are made in Section 5.

2. Protein Structure Prediction problem

Proteins are essential in almost all processes of life. They have different

functions in living beings and the function of each protein is associated with

their shape. For instance, a protein responsible for the transportation of other

molecules has its shape appropriate to carry such a molecule along the organism

until its destination, i.e. the hemoglobin, capable to transport oxygen. There are

several other functions of proteins as, for instance, defense, control, regulation,

breaking covalent binds etc. We say that a function of a protein is associated

to its shape, also called tertiary structure [18].

When we know a protein responsible of causing a disease, we can develop

treatments and inhibit that protein function. For instance, some viruses have

the capability of cutting human cells, entering in it and then making copies

of themselves spreading the disease along the rest of body. However, when we

know the shape of the protein responsible for cutting the cell we can develop

medicines, the complementary structure, which bind the virus in the medicine

molecule instead of the human cell. This will probably lead to the death of the

virus and reduce the effects of the virus on the organism [3].

Every protein has an identification that matches with its shape. This is called

primary structure (or sequence of amino acids) and it stores all the residues chain

of a protein. Nowadays, it is relatively simple to isolate the primary structure

of a protein. However, finding the tertiary structure equivalent to the primary

structure is a very complicated task. This is the main reason why the sequence

database is growing fast [19] and the structures database is growing relatively

slow [20].
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The current methods to find the tertiary structure of proteins are expen-

sive and require years of trial and error. The experimental methods X-Ray

Crystallography (XRC) and Nuclear Magnetic Resonance (NMR) are by far the

most used methods to determine protein structures. However, it is not always

possible to use these methods, since they have disadvantages as, for instance,

sometimes it is not possible to have a protein crystal and in this case, the XRC

will be no longer available. There is no need to have a protein crystal in NMR

but it only works for small proteins [13].

Based on the drawbacks of the experimental methods many computer meth-

ods that try to find the structure of proteins were developed. This is known as in

silico methods. Based on the sequence of amino acids, they look for feasible pro-

tein configurations in the search space and try to predict the protein structure.

The in silico methods are divided into two different ways of prediction. First,

they are based on prior knowledge of proteins that were already determined by

other methods, as XRC and NMR. They are promising techniques and there

are many researches about these methods. One problem of these techniques

is that their predictions can be biased toward the experimental methods. The

second method is called template-free and does not make use of knowledge of

other proteins. Instead, it uses energy potentials in order to compute the energy

of the protein configuration. The energy potential is a way to describe how a

protein configuration represents a protein in real life. Knowing that proteins

stabilize in a state of minimum energy, we also want to find the configurations

with lowest energy. In this work, we use a template-free approach with full-atom

representation [21].

2.1. Protein representation

The protein configuration can often be represented using dihedral angles

φ, ψ, χ’s. Each residue in a protein configuration chain has its own set of [φ, ψ]

angles and the number of χ’s depends on the type of residue. All these angles

range from −180 to 180 degrees, the search space range. The φ angle is the

dihedral angle between atoms N − Cα within the same residue and the ψ is
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related to the Cα−C angle. The set of all dihedral angles φ’s, ψ’s, χ’s from all

residues of a protein configuration has all information needed to evaluate the

protein. Thus, the variables of the problem can be understood as a vector of

dihedral angles ranging from [−180; 180] (Figure 1).

In order to compute the fitness of a protein configuration, we first need

to convert the dihedral angles into Cartesian coordinates. Then, knowing the

Cartesian coordinates of all atoms and their types it is possible to compute the

energy (the fitness).

Figure 1: An example of the dihedral angles [φ, ψ] from the sequence of amino acids using a

full-atom representation (the side chains are hidden).

2.2. The fitness function

Several potential energies contribute to the protein energy. There are bonded

and non-bonded potential energies and each of them has a specific contribution

to the molecule stabilization. We know that non-bonded potential energies have

the largest contribution to the molecule energy. In our algorithm, called Prot-

Pred [7], we have five bonded potential energies (bond stretching, angle bending,

Urey-Bradley, improper dihedral and torsional angle) and four non-bonded po-

tential energies (van der Waals, electrostatic, solvation and hydrogen bonds).

Despite having all these potential energies implemented in our algorithm, we
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decide to use only van der Waals energy in this paper, since it has the highest

contribution to molecule energy. Besides, it makes it easier to understand the

results so we can keep the focus on the evolutionary process. Thus, the fitness

function is determined only by the van der Waals energy.

The van der Waals energy models the attraction and repulsion among atoms.

In general, the Lennard-Jones potential (also known as Lennard-Jones 12 − 6)

is used to compute the van der Waals energy of a protein configuration. The

van der Waals energy changes according to the distance and the atom’s type

(nitrogen, carbon, oxygen, hydrogen etc). Equation 1 describes the relative

distance between two atoms i and j, given the Euclidian distance between them

(di,j) and the van der Waals radii constant R of atoms i and j:

vij =
di,j

Ri +Rj
. (1)

The van der Waals energy is very repulsive at short distances since the

electron cloud between atoms starts to overlap. At this distance, the energy

rapidly increases and tends to infinity. The equilibrium point, known as van der

Waals contact, happens when the Euclidian distance between the atom pair is

neither too far nor too close. This is the point of minimum energy of an atom

pair. If the atom pair is too far from each other they will not have any type of

interaction and the energy will tend to zero. We used a cutoff of 8 Å in order

to avoid unnecessary computation, and to avoid dealing with large numbers we

also set a tapering-off (see Figure 2). In case that vij is smaller than 0.8 we

assume a constant C [22]. The Lennard-Jones potential used in our EDA for

PSP is described by:

fLJ(vij) =

 Av−12ij −Bv−6ij if vij > 0.8,

C if vij ≤ 0.8,
(2)

where A and B are constants experimentally determined based on characteristics

of the environment, and C is given by Av−12ij −Bv−6ij with vij = 0.8.

