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Many large proteins suffer from slow or inefficient folding in vitro.
Here, we provide evidence that this problem can be alleviated in
vivo if proteins start folding co-translationally. Using an all-atom
simulation-based algorithm, we compute the folding properties of
various large protein domains as a function of nascent chain length,
and find that for certain proteins, there exists a narrow window
of lengths that confers both thermodynamic stability and fast fold-
ing kinetics. Beyond these lengths, folding is drastically slowed
by non-native interactions involving C-terminal residues. Thus, co-
translational folding is predicted to be beneficial because it allows
proteins to take advantage of this optimal window of lengths and
thus avoid kinetic traps. Interestingly, many of these proteins’ se-
quences contain conserved rare codons that may slow down syn-
thesis at this optimal window, suggesting that synthesis rates may
be evolutionarily tuned to optimize folding. Using kinetic modelling,
we show that under certain conditions, such a slowdown indeed im-
proves co-translational folding efficiency by giving these nascent
chains more time to fold. In contrast, other proteins are predicted
not to benefit from co-translational folding due to a lack of signifi-
cant non-native interactions, and indeed these proteins’ sequences
lack conserved C-terminal rare codons. Together, these results shed
light on the factors that promote proper protein folding in the cell,
and how biomolecular self-assembly may be optimized evolutionar-
ily.
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Many large proteins refold from a denatured state very1

slowly in vitro (on timescales of minutes or slower)2

while others do not spontaneously refold at all (1–6). Given3

that proteins must rapidly and e�ciently fold in the crowded4

cellular environment, how is this conundrum resolved? The5

answer likely involves a number of factors that a�ect cellular6

folding, but which are absent in vitro. For example, molecular7

chaperones such as GroEL in E. Coli, and TriC and HSP908

in eukaryotes may substantially improve folding e�ciency9

by confining unfolded chains to promote their folding, or by10

repeatedly binding and unfolding misfolded chains until the11

correct strucure is attained (6–11). A second, more recently12

appreciated factor that may improve in vivo folding e�ciency13

is co-translational folding on the ribosome (12–19), which may14

a�ect the folding of as much as 30% of the E. Coli proteome15

(19). A recent set of works (12, 13) suggests that protein16

synthesis rates in various organisms may be under evolutionary17

selection to allow for co-translational folding. Namely, these18

works show that conserved stretches of rare codons, which19

are typically translated more slowly than their synonymous20

counterparts, are significantly enriched roughly 30 amino acids21

upstream of chain lengths at which folding is predicted to begin.22

This 30 amino acid gap is expected given that the ribosome exit23

tunnel sequesters the last ≥ 30 amino acids of a nascent chain24

and generally impedes their folding. The observed correlation 25

between chain lengths that allow for folding and conserved 26

rare codons suggests that co-translational folding may be 27

under positive evolutionary selection. However, the specific 28

mechanisms by which co-translational folding is beneficial have 29

not been elucidated. 30

Here, we address this question using an all-atom computa- 31

tional method for inferring detailed protein folding pathways 32

and rates while accounting for the possibility of non-native 33

conformations. We apply this method to compute folding 34

properties of proteins at various nascent chain lengths to ad- 35

dress how the vectorial nature of protein synthesis may a�ect 36

co-translational folding e�ciency. We find that for certain 37

large proteins, vectorial synthesis is beneficial because it al- 38

lows nascent chains to fold rapidly at shorter chain lengths, 39

prior to the synthesis of C-terminal residues which stabilize 40

non-native kinetic traps. Many of these proteins’ sequences 41

contain conserved rare codons ≥ 30 amino acids downstream 42

of these faster-folding intermediate lengths, suggesting these 43

protein sequences may have evolved to provide enough time 44

for co-translational folding. We also identify counterexam- 45

ples—proteins without conserved rare codons that do not 46

misfold into deep kinetic traps, and for which vectorial syn- 47

thesis thus confers no advantage. Together, these results shed 48

light on how biophysical folding properties of nascent chains 49

determine the advantages of co-translational folding, and how 50

co-translational folding may be optimized evolutionarily. 51

Results 52

Significance Statement

Many proteins must adopt a specific structure in order to per-
form their functions, and failure to do so has been linked to
disease. Although small proteins often fold rapidly and sponta-
neously to their native conformations, larger proteins are less
likely to fold correctly due to the myriad incorrect arrangements
they can adopt. Here, we show that this problem can be alle-
viated if proteins start folding while they are being translated,
namely, built one amino acid at a time on the ribosome. This
process of co-translational folding biases certain proteins away
from misfolded states that tend to hinder spontaneous refolding.
Signatures of unusually slow translation suggest that some of
these proteins have evolved to fold co-translationally.
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Fig. 1. (Top let) We run replica exchange atomistic simulations with a knowledge-based potential and umbrella sampling to compute a protein’s free energy landscape. (Bottom
left) To obtain barrier heights, we run high-temperature unfolding simulations and extrapolate unfolding rates down to lower temperatures assuming Arrhenius kinetics. (Top
right) The principle of detailed balance is then used to compute folding rates. (Bottom left) The process is repeated at multiple chain lengths and incorporated into a kinetic
model of co-translational folding. For details, see Methods.

Predicting folding properties of nascent chains. In order to53

compute co-translational folding pathways and rates, we de-54

veloped a simulation-based method and analysis pipeline de-55

scribed in Fig. 1 and Methods. The method utilizes an56

all-atom Monte-Carlo simulation program with a knowledge-57

based potential and a realistic move-set described previously58

(20–22). In essence, rather than simulating a protein’s folding59

ab initio from an unfolded ensemble (which is intractable for60

large proteins at reasonable simulation timescales), we sim-61

ulate unfolding, and in tandem, calculate the free energies62

of the folded, unfolded and various intermediate states from63

simulations with enhanced sampling. Given rates of sequential64

unfolding between these states and their free energies, the65

reverse folding rates can be computed from detailed balance.66

Importantly, our sequence-based potential energy function is67

not biased towards the native state, as in native-centered (Gō)68

models, and allows for the possibility of non-native interac-69

tions. Thus we can account for the role of misfolded states70

in folding kinetics. This method is applied at multiple chain71

lengths to predict co-translational folding properties.72

Our approach here is based on a few key assumptions: 1.)73

The ribosome will not significantly a�ect co-translational fold-74

ing pathways, and thus is neglected. Previous work suggests75

that the ribosome’s destabilizing e�ect on nascent chains is rel- 76

atively modest, typically 1-2 kcal/mol (23), and a�ects various 77

folding intermediates to a comparable extent (24). Thus, the 78

ribosome is expected not to drastically a�ect the relative stabil- 79

ity of the di�erent intermediates computed here. 2.) Unfolding 80

rates are assumed to obey Arrhenius kinetics, such that rates 81

computed at high temperatures can be readily extrapolated to 82

lower temperatures. This is justifiable so long as the barriers 83

between intermediates are large so that a local equilibrium is 84

reached in each free energy basin prior to unfolding. 3.) We 85

assume that non-native contacts form on timescales faster than 86

the timescales of native folding transitions. This assumption 87

implies that a protein’s folding landscape can be described by 88

macrostates characterized by certain folded native elements in 89

fast equilibrium with non-native contacts that are compatible 90

with the currently folded elements, and that these macrostates 91

obey detailed balance (see Methods). This assumption holds 92

in general for the misfolded states observed here, which are 93

dominated by short-range interactions that form rapidly com- 94

pared to the long-range contacts that stabilize most native 95

structures. 96

MarR-an E. coli protein with conserved rare codons-adopts 97

stable co-translational folding intermediates. We began by 98
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Fig. 2. (A) Structure of native MarR dimer bound to DNA (left) as well as monomer (right) with highlighted dimerization region (green), DNA binding region (blue), and a crucial
beta hairpin involved in stabilizing the DNA binding region (gold). (B) Mean fraction of native contacts per subunit for monomeric and dimeric MarR as a function of temperature
normalized by DNA binding region melting temperature (right dashed line). The dimer melting temperature is indicated by the left dashed line. Sample monomeric structures
from each temperature range are shown, illustrating melting of the dimerization region followed by the DNA binding region (C) Predicted folding pathway of MarR monomer.
(See text for details.) (D) (Top) At various chain lengths, we plot the equilibrium probability that the structural elements associated with each folding step in the MarR monomer
folding pathway are folded (gold = hairpin folding, blue = DNA binding region folding, green = dimerization region folding ). X’s indicate the minimum chain lengths at which each
step is possible. (Bottom) For each chain length shown in the top panel, we plot the rate of the slowest folding step–DNA-binding region formation. A narrow window of chain
lengths that confers both folding speed and stability is highlighted in purple. Error bars on folding rates are obtained from bootstrapping. (see Methods) Both panels are shown
at a simulation temperature of T = 0.51TM

simulating the co-translational folding of a protein previously99

shown to contain a conserved rare codons ≥ 30 amino acids100

downstream of a possible co-translational folding intermediate101

(12): the E. Coli Multiple Antibiotic Resistance Regulator102

(MarR). MarR, a transcriptional repressor (25–27), natively103

assembles into a winged helix homodimer with each monomer104

composed of a DNA binding region and a helical dimerization105

region (Fig. 2A). To investigate whether individual monomers106

are stable, we ran equilibrium replica exchange simulations107

with umbrella sampling using our all-atom potential (Meth-108

ods). We find that the dimerization region is folded a fraction109

of the time, while the DNA binding region is stably folded the110

majority of the time at temperatures below T ¥ 0.9 TM (blue111

dotted line), where TM is the monomer melting temperature112

(see also Fig. S1B). These results indicate that the monomer113

acquires a substantial amount of native structure in isolation.114

We next turned to investigating the monomer’s folding115

pathway. We find that the monomer folds in three steps 116

(Fig. 2C) characterized by: 1.) the relatively fast folding of a 117

crucial beta hairpin composed of residues valine 84 through 118

leucine 100 (gold in Fig. 2), which sca�olds the entire DNA 119

binding region in the final structure, 2.) The completion of 120

DNA binding region folding, which is the rate-limiting step 121

involving the formation of long range contacts between one of 122

the strands in the beta hairpin–leucine 97 through leucine 100– 123

and another strand composed of alanine 53 through threonine 124

56 (blue in Fig. 2), and finally 3.) Folding of the dimerization 125

region (green in Fig. 2), which is reversible as the helices 126

comprising this region rapidly exchange between various native 127

and non-native tertiary arrangements (Fig. S1B). Naturally, 128

the dimerization region becomes substantially more ordered 129

in the presence of a dimeric partner. Rates for each folding 130

step as a function of temperature are shown in Fig. S2. 131

Having predicted the monomer’s folding pathway, we 132
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wondered whether these folding steps can take place co-133