The van der Waals energy is the sum of the Lennard-Jones potentials be-

tween all atom pairs in a molecule. There are n2−n
2 interactions, where n is the
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number of atoms, leading to:

Evdw =

n−1∑
i=1

n∑
j=i+1

fLJ (vij) . (3)

Figure 2: The modified van der Waals function we used, highlighting the tapering-off (when

atoms are to close), the van der Waals contact (ideal distance) and the cutoff (they are too

far).

Thus, in order to have the minimum global energy of a molecule it is nec-

essary to find a compromise between the partial energies among atoms to get

the least van der Waals energy. To find good van der Waals energy values we

need to change the dihedral angles of our protein configuration. Changing the

dihedral angles will lead to a change in Cartesian coordinates of atoms in the

molecule as well. Thus, there is a set of dihedral angles that will imply the best

positioning of atoms, yielding a global minimum in van der Waals energy.
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3. Estimation of Distribution Algorithm for Protein Structure Pre-

diction

In the previous section, we concretized the problem we want to tackle. In

this section, we will describe how can we find promising solutions using EDAs,

i.e. how can the EDA find a good set of dihedral angles that will express a low

energy molecule.

The EDAs are a relatively new class of the EA. They are optimization tech-

niques that use probabilistic models from a promising set of solutions in order to

sample the offspring. In some cases they also have the capability of accounting

for correlations between variables. In the literature, the EDAs for binary and

discrete variables are well described, since the probabilistic models and variable

relationship are relatively easy to understand [23]. In fact, using a simplified

representation of proteins, [24] showed that it’s possible to achieve relevant re-

sults with an EDA for the PSP problem.

However, dealing with dihedral angles (in the continuous search space) is

relatively more difficult since it is not possible to map the combination of all

variable values. Besides, the probabilistic model should be able to deal with

multimodality, since the distributions of dihedral angles in the PSP problem

are non-parametric. We also want something that can handle the variable rela-

tionship between [φ, ψ] within the same residues, so it has to be bivariate.

There are some real-valued EDAs in the literature as well. However, they

would not be totally appropriate for the PSP problem. For example, the Uni-

variate Marginal Distribution Algorithm (UMDAc) [25] works in the continuous

search space but cannot deal with multimodality neither variable relationship.

The Bivariate Marginal Distribution Algorithm (BMDA) could model the vari-

able relationship but not the multimodality aspect [26]. Since then, EDAs

able to tackle the multimodality and the variable relationship aspects were de-

veloped, as the case of the EGNA [25], IDEA [27, 28] and PBIL [29]. The

real-valued Bayesian Optimization Algorithm (rBOA) [30] can also handle both

multimodality and variable relationship. It was shown that rBOA can outper-
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form the mIDEA [31] in several benchmark problems. However, the evidence

that rBOA is able to predict protein structures using the full-atom representa-

tion has not been provided in the literature yet.

Knowing that the dihedral angles φ and ψ within the same residue have

a strong relationship, we designed an EDA in which there is no need to learn

the variable relationship: we treat the dihedral angles [φ, ψ] of each residue as

correlated variables. Besides, the statistical mechanisms used in previous EDAs

as, for instance, the normal kernels and the mixtures of Gaussian distribution

were used to build our new EDA for PSP full-atom. We already showed in a

previous work that EDAs can successfully be applied in PSP using full-atom

and ab initio modeling [32]. In this work, we show three different approaches

that were developed. The detailed information about each of them is described

in the next sections.

3.1. Univariate model-based Optimization

The Univariate model-based Optimization (UNIO) is the simplest algorithm.

It does not deal with variable relationships. Instead, it deals with multimodal-

ity in an efficient way. From the promising individuals (selected) the process of

a one-dimensional kernel density estimation (KDE) is simulated for each vari-

able involved in the problem. However, creating a kernel distribution for each

problem variable would require high computational costs since it is necessary to

iterate between all observations (the selected size) per variable.

KDE is based on the sums of the difference between the point of interest

x and all observations within a data set (x1, x2, .., xn) over a bandwidth value

h. In order to sample new values from our kernel distribution we first need to

build a Probability Density Function (PDF). This can be done by calling the

KDE function as many times as is required to fill the range of the x values.

That would require high computing time per generation. For instance, consider

the selected size (of the EDA) is n = 500, and the number of points needed to

build the PDF is 400, then for 100 dihedral angles (100-dimensional problem),

we would need to call the KDE function at least 500× 400× 100 = 20, 000, 000
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at each generation of the EDA.

Thus, to keep the algorithm efficient, we extended the idea of the KDE in a

different manner. Instead of creating the PDF from the kernels, we simply take

a random observation from x and add a perturbation to it with the distribution

N(0, 1).

Consider the selected set Sij where i = 1 . . . n and j = 1 . . .m, being n the size

of selected individuals and m the number of variables of the problem. We want

to fill the offspring Okj where k = 1 . . . o and o is offspring size. For a random

point drawn from the selected Si for a variable j, we add some perturbation to

it and put this new value into Okj for k = j = 1. Then we repeat this process

for j = 1 . . .m (for all variables of the first individual of the offspring) and then

for all the remaining individuals (k = 1 . . . o). The Algorithm 1 shows how this

technique works.

Algorithm 1 Random Points - It creates the offspring from selected.

Require: Selected individuals S, Size of selected n, Size of the Offspring o,

number of problem variables m

Ensure: Offspring O

for j = 1 to m do

u← Sample o values from Uniform Discrete Distribution ranging from [1, n]

Oj ← Suj +N(0, 1)

end for

We carried out an experiment to find out whether this kernel simplification

is promising. We noticed that the simplification of KDE, indeed, does not have

the same accuracy of the KDE, but it is much faster. So we are compromising

a little of accuracy with a lot of reduction in computational cost.

Figure 3 shows an example of the comparison between our proposed sim-

plification (Random points) and the traditional KDE. From a sample data set

with three modes, we simulated new values using KDE and our proposed sim-

plification. We repeated this procedure 30 times. The red line represents the

true density. Density plots of the simulated values with KDE and our proposed
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simplification are shown as well as the smoothed standard deviations.
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Figure 3: Comparison of simulating data with KDE and Random Points: (a) a comparison

with the true density of the data and (b) a time comparison.
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3.2. Kernel Density Estimation model-based Optimization

Considering that all variables can interact with each other we could create an

m–dimensional KDE. Nevertheless, that would be very difficult to handle. Then,

we decided to use the two-dimensional Kernel Density Estimation, yielding the

KDEO (Kernel Density Estimation model-based Optimization). It correlates

the dihedrals angles [φ, ψ] of amino acids within the same residue. We know

that these two variables are strongly correlated since rotations in φ generally

produce stereochemical constraints for its closest neighbor dihedral angle ψ.

Moreover, an implicit correlation is made with [φ, ψ] within the same residue

every time one looks at the Ramachandran plot [33], since the plot itself shows

a density map between angles φ and ψ.

In KDEO, the ψ values are generated conditional on φ. Firstly, the KDE is

created for the φ and a new value φ′ from its distribution is sampled. Then, a

two-dimensional KDE map of [φ, ψ] is created. The closest value to φ′ in the

two-dimensional KDE (in x axis direction) is taken to be the conditional KDE.

Finally, a new ψ′ value is sampled from the two-dimensional KDE (in y axis

direction).

For the two–dimensional case, kernel density estimates are obtained via

Equation 4:

f̂h(x1, x2) =
1

n

n∑
i=1

1

h1h2
K

(
x1 − φi
h1

)
K

(
x2 − ψi
h2

)
, (4)

where K(.) is the kernel. In this work, we used the normal kernel

K(x) = (2π)−1e−0.5x
2

(5)

and the bandwidth ĥ is calculated using Equation 6:

ĥ =

 4 · 1.06 · σ̂ · n−1/5 if σ̂ < t,

4 · 1.06 · t · n−1/5 if σ̂ ≥ t,
(6)

where 4 is a multiplicative factor [34, 35] and t equals
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t =
Q3−Q1

1.34
, (7)

where Q3 and Q1 are the third and first quartiles, respectively.

All of these processes require many computational resources. In order to

speed up the evolutionary process we first check if the [φ, ψ] has a normal dis-

tribution using the Anderson-Darling test. If the p-value is large than 5%, then

the KDEO is bypassed and a bivariate normal distribution is used instead. Oth-

erwise, the KDEO is used. This strategy is interesting because at the beginning

of the evolutionary process we can have many modes. However, as the evolu-

tionary process starts to converge the kernel is not necessary anymore for all

pairs [φ, ψ] (see Algorithm 2).

Algorithm 2 Two-dimensional Kernel Sampling - It creates the Offspring from

selected
Require: Selected individuals S, the number of protein residues r, size of the

new data o

Ensure: Offspring O

for i = 1 to r do

φ← Get φ from residue i from S

ψ ← Get ψ from residue i from S

if p-value from Anderson-Darling test of [φ, ψ] < 0.05 then

φ′ ← Random Points (φ, o)

P ← 2D Kernel Density Map (φ, ψ)

ψ′ ← Sample from PDF P conditional on φ′

else

φ′, ψ′ ← Sample o values from two-dimensional Gaussian

N([µφ, µψ],Σφψ)

end if

Oi ← φ′, ψ′

end for

For instance, similarly to [φ, ψ], let x1 and x2 be two vectors of data dis-
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Figure 4: Two-dimensional KDE example: (a) The data x1, x2, (b) the univariate distribution

of x1 (top), the kernel map created for x1, x2 (middle) and the distribution of x2 given the

value of x1 (bottom).

tributed as shown in Figure 4a. First, a new vector x′1 is sampled from the

independent distribution of x1. Then, the two-dimensional KDE map is created

for the pair [x1, x2]. For each new point of x′1 new points of x′2 are sampled

conditional to the previous value of x′1. Looking at the Figure 4b, let’s assume

that x′1 = 3.5 (top). As the two-dimensional KDE map must be represented

using discrete variables for x1 and x2, we need to pick the closest point where

x1 = 3.5 (middle) and use this point as the conditional distribution (bottom).

Finally, for each sampled x′1 we sample new x′2 values1.

3.3. Finite Gaussian Mixtures model-based Optimization

As a KDEO alternative, we develop an EDA called Finite Gaussian Mixtures

model-based Optimization (FGMO). Despite having the implementation of the

m–dimensional FGMO we used only the two-dimensional in this paper. The

1The complete animation can be accessed at:

http://lcrserver.icmc.usp.br/~daniel/ani/kde2d/
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FGMO combines mixtures of Gaussian distributions in order to estimate the

density of data non–parametrically. Each mixture component k (cluster) has

its own mean µk, variance matrix Σk and the mixture weight πk. From a given

number of mixtures K, we want to know their set of parameters θ = [µ,Σ, π] for

all mixture components. The Expectation-Maximization (EM) is often used to

estimate the parameters of Gaussian mixtures [36]. In order to get the estimated

θ̂, the EM algorithm takes a starting setting of parameters θ̂0 and iterates

between E-Step and M-Step. The algorithm converges when the log-likelihood

between two iterations is less than a defined value (1.5 in our experiments). The

E-Step updates a probability matrix wj,k via:

wj,k =
π̂kf(xj , µ̂k, Σ̂k)∑K
l=1 π̂lf(xj , µ̂l, Σ̂l)

, (8)

where f(x, µ̂, Σ̂) can be defined as

f(x, µ̂, Σ̂) =
1

(2π)p/2|Σ̂|1/2
exp

{
−1

2
(x− µ̂)T Σ̂−1(x− µ̂)

}
, (9)

and the M-Step updates the parameters via

π̂k =
1

n

n∑
i=1

wik, (10)

µ̂k =

∑n
i=1 wikxi∑n
i=1 wik

, (11)

Σ̂k =
1∑n

i=1 wik

n∑
i=1

wik(xi − µ̂k)(xi − µ̂k)T . (12)

For each pair [φ, ψ] from the selected set we run a two-dimensional EM

for a given number of mixture components K, yielding the estimates θ̂. From

θ̂ we randomly select a mixture component using a uniform distribution with

weights πk and sample the new [φ′, ψ′] values at once, using their parameters

(see Algorithm 4). The θ̂ is then used to sample all the different offspring

individuals. Then, for the [φ, ψ] of the next residue we estimate a new θ̂ and use

17



these new parameters to sample the values for this next residue. This process

continues until it reaches the last residue of the molecule.