translationally. To test this, we truncated residues from the134

C-terminus of the protein and ran equilibrium simulations of135

the resulting nascent-like chains at various lengths. At each136

length, we computed the probability that the tertiary contacts137

associated with each folding step are formed at equilibrium138

(Fig. 2D top panel, see Methods for details), We find that139

as soon as the crucial beta hairpin (gold in Fig. 2) has been140

fully synthesized at length 100, both beta-hairpin folding and141

the rate-limiting DNA binding region folding step become142

thermodynamically favorable, suggesting folding can begin143

co-translationally at this length (see also Fig. S1F). This find-144

ing is in agreement with prior analysis using a coarse-grained145

model, which predicts a co-translational folding intermediate146

at a similar chain length (Fig. S1I). Meanwhile, the helix con-147

sisting of residues methionine 1 through serine 34 is stabilized148

by loose non-native contacts with the DNA-binding region149

(Fig. S1H), as the C-terminal helices with which it pairs to150

form the dimerization region have not yet been synthesized.151

These helices have been partially synthesized by length 112,152

but dimerization-region folding is still unfavorable at this point.153

The entirety of the C-terminal helices must be synthesized,154

which occurs around the full monomer length of 144, for the155

dimerization region to acquire partial stability (¥ 70% folded156

at the temperature shown.) We note that these results are157

reported at a simulation of temperature of T = 0.51 TM , where158

TM is the DNA-binding region melting temperature. We chose159

this temperature because it is slightly below the dimer melting160

temperature of T ¥ 0.65 TM (Fig. 2B) and corresponds to a161

physiologically reasonable folding stability of ≥ 5 kBT (Fig.162

S1B). However, our results are consistent across temperature163

choices below the dimer melting temperature (Fig. S1E). We164

further note that, although real physiological temperatures165

typically lie only slightly below protein melting temperatures,166

our temperature choice of T = 0.51 TM is nonetheless reason-167

able in our model because our potential energy function is168

temperature-independent.169

MarR folding rate rapidly decreases beyond 100 amino acids170

due to non-native interactions. We next asked how the folding171

kinetics for MarR’s rate-limiting folding step, namely DNA-172

binding region folding, change as the nascent chain elongates173

beginning at 100 amino acids. We find that for a narrow174

window around this length, the rate-limiting step is both175

thermodynamically favorable and relatively fast (Fig. 2D).176

Beyond 100 amino acids, this step becomes dramatically slower.177

By length 112, this rate has decreased by roughly 1000-fold,178

and by the time the monomer is fully synthesized (144 AAs),179

the rate has decreased by roughly 2000-fold relative to the180

100 AA partial chain (Fig. 2D, bottom). This slowdown far181

exceeds what is predicted from general scaling laws of folding182

time as a function of length (1, 28, 29). For instance, the183

power law scaling proposed by Gutin et al. (29), · ≥ L4,184

predicts only a ≥4-fold slowdown between lengths 100 and185

144 AA. The discrepancy between this general scaling and our186

observed dramatic slowdown suggests that factors specific to187

MarR are at play. One possibility is non-native intermediates.188

To test this hypothesis, we turned o� the contribution of189

non-native contacts to the potential energy by re-running190

simulations in an all-atom Go potential in which only native191

contacts contribute (30, 31). In stark contrast to the full192

knowledge-based potential (Fig. 3A, left), the native-only193

potential predicts that below the melting temperature, the 194

full protein folds dramatically faster than the partial chain at 195

length 100. Furthermore, whereas the full potential predicts 196

that both folding rates drop with decreasing temperature, the 197

native-only potential predicts that the folding rates remain 198

constant or increase with decreasing temperature. These 199

findings can be explained by two e�ects related to non-native 200

contacts, namely 1.) The partial chain is normally stabilized 201

by loose non-native contacts, and so their absence leads to a 202

reduced thermodynamic driving force for folding (Figs S1H and 203

S2E), and 2.) The absence of non-native contacts eliminates 204

kinetic trapping for the full protein at low temperatures. As a 205

result, the folding rate now increases, rather than decreases 206

with lowering temperature due to a stronger thermodynamic 207

driving force. These observations point to the importance of 208

non-native interactions in producing the observed orders-of- 209

magnitude slowdown in MarR folding rate in the full potential 210

at lengths beyond 100 amino acids. 211

As an additional test of the role of non-native contacts, we 212

examined snapshots that have yet to undergo the rate-limiting 213

step and identified ones that are kinetically trapped, defined 214

as having Ø 5 non-native contacts that need to be broken 215

before the rate-limiting step can occur. Snapshots that do not 216

fulfill this criterion are deemed non-trapped, and generally 217

take on a looser, more molten-globule like structure. We then 218

computed the free energy di�erence between these trapped 219

and non-trapped ensembles as a measure for the stability of 220

misfolded kinetic traps (Fig. 3B). For all temperatures below 221

the melting temperature, this free energy di�erence is greater 222

for the MarR chain at length 100 than for the full protein. We 223

note that at temperatures below T ¥ 0.85 TM , non-trapped 224

structures are observed extremely infrequently, leading to large 225

errors in this free energy calculation. We thus do not plot 226

these temperatures. But the trend at temperatures above 227

T ¥ 0.85 TM clearly suggest that the full protein experiences 228

deeper kinetic traps. Although we define trapped snapshots 229

here as ones that have Ø 5 non-native contacts, our results 230

are robust to the choice of this threshold value (Fig. S2F). 231

Since kinetic traps are deeper at chain lengths beyond 100 232