For instance, consider a protein with 5 residues. The selected individuals will

have 5 [φ, ψ] pairs ([φi1, ψ
i
1]; . . . ; [φi5, ψ

i
5]), where i = 1 . . . n being i the individual

index in the selected set and n is the total number of selected individuals. For

the pair [φi1, ψ
i
1] we perform a complete EM algorithm and get θ̂1. It contains

the µk, πk and Σk for the mixtures k. Then, the pair [φi1
′
, ψi1
′
] is generated by

sampling values from θ̂1. Next, θ̂2 is estimated using [φi2, ψ
i
2] and then a bivariate

mixture with new parameter [φi2
′
, ψi2
′
] is simulated. This continues until the

residue number 5. It is important to notice that in this case, there are five

EM algorithms running at each generation. This can have high computational

costs since the EM is an iterative process. In order to speed up the algorithm,

we replaced the general PDF (Equation 9) by a specific expression for the two-

dimensional case, as shown in Equation 13:

f(x1, x2) =
1

2πσ1σ2
√

1− ρ2
exp

{
− z

2(1− ρ2)

}
, (13)

z ≡ (x1 − µ1)2

σ2
1

+
2ρ(x1 − µ2)(x1 − µ2)

σ1σ2
+

(x2 − µ2)2

σ2
2

.

Besides, before computing the FGMO we check whether the standard de-

viation of both φ and ψ is small (say 0.01). If true, then we bypass the EM

algorithm and use a bivariate normal Gaussian instead (see Algorithm 3).

During the EM iterations, we also needed to treat special cases to avoid

division by zero in Equation 8, that may happen when there is a very far outlier

with a very small standard-deviation in the data set. In this case, we stop the

EM iterations and use the last valid θ̂.

Figure 5 shows an example of how the FGMO works. At the first iteration,

the parameters are set to the initial condition. Then, according to the EM

iterations, the parameters tend to converge. Figure 5b shows the parameters

after the convergence. Finally, new values are sampled (Figure 5c) from its

fitted mixtures model.
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Algorithm 3 Two-dimensional Finite Gaussian Mixtures based-model Opti-

mization - Sample the offspring using FGMO

Require: Selected individuals S, the number of protein residues r, size of the

offspring o, mixtures components K

Ensure: Offspring O

for i = 1 to r do

φ← Get φ from residue i from S

ψ ← Get ψ from residue i from S

if Standard deviation of φ > 0.01 and Standard deviation of ψ > 0.01

then

θ̂ ← Expectation-Maximization (φ;ψ,K)

[φ′;ψ′]← Sample o individuals from fitted model θ̂

else

φ′, ψ′ ← Sample o values from two-dimensional Gaussian

N([µφ, µψ],Σφψ)

end if

Oi ← [φ′;ψ′]

end for

Algorithm 4 Two-dimensional Finite Gaussian Mixtures - Simulating

Require: The fitted model θ̂ and the size of the new data n

Ensure: Simulated s

x← Sample from distribution U(0, 1)

c← Cumulative sum of θ̂π

k ← 1

while x < ck do

k ← k + 1

end while

s← Sample from N(θ̂µk
, θ̂σk

)
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Figure 5: FGMO example. (a) The first iteration of the EM algorithm. The original data

slightly overlapped with two mixture components. The red dots represent the means of each

mixture and the contour curves their densities, (b) the last iteration of the EM and (c) the

sampled values.

4. Results

The results show that the three proposed EDAs (UNIO, KDEO and FGMO)

performed properly for PSP. For each proposed method, we evaluated three

different aspects: (1) the computational cost, measuring the overall time of a

prediction; (2) the van der Waals energy value of the best individual at the last

generation and (3) the RMSD, which represents how similar a solution is to the

native protein.

We have to be careful when evaluating (3) since we are only using van der

Waals energy in our fitness function. In this case, we are bypassing other po-

tentials that are less relevant to stabilize the molecule. Adding other potentials

in pure ab initio PSP would require a much more complex algorithm, i.e. the

Multi-Objective method proposed by [9]. This paper shows that we can find

adequate pure ab initio protein configurations using only van der Waals and the

proposed EDAs. We compared the KDEO against other optimization methods

from the literature, as Random Walk (RW) [14], Monte Carlo (MC) [15], Genetic

Algorithm (GA) [37] and Differential Evolution (DE) [17]. Appendix A shows

a pairwise comparison using the Wilcoxon test [38] for all evaluated methods

considering the three aspects: van der Waals energy, RMSD and running time.
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4.1. Experimental setup

The experiments were run in the 20 nodes cluster of the Laboratorio de

Computacao Reconfiguravel at the ICMC-USP. Each node has an Intel Core i7

2.67 GHz processor with 4 physical processors, 8 considering Hyper-Threading

technology. It also has 32 GB of RAM and the Operational System is Debian

4.6.3-14 64 bits. Moreover, each node has two network adapters. One is used

for the file system (NFS) and other to communication operations in MPI [39].