amino acids, we hypothesized that non-native contacts in- 233

volving residues at sequence positions beyond 100 crucially 234

stabilize these traps at longer lengths. To test this, we con- 235

structed and clustered the non-native contact maps of full 236

protein snapshots prior to the rate-limiting step (see Meth- 237

ods), and visualized average non-native contact maps for these 238

clusters (Fig. 3C). Indeed, the two most heavily populated 239

clusters contain multiple non-native contacts involving amino 240

acids beyond 100. In the first cluster (left), residues 51-55, 241

which natively pair with the beta strand 95-100, are instead 242

sequestered into a non-native hydrophobic core that is stabi- 243

lized by C-terminal residues. In the second cluster (right), the 244

beta strand 95-100 forms a non-native hairpin with residues 245

106-111, again impeding the native insertion of residues 51-55. 246

Notably, many of the residues involved in stabilizing these 247

non-native traps, particularly cluster 2, are already synthe- 248

sized at length 112, thus explaining why the rate of folding is 249

already much slower at that length than at length 100. To- 250

gether, these contact maps further highlight the importance of 251

C-terminal non-native contacts in drastically slowing folding 252

as the nascent MarR chain elongates. 253
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Fig. 3. A) Folding rate vs temperature for DNA binding region folding rate as a function of temperature at nascent chain length 100 (dashed line) and full MarR (solid line), using
the all-atom potential (left) and a native-central potential in which non-native interactions have been turned off (right). Symbols indicate temperatures at which the partial chain
folds significantly faster than the full monomer (p < 0.01) based on bootstrapped distributions (see Methods) (B) Free-energy difference between configurations prior to the
rate-limiting step that are kinetically trapped (defined as having at least 5 nonnative contacts that must be broken before rate-limiting step can occur) and those that are not
trapped as a function of temperature for both the partial MarR chain at length 100 and full MarR. (C) Mean nonnative contact maps for the two most prevalent clusters (see
Methods) among full MarR simulation snapshots in which the DNA binding region is not folded, along with representative structures. Contacts involving the C-terminus that
most be broken before folding can proceed are circled in red on the maps and highlighted on the respective structures.

Kinetic modeling predicts that vectorial synthesis helps254

MarR circumvent deep kinetic traps. Given that nascent MarR255

folding is fastest at chain lengths around 100 AAs, we hypothe-256

sized that vectorial synthesis may significantly improve folding257

e�ciency as compared to what would be possible with unas-258

sisted post-translational folding. To test this, we developed a259

kinetic model of co-translational folding (Fig. 4A, details in260

Methods). Our model assumes that co-translational folding261

can be characterized by a fixed number of length regimes,262

namely chain length intervals for which the folding properties263

are nearly constant and informed by the calculations described264

above. For MarR, we identified three such regimes: 1.) 100-265

112 amino acids, at which point folding is relatively fast 2.)266

112-144 amino acids, and 3.) 144 amino acids, corresponding267

to the full monomer. These latter two regimes both show268

similar folding properties, namely much slower folding and269

are depicted together as a single row in Fig. 4A. We assume270

that the protein spends a fixed amount of time at each length271

regime, during which it can fold or unfold as a continuous time272

Markov process (see Methods), prior to irreversible transition273

to the next regime via synthesis. This model contains two free274

parameters: 1.) The simulation temperature, which is kept 275

at T = 0.51 TM as before, and 2.) The ratio of the folding 276

timescale to the synthesis timescale. This ratio cannot be 277

determined from Monte Carlo simulations, which compute 278

folding timescales in arbitrary Monte Carlo steps (although 279

relative rates between di�erent lengths or folding steps can be 280

computed). 281

In Fig. 4b (left), we incorporate our computed folding rates 282

for MarR into the kinetic model and plot the resulting proba- 283

bility of occupying di�erent folding intermediates over time. 284

We choose a set of parameters for which the e�ect of vectorial 285

synthesis is particularly pronounced, namely we assume the 286

slowest folding rate is 6 · 10≠3 times the protein synthesis rate. 287

For these parameters, enough time is spent at the 100-112 288

amino acid length regime that the DNA-binding region folds 289

in roughly 50% of nascent chains (green and blue curves). The 290

other half remains trapped in misfolded states (red curve). In 291

contrast, an analogous simulation of post-translational folding 292

shows no appreciable folding during this time period owing 293

to the deep traps (Fig. S3A). Although vectorial synthesis 294

is clearly advantageous, we wondered whether the advantage 295
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Fig. 4. (A) Schematic of kinetic model (see main text and Methods for details). Dimerization is shown for completeness, but not accounted for in the kinetic model (B): Time
evolution for the probability of occupying different states as a function of time, assuming the slowest folding rate is 6 · 10≠3 times the protein synthesis rate (under constant
translation speed). We further assume either no slowdown at conserved rare codons between residues 100-112 (left), or a 6-fold slowdown at rare codons (right, see main text
and Methods). States are colored as in (A) (black = no native tertiary structure, gold = beta hairpin folded, red = beta hairpin folded with significant nonnative contacts, blue =
DNA binding region folded, green = fully folded), and sample structures are shown. We neglect lengths prior to 100, at which point no folding occurs. (C) Fractional reduction in
the mean time to complete synthesis and folding as a function of unknown synthesis rate, assuming various percent slowdowns at rare codons indicated by numbers over the
curves and highlighted on the respective structures.