We have selected four small proteins from the Protein Data Bank (PDB)

[40], all containing α-helices. This may be favorable for the optimization model

used that is based on van der Waals only. Table 1 shows the PDB ID, the

number of residues and the problem length (m). Figure 6 shows the shape and

the [φ, ψ] dihedral angles distributions of each native structure.

Table 1: Protein sizes in experiments.

Protein Residues Problem length

1A11 25 95

2LVG 40 169

2KK7 52 229

2X43 67 268

The convergence is reached when either each of the tested algorithms reaches

one million evaluations or the standard deviation of the population fitness falls

below 0.0001.

4.1.1. Performance issues

ProtPred is entirely written in C language and it uses efficient libraries as

GSL and CBLAS [41] to deal with most algebraic and statistical operations.

Some functions were taken from statistical language R [42] and translated into

C. The van der Waals energy uses an efficient implementation based on cell-lists,

as we proposed in an earlier work [43]. Furthermore, the tested approaches have

several different parameters to set, so we used MPI in order to distribute each
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Figure 6: Native proteins: (a) three dimensional structures and, (b) the distribution of the

[φ;ψ] dihedral angles of the corresponding proteins.

algorithm configuration throughout our cluster. Despite this, we needed about

12,000 hours of CPU time to get all the results shown in this paper.

4.2. Proposed Estimation of Distribution Algorithms

Before we run the sequence of experiments, we found a set of parameters of

the EDA according to the probabilistic model used (Table 2). For each com-

bination of parameters, the experiments were repeated 30 times with different

seeds for each protein.

Table 2: Parameters used in experiments with the probabilistic models.

Pop. Selected Tournament Mixtures

size size size

UNIO 2000 2000 2 -

KDEO 500 250 2 -

FGMO 200 100 2 10

Figure 7 shows the results obtained for the smaller protein 1A11. Consid-
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ering the energy aspect only, the FGMO was best, although it has some high

energetic outliers. The KDEO performed best when considering the RMSD. The

running time results were partially surprising since a sophisticated probabilistic

model as FGMO was faster than UNIO, in most cases. That happens because

the selected size used by UNIO needed to be 20 times larger than FGMO.

In the PSP problem, a trade-off between energy and RMSD is sometimes

difficult to obtain since the predicted energy can exceed the native energy value,

when using only van der Waals energy. A scatterplot of van der Waals energy

per RMSD (Figure 7d for protein 1A11) enables to evaluate such trade-off. We

also highlighted in yellow the set of points that dominate other ones, in terms

of multi-criteria optimization [44]. These solutions in yellow approximate a Pa-

reto Front. The points from UNIO do not show up in the Front, meaning that

neither the RMSD nor the energy aspects were better than FGMO or KDEO.

The results for the protein 2LVG with 40 residues are shown in Figure 8.

Although FGMO obtained a large variance in the energy, it also got the smallest

values found, while UNIO and KDEO had concentrated points. KDEO was the

only method capable of finding RMSD values below 5.0 and reached an average

better than UNIO and FGMO as well. The running time followed the same

pattern as the 1A11 protein. KDEO was the slower among the three and FGMO

was the faster.

In the scatterplot of Figure 8d, most of the left upper points in the Front

belong to FGMO with smallest energy, and the left lower points belongs to

KDEO. This means FGMO was able to minimize better than KDEO, but KDEO

found solutions closest to the configuration found in nature.

For protein 2KK7 with 52 residues (Figure 9), FGMO also had widely-spaced

energy values. Considering only the average measure, FGMO would be the

worst, but it was able to find the best energy value. It means that FGMO

can reach better solutions than others, but for some reason, it is getting stuck

at some local optimum, worsening the average value. Considering the RMSD

aspect, KDEO was the only one able to find solutions with RMSD below 7.0.

The running times required by UNIO and FGMO become closer due to fact
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Figure 7: EDA for protein 1A11 with the three proposed methods: (a) energy plot; (b) RMSD

plot; (c) time needed to run; and, (d) the scatter plot between energy and RMSD and the

Pareto Front highlighted in yellow.
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Figure 8: EDA for protein 2LVG with the three proposed methods: (a) density plot of the

energy; (b) RMSD plot; (c) time needed to run; and, (d) the scatter plot between energy and

RMSD and the Front highlighted in yellow.
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that this protein is larger than 1A11 and 2LVG are. More points belonging to

KDEO appear in the van der Waals energy per RMSD scatterplot. The top left

points in the Front belong to FGMO. They had the best energy but an inferior

RMSD.

Finally, the results for the largest protein used in the experiments, 2X43

with 67 residues follow the same trend as the previous proteins (Figure 10).

Considering the energy aspect only, the UNIO and KDEO were, in average,

better than FGMO is. However, Figure 10a shows that two outliers of FGMO

are below−410, i.e. less than all other points from UNIO and KDEO. We believe

that happened due to the sensitiveness of FGMO when setting the same number

of mixture components throughout the evolutionary process, which somehow

was benefited by the entirely evolutionary process. Apart from the KDEO

running time, UNIO and FGMO had similar results. It seems that the running

time of FGMO would be higher than UNIO for large proteins.

The scatterplot from Figure 10d shows a more defined agglomeration of

points. KDEO produced two points in the Front. On the other hand, FGMO

returned one point in the Front, although most of the points are around −300

of energy with RMSD between 15 and 25.

The Table 3 shows a summary of all experiments for all the four proteins

evaluated. We can see that FGMO was the algorithm that got the best energy

values; the KDEO the best protein structures; and UNIO the best running times.

The KDEO also got the worse running time among all evaluated algorithms.

However, it is interesting to see that a relatively complex algorithm as the

proposed FGMO was faster than RW for most of proteins evaluated.

4.3. Comparison with the Native energy

We compared all non-bonded energies (van der Waals, electrostatic, solva-

tion and hydrogen bonding) of each of the best predicted protein configuration

against the native structure of each used protein. In order to compute the energy

of native proteins, we converted the XYZ Cartesian coordinates from the PDB

file into dihedrals and then used these values as input of one fitness function
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Figure 9: EDA for protein 2KK7 with the three proposed methods: (a) density plot of the

energy; (b) RMSD plot; (c) time needed to run; and, (d) the scatter plot between energy and

RMSD and the Pareto Front highlighted in yellow.
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Figure 10: EDA for protein 2X43 with the three proposed methods: (a) density plot of the

energy; (b) RMSD plot; (c) time needed to run; and, (d) the scatter plot between energy and

RMSD and the Pareto Front highlighted in yellow.
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Table 3: Best values out of 30 runs found for each protein and for each method. The columns

Energy, RMSD and Time are not related to each other, meaning that the values in a row may

come from different running. The best values are highlighted.

Protein Method Energy (kcal/mol) RMSD (Å) Time (min.)

1a11 RW -40.4 5.160 24.6

1a11 MC -113.3 6.335 36.0

1a11 GA -144.7 4.709 39.0

1a11 DE -167.9 2.976 37.1

1a11 UNIO -148.9 3.677 24.4

1a11 KDEO -156.9 2.464 42.6

1a11 FGMO -162.5 2.338 24.6

2lvg RW -59.7 7.981 52.8

2lvg MC -169.0 9.768 55.5

2lvg GA -211.8 9.153 61.1

2lvg DE -270.7 7.847 47.3

2lvg UNIO -233.0 5.605 34.4

2lvg KDEO -255.4 2.953 79.1

2lvg FGMO -268.8 5.593 42.7

2kk7 RW -53.6 8.213 68.6

2kk7 MC -192.3 11.959 64.7

2kk7 GA -263.7 12.911 85.6

2kk7 DE -301.4 9.391 49.0

2kk7 UNIO -275.8 6.655 43.3

2kk7 KDEO -324.6 4.676 78.2

2kk7 FGMO -345.3 5.995 49.9

2x43 RW -50.7 8.283 92.0

2x43 MC -214.4 9.412 90.0

2x43 GA -302.0 7.507 104.4

2x43 DE -354.2 8.092 62.4

2x43 UNIO -325.5 9.257 56.3

2x43 KDEO -394.4 7.245 128.3

2x43 FGMO -413.1 9.710 82.8

call of ProtPred.

Figure 11 shows a comparison between the configuration with the best energy

value found by the proposed EDA and the native configuration. For all the four
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Figure 11: Comparison of the individual energies between the proposed EDA and the native

protein configuration for proteins 1A11, 2LVG, 2KK7 and 2X43.

proteins evaluated, the EDA managed to minimize the van der Waals energy

more than native energy. This was expected because only van der Waals energy

was minimized. However, in native proteins, the electrostatic energy (charge-

charge) was better than the structure found by the proposed EDA. Thus, if

we attempt to decrease the electrostatic energy of the protein configuration

obtained by our EDA, the van der Waals energy would probably increase. The

solvation and hydrogen bonding energies of the EDA were also higher than the

native were, apart from the hydrogen bonding of protein 2X43. Therefore, a

multi-objective algorithm would be a more appropriate strategy in order to deal

correctly with all these energies as proposed by [9].
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4.4. Comparison with other Evolutionary Algorithms

We showed that FGMO can produce more diversified solutions, yielding

promising energy values. However, KDEO was able to find a better compromise

between energy and RMSD. For this reason, we selected the KDEO to be com-

pared against other heuristics from the literature. The parameters used with

the other heuristics are defined in Table 4.

Table 4: Parameters used with RW, MC, GA and DE.

RW MC GA DE

Pop. Size 100 1000 2000 1000

Sel. Pressure 1.2

Tournament

Step 2

Cross. Rate 0.3 0.2

Mutation Rate 0.5

Mutation Factor 0.5

Differential weight 0.2

Figure 12 shows the scatterplot between van der Waals energy and RMSD

for all proteins used in this work. As we expected, RW was the worst for all

cases and MC was the second worst. Then, GA was worse than DE, although

GA got some points mixed with DE for the two larger proteins used (2KK7 and

2X43). Finally, the KDEO was better for all cases considering only the RMSD.

For the smaller protein 1A11 (Figure 12a), DE was able to find better energy

values than KDEO, although the KDEO got a better RMSD. Then, for the

protein 2LVG (Figure 12b), DE also found better energy values. However, the

best RMSD found by DE was 7.847 and most of the RMSD values found by

KDEO are below 7.775. For protein 2KK7 (Figure 12c) the KDEO managed

to find a better energy and RMSD than all other heuristics, while most of

the RMSD of other heuristics are higher than 8. Finally, for protein 2X43

(Figure 12d) the KDEO also found better solutions with many points close to
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Figure 12: Comparison of the energy values between our EDA with other heuristics: (a)

protein 1A11; (b) protein 2LVG; (c) protein 2KK7 and, (d) protein 2X43.

-400 energy and RMSD close to 10. No other heuristics managed to appear in

the Pareto Front. Therefore, it looks that the EDAs becomes more efficient as

the protein size increases.

Each protein has its own set of parameters (population size, selection pres-

sure etc) that works better, but in these experiments, we fixed the same parame-

ters for all four proteins, so that we can also evaluate how the parameters would

be for an unknown set of proteins without needing to calibrate them before.

Finally, we ran another experiment in order to show the strength of the

EDA against other heuristics. We created a hypothetical chart that correlates

the heuristic and the prior knowledge level needed to the heuristic be successful
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(Figure 13a). The vertical axis is ordered by the prior knowledge level, i.e. how

much the search space needs to be reduced so that the heuristic can hit the

correct solution. P1 means that the heuristic uses the whole search space when

creating the initial population (as we have done in all previous experiments,

where it ranges from (−180,+180) in φ and ψ directions). Then we subsequently

split the search space using 5 degrees offset toward the right solution, in this

case, the dihedral angles of protein 1A11 (look at Figure 6b and see that the

middle of the red lines is [φ, ψ] = [−65,−35]). There were 49 divisions and all

the levels are shown in Figure 13b.