can be enhanced by slowing down MarR synthesis around the296

optimal folding length of 100. In vivo such a slowdown may297

result from a conserved stretch of rare codons which occurs298

roughly 30 amino acids downstream of this length (Fig. S3B).299

Indeed, we find that increasing the time spent in the 100-112300

length regime by a factor of 6 increases the population that301

has undergone the rate-limiting step (green + blue curves) to302

nearly 100% (Fig. 4b, right). This suggests that, for these303

parameters, a rare-codon induced slowdown around length 100304

significantly improves co-translational folding e�ciency.305

We next varied our model’s free parameters to test the306

generality of these results. In Fig. 4C, we show the mean307

time required for post-translational folding divided by the308

mean time for co-translational folding. This ratio is a proxy309

for the folding time benefit due to vectorial synthesis, with310

a value greater than 1 implying a benefit. We plot this ra-311

tio as a function of the unknown folding/synthesis timescale312

ratio, assuming that rare codons increase the time spent at313

the 100-112 length regime by various factors. We find that314

vectorial synthesis is always beneficial, although as expected315

this benefit diminishes as the folding/synthesis timescale ratio316

approaches zero, as the chain no longer has enough time to 317

fold at length 100 (Fig. S3C). Furthermore, slowing down 318

synthesis due to rare codons improves this benefit so long 319

as the folding/synthesis timescale ratio is less than ≥ 0.01. 320

For ratios above this, folding at intermediate lengths is fast 321

enough that there is no benefit from slowing down synthesis 322

(Fig. S3D). Thus in summary, our model predicts that 1.) 323

for nearly all parameter values, MarR co-translational folding 324

improves folding e�ciency by helping nascent chains overcome 325

deep kinetic traps, and 2,) assuming a reasonable range of 326

timescales, rare codons tune synthesis rates so that a nascent 327

MarR monomer can optimally exploit the faster folding rates 328

available to it at lengths around 100 amino acids. 329

Non-native interactions explain rare codon usage in multiple 330

proteins. We then applied these methods to investigate the 331

folding of other E. Coli proteins which were previously pre- 332

dicted to form stable folding intermediates upstream of con- 333

served rare codon stretches (12). For each, we plot the native 334

stability and the slowest folding rate as a function of chain 335

length at a chosen temperature where the folding stability is 336
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Fig. 5. (A – D) As a function of chain length, the equilibrium probability that tertiary structure elements associated with the rate limiting step are formed (top) and the folding
rate associated with the rate-limiting step (bottom) are shown for proteins (A) FabG, (B) CMK, (C) DHFR, and (D) HemK. For each protein, the native structure (top row) and
a sample structure that has yet to undergo the rate-limiting folding step (bottom row) are shown, with C-terminal non-native contacts that must be broken prior to this step
highlighted in red. Blue Xs’s in the top panels indicate the lengths at which the first amino acids associated with the rate-limiting step have been synthesized, while black X’s in
bottom row indicate that no folding rate is computed because, even though enough residues have been synthesized for the rate-limiting structures to fold, their stability is low.
As before, for each protein, we work at a temperature at which the fully synthesized chain shows a folding stability of ≥ 5 ≠ 15 kBT . For more details pertaining to each
protein, see SI. (E) For each protein simulated, we indicate if stable co-translational folding intermediates are formed, deep kinetic traps slow folding, and conserved C-terminal
rare codons are found in the sequence.

physiologically reasonable (≥ 5-15 kBT ). One example is the337

beta-ketoacyl-(acyl carrier protein) reductase, or FabG, an338

essential enzyme involved in fatty acid synthesis (Figs. 5A,339

S4). As with MarR, our simulations point to a rapid increase340

in monomer stability around 85 amino acids, at which point341

enough of the protein has been synthesized that a folding core342

composed of three N-terminal beta strands can fold (Fig. 5A343

top). This early folding step, which is rate-limiting overall,344

slows down somewhat beyond length 85, and even more beyond345

length 128, again owing to C-terminal non-native interactions346

(Figs. 5A bottom, S4 F-H). Thus, vectorial synthesis benefits347

FabG folding by allowing the chain to take advantage of these348

shorter lengths. The sequence contains various stretches of349

rare codons, each of which is predicted to potentially enhance350

this benefit under di�erent conditions (Figs S4I-K). Another351

protein that shows similar behavior is the enzyme Cytidylate352

Kinase, or CMK (Figs 5B, S5). Our simulations predict that353

non-native kinetic traps lead to very slow CMK folding, con-354

sistent with previous experimental findings that the protein355

refolds on timescales of minutes (32). We further find that the356

stability notably increases with length at around 145 amino 357

acids, even though our force field only predicts a folded frac- 358

tion of ≥ 0.1 at this length. Slight inaccuracies in the force 359

field may change this exact value, but our observation of a 360

rapid increase in stability around this critical chain length is 361

expected to be qualitatively robust. As with other proteins, 362

this chain length corresponds to the point at which the rate- 363

limiting step (beta-core nucleation) is fastest, as non-native 364

contacts significantly slow the step at longer lengths (Figs 5B 365

bottom, S5E-F). Furthermore, the chain-length window that 366

corresponds to both increasing stability and relatively fast 367

folding once again occurs roughly 30 amino acids downstream 368

of a conserved stretch of rare codons (Fig. S5G). We note that, 369

owing to large barriers in CMK’s landscape, the simulations 370

did not converge adequately enough at low temperatures to 371

allow for reliable folding rate calculations. We thus only com- 372

pute folding rates at higher temperatures very close to the full 373

protein’s melting temperature, at which point thermal stabili- 374

ties are poor. However, we expect these trends to extend to 375

lower, more physiologically reasonable temperatures, at which 376
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point the di�erence in folding rates, and thus the benefit due377