Even a poor heuristic, as RW, managed to find the correct solution. However,

the prior knowledge level needed by RW was so high that for any input it will

give almost the same output. We denote this prior knowledge level as P5, since

RW would fail for any larger search space, that is, this is the maximum search

space we can use so that RW finds the correct solution. Using a slightly higher

search space, MC managed to find the correct solution. We call this level P4

and RW has failed at this level. Next, GA found the correct solution with level

P3. At this level, MC and RW have failed. In the next level, DE managed to

find the right solution when other heuristics as GA, MC and RW have failed.

We denote this level as P2. Finally, the EDA (KDEO) using no prior knowledge

(using the whole range of the search space) managed to find the correct solution

while all other heuristics have failed. That means the EDA was able to predict

the correct protein configuration with no bias.

Furthermore, it is interesting to notice that the main difference between

heuristics RW, MC, GA, DE and EDA (KDEO in this case) lies in the amount

of information they extract from their populations in order to sample new so-

lutions. That is, RW does not use any information from its population so

the evolutionary process is completely random. MC uses information about one

individual in order to sample new ones. GA uses information about two individ-

uals to compose the new ones, and DE uses information from three individuals.

Thus, we have 0, 1, 2, and 3 individuals that are being used for RW, MC, GA

and DE, respectively, to sample new solutions. We believe that this is related
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to the strength of the heuristics as they appear in literature. That means, in

general, DE works better than GA, which works better than MC, which works

better than RW.

Therefore, as we know, the amount of information EDAs can extract from

promising individuals in order to generate the offspring is much higher than for

DE. That happens because EDAs are designed to work with a set of selected

individuals, which can have promising information to drive the evolutionary

process toward promising solutions. This is why we believe EDAs are suitable

for any type of combinatory problem. Besides, when dealing with problems

where we already know how variables could behave, it becomes more effective

for an EDA to find the correct solution. This is what we have been doing with

the PSP problem, associating the correlation between close variables together

and creating probabilistic models from a set of promising individuals.

5. Conclusion

We develop three different probabilistic models for an Estimation of Distri-

bution Algorithm specific for the ab initio Protein Structure Prediction with

real-valued variables. We refer to these three methods as UNIO for the Univari-

ate model-based Optimization, KDEO for the two-dimensional Kernel Density

Estimation model-based Optimization and FGMO for the Finite Gaussian Mix-

tures model-based Optimization, yielding three different EDAs for PSP. The

difference among these three EDAs is how they extract representative infor-

mation from the selected individuals and use this information to sample the

offspring.

The first, UNIO, is the simplest one. It is similar to UMDAc but can handle

problems with multiple modes instead of one, in an efficient manner. Secondly,

knowing that dihedral angles φ and ψ of amino acids have a strong correlation we

modeled the pair of dihedral angles [φ, ψ] as correlated for our two-dimensional

probabilistic models: KDEO and FGMO. Results have shown that accounting

for correlation enables us to find better protein configurations in the search
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Figure 13: Comparison of protein configurations between five different heuristics for protein

1A11: (a) chart showing the success and the failure according to the prior-knowledge level and,

(b) the minimum search space needed for each heuristic to get success in their predictions.
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space.

In this work, only the van der Waals energy was used to compose the fitness

function, so we can focus on the probabilistic model. Thus, we tried to use only

α-helices in our predictions where van der Waals energy alone might represent

the atomic interactions well. For the largest protein used in the experiments,

2X43, the RMSD is still not as good as we expected. We believe that this

may occur because van der Waals energy alone cannot handle correctly the loop

between the two helices. On the other hand, for the three smaller proteins 1A11,

2LVG and 2KK7 the configurations we found were good enough, producing a

low RMSD.

We also compared our EDA (more specifically, the KDEO) with other heuris-

tics from literatures as Random Walk, Monte Carlo, Genetic Algorithm and Dif-

ferential Evolution. We noticed that the number of solutions used to compose

new ones constitute a critical step in designing a good optimization algorithm.

For example, the weakest heuristic RW does not use any information about the

evolutionary process to infer new solutions, so it is completely random. The

MC (usually better than RW) uses information about one single solution from

the original population in order to infer new ones. The GA (usually better than

MC) makes use of two individuals from the population in order to compose

the offspring. The DE (usually better than GA) uses information about three

individuals to infer the new ones. Thus, we noticed a trend in the number of

individuals used to compose the offspring and the strength of the optimization

algorithm. This is why we believe EDAs are better and more efficient opti-

mization techniques, since they use a set of promising solutions (the selected

individuals) and try to extract some representative statistical knowledge from

this set (the probabilistic model) in order to, finally, infer better solutions, lead-

ing the whole evolutionary process toward promising directions. We made this

comparison with the EDA against RW, MC, GA and DE to show why an EDA

can perform better than these previous algorithms. Actually, we are not taking

the RW as a serious competitor against the EDA. We just wanted to emphasize

the importance of using several potential solutions (the mechanism that the
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EDAs do) to build the new ones, against other approaches that do not do this

as illustrated in Figure 13a.

Until now, we had not seen an EDA for PSP with ab initio and full-atom

representation approaches. So we decided to use some knowledge of the behavior

of proteins, modeling the correlation [φ;ψ] and developing our specific EDA

aimed at the PSP problem.

At the first glance, comparing the energy aspect between the two-dimensional

probabilistic model-based techniques, KDEO and FGMO, it looks that KDEO

is better in most of the cases. However, we noticed that the number of mixture

components used in FGMO has a high effect on the energy values. Then, we still

need to develop an automated and efficient way to estimate the ideal number

of mixture components for each pair [φ;ψ]. Although FGMO needs an iterative

algorithm in order to estimate the parameters (EM algorithm), the computa-

tional efficiency stays close to UNIO. The main reason for this is because we

are using the optimized PDF function (Equation 13 instead of Equation 9) and

a small set of selected.