to vectorial synthesis, may be even more substantial.378

Counterexamples. Using our methodology, we also identified379

proteins for which vectorial synthesis and rare-codon induced380

pauses confer no benefit. We began by considering E. Coli381

Dihydrofolate Reductase (DHFR) (Figs. 3C, S6)—an essential382

enzyme which is known to fold rapidly (33–36). Indeed, our383

simulations predict no deep kinetic traps for full DHFR–the384

kinetic trap depth for unfolded states, computed as in Fig.385

3B, is nearly zero at physiologically reasonable temperatures386

(Fig. S6F). Rather, the unfolded ensemble is characterized387

by loose, molten globule like states with significantly higher388

energy than the native state (Figs 3C bottom, S6E-G). Our389

predicted folding pathway (Fig. S6D) is in agreement with390

previous studies, which show that DHFR folds in multiple391

steps with fast relaxation times and no significant o�-pathway392

intermediates (32, 33). Owing to this smooth folding landscape,393

we predict no advantage to vectorial synthesis, because even394

though the chain can fold at an intermediate length of 149,395

the folding kinetics hardly change with length (Fig. 5C).396

This is consistent with the protein’s codon usage: Although397

E. Coli DHFR contains C-terminal rare codons (Fig. S6H),398

they are not conserved and their synonymous substitution399

has been shown not to a�ect in vivo soluble protein levels400

nor E. Coli fitness (36). (However, conserved N-terminal rare401

codons were shown to be crucial for mRNA folding so as to402

ensure accessibility of the Shine-Dalgarno sequence (36).) In403

addition to DHFR, we simulated the N-terminal domain of404

HemK (residues 1-74, see Figs 5D, S7), a protein whose co-405

translational folding pathway has been studied using FRET406

by Holtkamp et al. (14). We find that the domain can407

adopt a stable native-like structure at around 40 amino acids,408

consistent with an observed increase in FRET near this length409

by Holtkamp and coworkers. But as with DHFR, slowing down410

synthesis at this length is predicted to confer no advantage411

(Fig. 5D), as the full domain folds rapidly and experiences412

only shallow folding traps at physiological temperatures (Fig.413

S7G). Consistent with this, the HemK N-terminal domain414

shows no conserved rare codons (Fig. S7H). Our results for415

every protein we simulate are summarized in Fig. 5b.416

Discussion417

Together, these results shed light on how vectorial synthesis418

and its regulation a�ect the e�ciency of in vivo co-translational419

folding for various proteins depending on their nascent chain420

properties. The main takeaway is summarized in Fig. 6. For421

the relatively large single-domain proteins MarR, FabG, and422

CMK, we identify a narrow window of chain lengths at which423

folding is both favorable and fast. Prior to this length, the424

nascent chain cannot yet adopt native-like structures, while be-425

yond this length, the folding rate drops by orders of magnitude.426

This dramatic drop in folding rate far exceeds what is expected427

due to increasing chain length alone (1, 28, 29) and instead428

results from deep non-native contacts involving C-terminal429

residues, which must be broken before folding can proceed.430

Thus, vectorial synthesis is predicted to significantly benefit431

folding, as it allows these proteins to exploit the narrow win-432

dow of lengths at which the problematic C-terminal residues433

have not yet been synthesized and folding is fast. Under cer-434

tain conditions, slowing synthesis at these critical lengths is435
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Fig. 6. For misfolding-prone proteins that can fold co-translationally, the overall folding
rate is optimized if the nascent chain has time to start folding at the earliest length
at which stable folding can occur. At this point, the chain’s folding landscape is still
relatively smooth (blue arrow). In case the nascent chain’s folding rate at this critical
length is slightly slower than the synthesis rate, then slowing down synthesis using
rare codons roughly 30 amino acids downstream is beneficial. In contrast, delaying
folding until further synthesis is complete (red arrow) leads to deep kinetic traps
stabilized by C-terminal residues, which significantly slow folding.

necessary to give the chain enough time to fold, consistent with 436

the presence of conserved C-terminal rare codons ≥30 amino 437

acids downstream. In contrast to co-translational folding, 438

post-translational folding is expected to be much less e�cient 439

for these proteins owing to misfolded states. Our results may 440

also explain why other proteins lack conserved C-terminal rare 441

codons. Namely for DHFR and the HemK N-terminal domain, 442

we find that although co-translational folding is possible, it is 443

not advantageous relative to post-translational folding because 444

the full proteins fold rapidly without populating significant 445

kinetic traps. 446

This study both generates specific experimental predictions, 447

and also advances our general understanding of codon usage 448

in proteins. For decades, it has been known that synonymous 449

mutations which alter translation speed can a�ect the folding of 450

large proteins, potentially reducing fitness (17) or exacerbating 451

disease symptoms (37–39). However, the mechanism for these 452

e�ects has not been established. Other studies have examined 453

the role of evolutionarily conserved clusters of rare codons at 454

domain boundaries, suggesting that these may give individual 455

domains time to fold co-translationally (40). But more recent 456

work has shown that conserved rare codons may be found at 457

any chain length at which folding can begin, and not exclusively 458

at domain boundaries (12, 13). These studies did not, however, 459

establish a rationale for slowing down synthesis in the middle 460

of a domain. Our work provides a potential mechanistic 461

explanation for these observations, pointing to the crucial role 462

of misfolded intermediates stabilized by C-terminal residues. 463

In the cell, such intermediates may be involved in harmful 464

aggregation, an e�ect that is not considered in our model 465

but which may further heighten selection for co-translational 466

folding. It is further worth noting that some rare codons, 467

particularly at the 5’ end of genes, have evolved for reasons 468

unrelated to co-translational folding, for instance to promote 469

proper mRNA folding (36, 41, 42), or to minimize ribosome 470

jamming (43). However, our work focuses on rare codons 471
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further downstream in coding sequences, at which point a472