Besides possible computational and statistical improvements, still the fitness

function could be improved by adding other non-covalent energies as solvation,

hydrogen bonding and electrostatic energy to our experiments. However, before

adding these energies one needs to ensure that such energies are as efficient as

possible, as already achieved for van der Waals and solvation energies in previous

works [45]. Otherwise, it would be the bottleneck of the whole algorithm.

We also know that the energy effects acting in proteins are contradictory

and sometimes operate on different scales. Thus, the next step is to bring the

Multi-Objective approach from the GA from [9] to our EDA.

Appendix A. Statistical analysis

We performed the pairwise Wilcoxon test in order to determine whether

there is relevant difference between the evaluated methods. The comparison was

performed for every combination of methods for all the four evaluated proteins
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(1A11, 2LVG, 2LKK7 and 2X43). The p-values that are greater than 0.05 are

highlighted in bold and they show that there is no significance difference between

them, according to the Wilcoxon test. Table A.5 shows the test for the van der

Waals energy values. In this table, there is a single value in bold, indicating

that, according to the Wilcoxon test, most results concerning van der Waals

energy were different for all proteins evaluated. Table A.6 shows the test for the

RMSD for the best protein configuration found over all runs for each method.

Although the Wilcoxon test for RW-KDEO and DE-KDEO got a high p-value

for almost all proteins, it is possible to see by looking at Figure 12 that KDEO

was the only capable method of finding RMSD values below 7.5 for protein 2LVG

(Figure 12b) and below 8.0 for protein 2KK7 (Figure 12c). Finally, Table A.7

shows the comparison between p-values for the running times. For the protein

2X43, the running time between MC-KDEO produced no significant difference;

and for proteins 2LVG, 2KK7, 2X43 the running time between GA-KDEO also

did not produce significant difference. That means that KDEO can be used for

PSP at a similar computational cost as a MC or a GA.

Table A.5: P-value comparison with pairwise Wilcoxon test evaluating the van der Waals

energy

1A11 2LVG 2KK7 2X43

RW-MC 6.3e-10 5.9e-10 5.8e-10 5.9e-10

RW-GA 6.3e-10 5.9e-10 5.8e-10 5.9e-10

RW-DE 6.3e-10 5.9e-10 5.8e-10 5.9e-10

RW-KDEO 6.3e-10 5.9e-10 5.8e-10 5.9e-10

MC-GA 6.3e-10 5.9e-10 5.8e-10 5.9e-10

MC-DE 6.3e-10 5.9e-10 5.8e-10 5.9e-10

MC-KDEO 6.3e-10 9.5e-09 5.8e-10 5.9e-10

GA-DE 6.3e-10 5.9e-10 5.8e-10 1.6e-07

GA-KDEO 6.3e-10 7.3e-07 5.8e-10 5.9e-10

DE-KDEO 4.3e-09 3.1e-09 5.8e-10 5.9e-10

UNIO-KDEO 2.8e-07 2.7e-07 5.8e-10 5.9e-10

UNIO-FGMO 3.2e-06 2.0e-01 3.7e-04 1.5e-06

KDEO-FGMO 4.1e-02 3.8e-02 1.3e-04 4.2e-07
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Table A.6: P-value comparison with pairwise Wilcoxon test evaluating the RMSD

1A11 2LVG 2KK7 2X43

RW-MC 7.3e-04 5.4e-07 2.1e-04 1.4e-01

RW-GA 1.0e+00 5.8e-05 7.2e-07 2.2e-03

RW-DE 1.0e+00 1.9e-02 9.4e-02 1.0e+00

RW-KDEO 1.8e-02 5.9e-01 1.0e+00 1.0e+00

MC-GA 9.3e-03 1.0e+00 8.6e-01 1.4e-01

MC-DE 3.4e-03 6.0e-04 9.5e-02 7.8e-03

MC-KDEO 1.3e-04 4.9e-07 1.2e-02 2.8e-01

GA-DE 1.0e+00 4.2e-02 3.0e-03 2.2e-04

GA-KDEO 8.4e-03 1.7e-05 1.8e-04 4.5e-03

DE-KDEO 8.0e-02 1.5e-03 8.6e-01 1.0e+00

UNIO-KDEO 2.9e-02 2.2e-01 1.0e+00 1.0e+00

UNIO-FGMO 4.0e-02 1.0e+00 1.0e+00 3.2e-03

KDEO-FGMO 3.3e-03 5.2e-02 1.0e+00 9.2e-03

Table A.7: P-value comparison with pairwise Wilcoxon test evaluating the running time

1A11 2LVG 2KK7 2X43

RW-MC 3.6e-16 3.6e-16 2.9e-13 1.1e-15

RW-GA 3.6e-16 1.2e-11 2.1e-09 2.0e-08

RW-DE 3.6e-16 8.8e-01 7.9e-01 1.0e+00

RW-KDEO 3.6e-16 1.4e-13 1.8e-06 6.8e-16

MC-GA 6.3e-01 5.8e-04 7.1e-01 1.0e+00

MC-DE 6.2e-01 1.4e-07 1.0e-09 9.0e-14

MC-KDEO 8.8e-14 4.4e-02 5.4e-05 2.8e-01

GA-DE 1.0e+00 4.4e-02 2.9e-07 2.4e-08

GA-KDEO 2.7e-13 2.4e-01 5.8e-02 1.0e+00

DE-KDEO 6.6e-12 1.6e-03 9.1e-04 6.8e-16

UNIO-KDEO 1.5e-12 1.4e-11 1.8e-07 3.6e-16

UNIO-FGMO 1.7e-06 1.9e-05 9.6e-02 1.0e+00

KDEO-FGMO 1.0e-15 8.3e-12 3.5e-10 6.8e-16
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