nascent chain will be synthesized to a greater extent and473

co-translational folding becomes possible.474

More generally, this work expands our understanding of475

how evolution optimizes the folding of large, misfolding-prone476

proteins in vivo. Besides vectorial synthesis and codon usage,477

another regulatory strategy involves chaperones. Growing478

evidence suggests that these two strategies may work in tandem479

in the cell, as chaperones such as trigger factor, DnaK, and480

TriC have been shown to bind nascent chains and promote481

co-translational folding (4, 8, 9, 44). Thus, rare codons may482

serve an additional role of slowing synthesis to give time483

for chaperones to bind. This may be especially beneficial484

if co-translational folding intermediates are non-native like,485

aggregation prone, or if these intermediates must undergo486

slow steps such as such as proline isomerization. Our method487

for studying co-translational folding, including the role of488

misfolded intermediates, can be applied in the future to shed489

light on these roles for chaperones, and potentially myriad490

additional factors that regulate protein folding in vivo.491

Materials and Methods492

493

Atomistic Monte Carlo simulations. Our algorithm for computing494

folding rates utilizes atomistic Monte-Carlo simulations with a495

knowledge-based potential and a realistic move-set comprising back-496

bone and sidechain rotations (20–22). For each full protein construct497

and intermediate chain length, we performed the following steps:498

1. A starting structure was downloaded from the PDB (PDB IDs499

for each protein shown in Table S1). This starting structure500

was equilibrated in the full potential for 15-30 million MC steps501

at a very low simulation temperature with harmonic umbrella502

biasing along native contacts. Umbrella biasing during equi-503

libration increases the likelihood that the protein undergoes504

slight conformational changes relative to the starting structure505

that are necessary to attain the lowest energy configuration506

in the potential. Nascent chain constructs at intermediate507

lengths (for example, MarR at length 100) were then generated508

by truncating the C-terminus of the equilibrated full protein509

PDB structure, and equilibrating these truncated structures510

as was done for the respective complete protein.511

2. To compute equilibrium thermodynamic properties, we512

ran replica exchange simulations using an added harmonic513

umbrella-sampling bias with respect to the number of native514

contacts. These simulations were run for 200-800 million MC515

steps at a wide range of temperatures. For some proteins, the516

initial 200-600 million MC steps additionally implemented a517

knowledge-based moveset (45) to aid the protein in finding518

energy minima at intermediate numbers of native contacts.519

However the timesteps that utilized these moves were not in-520

cluded in the free energy calculations, since these moves do521

not satisfy detailed balance.522

3. To compute rates of unfolding, we ran simulations without523

replica exchange nor umbrella sampling at temperatures near524

or above the melting temperature. For all proteins, simulations525

were run starting from the equilibrated native structure. For526

FabG and CMK, we additionally ran unfolding simulations527

beginning from intermediate states containing a high degree of528

non-native structure, extracted from low temperature trajecto-529

ries in the replica exchange simulations. Such simulations allow530

for a better estimate of the unfolding rate for these partially531

non-native intermediates at low temperatures.532

Simulation analysis and folding rate computation . To investigate a533

given construct’s folding properties, we first generated native contact534

maps of the respective fully synthesized and equilibrated structure,535

and identified islands of long-range contacts referred to as substruc-536

tures (46). Native contact maps and substructures for each protein 537

are shown in the SI. We then defined a coarse-grained folding land- 538

scape characterized by transitions between states defined by a subset 539

of formed substructures. Such states are referred to as topological 540

configurations (46). For fully synthesized MarR, example topolog- 541

ical configurations include abcdef (all substructures folded), abc 542

(only substructures a, b and c are folded) and ÿ (no substructures 543

folded–see Fig. S1). The resulting network of topological configu- 544

rations is analogous to a Markov state model (47) in which states 545

are defined based on structural features, rather than directly from 546

kinetic information. This is justified because the folding/unfolding 547

of a native substructure typically requires the forming/breaking of 548

a loop, which is associated with a large free energy barrier. Thus, 549

topological configurations show Markovian dwell-time distributions, 550

as microstates consistent with a topological configuration rapidly 551

equilibrate relative to the timescale of transition between topological 552

configurations. (46). 553

Having defined substructures for a given protein, we assigned 554

all simulation snapshots from replica exchange simulations to a 555

topological configuration in accordance with which substructures 556

are formed. Using the replica exchange simulations, we then used 557

the MBAR method (48) to compute a potential of mean force (PMF) 558

as a function of topological configuration–examples for MarR are 559

shown in Fig. S1. The MBAR method was also used to compute 560

PMFs as a function of number of native contacts or presence/absence 561

of kinetic trapping (as in Fig. 3C) The PMF as a function of native 562

contacts was used to compute a thermal average number of native 563

contacts at each temperature, as in Fig. 2B. 564

To analyze unfolding simulations, we first assigned snapshots 565

from these simulations to topological configurations, as above. To 566

account for misclassification due to possible structural ambiguity, 567

we fit the unfolding trajectories to a Hidden Markov Model that 568

assumes a constant and uniform probability of misclassification to 569

any incorrect configuration. We then identified clusters, or sets of 570

topological configurations that are in rapid exchange. This was 571

accomplished by defining a kinetic distance between topological 572

configurations i and j, defined as the average time to transition be- 573

tween them, then clustering together configurations whose distance 574

is below some threshold. The threshold was chosen to ensure a 575

substantial separation between the timescales of exchange within 576

the resulting clusters and exchange between clusters. This again en- 577

sures that clusters show Markovian dwell time distributions, which 578

we have verified for MarR. The resulting clusters for each protein 579

construct are shown in SI. Each snapshot from the unfolding simu- 580

lations was then assigned to a cluster. At each unfolding simulation 581

temperature, we then computed rates of unfolding between clusters, 582

and fit the log rates as a function of temperature to the Arrhenius 583

equation. Fig. S1 shows that the Arrhenius equation provides a 584

good fit for the observed MarR unfolding rates. Using the Arrhenius 585

equation, we then extrapolated unfolding rates to lower, more phys- 586

iologically reasonable temperatures. We also computed the relative 587

free energies of each cluster at those temperatures using the PMFs 588

as a function of topological configuration obtained previously. From 589

these unfolding rates and free energies, the folding rates between 590

clusters were calculated from detailed balance. Namely, for two 591

clusters i and j, the ratio of the forward and reverse transition rates 592

⁄iæj and ⁄jæi satisfies 593

⁄iæj

⁄jæi
=

P j
eq

P i
eq

= e≠(Fj ≠Fi)/kT , [1] 594

where Fi,j are the relative free energies of the respective clusters. 595

For each protein construct, we performed a bootstrap analysis 596

to obtain an error distribution on folding rates by resampling 1000 597

times from the unfolding trajectories with replacement. We tested 598

our method on HemK, for which folding transitions are fast enough 599

for their rate to be directly calculated, and obtained good agreement 600

(Fig. S7) 601

Using the PMFs as a function of topological configuration, we 602

computed the equilibrium probabilities of forming structures asso- 603

ciated with the rate-limiting folding step (Fig. 2D and Fig. 5) as 604

follows: First, we identified the cluster that the protein transitions 605

into during the rate limiting step. For MarR, this would be the 606

cluster consisting of [abc, bc, bcd]. We then identified the substruc- 607

tures that are formed in the least folded configuration assigned 608

to this cluster (b and c for MarR), and computed the Boltzmann609
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probability that the protein occupies any configuration in which at610

least these substructures are formed. The minimum chain length at611

which the step can occur (colored Xs in these plots) was defined as612

the first length such that, for each of the substructures identified613

above, at least one native contact belonging to that substructure614

can form.615

Simulations with Native-only potential. These simulations for MarR616

at 100 residues and full MarR were run and analyzed as in the617

previous section, but with only native contacts found in the equi-618

librated structure contributing to the energy (30, 31). The values619

for attraction between native contacts, as well as added modest620

repulsion between non-native contacts, were tuned so that the ratio621

of the ground state energies of full MarR and MarR, 100 residues is622

close to that in the full knowledge-based potential.623

Clustering nonnative contact maps. To cluster misfolded states in624

accordance with which non-native contacts are present, we made625

nonnative contact maps of all snapshots assigned to a given topo-626

logical configuration of interest at a set temperature range. The627

nonnative clusters for MarR in Fig. 3C include snapshots assigned628

to configuration b. We then assigned a distance between every pair629

of snapshots, defined as the Hamming distance between the contact630

maps (including only non-native contacts that are not present in the631

equilibrated native structure), and defined a distance threshold such632

that pairs of snapshots whose distance is less than this threshold are633

defined as adjacent. We formed clusters by finding the disconnected634

components of the resulting adjacency matrix. For most proteins,635

a distance threshold of 100 produced clusters that are structurally636

distinct and well-defined, but the results are robust to this precise637

value. Having defined clusters, we produced non-native contact638

maps for each cluster by averaging the contact maps of snapshots639

assigned to that cluster. Each resulting average contact map depicts640

the frequency with which non-native contact maps are observed in641

a given set of structurally similar misfolded states.642

Kinetic model of co-translational folding. To model co-translational643

folding, we defined a set of length regimes, each of which corre-644

sponds to an interval of chain lengths for which the protein’s folding645

properties are assumed to be constant. These folding properties are646

obtained by simulating a nascent chain at a length that is assumed647

to be representative of the length regime, and then applying the648

methods of the previous sections. At each length regime L, we649

define PL,T(t) as the vector of probabilities of occupying di�erent650

clusters as a function of time at a given temperature T. Assuming651

continuous-time Markovian dynamics, PL,T(t) satisfies the master652

equation:653

d

dt
PL,T(t) = ML(T )PL,T(t) [2]654

Where ML(T ) is a transition matrix whose entries are given by655

ML
ij(T ) =

;
⁄L

jæi(T ) if i ”= j

≠
q

i
⁄L

jæi(T ) if i = j
[3]656

Where the folding/unfolding rates ⁄L
jæi(T ) at length regime L are657

computed as described previously.658

At each length L, the master equation is solved for an amount659

of time ·L corresponding to the total time spent at length L, given660

an initial probability distribution PL,T(0). At the first length661

regime at which folding can occur, PL,T(0) is assumed to be one at662

the cluster containing the unfolded state (topological configuration663

ÿ) and zero elsewhere. After time ·L, the probability PL,T(·L)664

becomes the new initial distribution, PLÕ,T(0) at the next length665

regime LÕ, and the master equation is solved again given a new666

MLÕ (T ). In case cluster c at length L does not have an exact667

match at length L’, then for each cluster c’ at length L’, we define a668

similarity between c and c’ as the average number of substructures669

that must be formed or broken to transition from a topological670

configuration in c to one in c’. We then find the c’ that is most671

similar to c, and propagate element c of PL,T(·L) to element c’ of672

PLÕ,T(0). The time spent at a given length regime ·L is computed673

using: 674

·L = ·fastNL
fast + ·rareNL

rare [4] 675

Where ·fast and ·rare are the average times to translate a fast and 676

a rare codon, respectively, while NL
fast and NL

rare are the numbers 677

of fast and rare codons in the length regime L. The values of ·fast 678

and ·rare relative to characteristic folding times are unknown, and 679

varied as free parameters as described in the main text. 680

In addition to computing how probability distributions evolve 681

in time, we can compute the mean time to completion of synthesis 682

and folding ·total (Fig. 4C). To do this, we solve and propagate the 683

probabilty distribution until the fully synthesized length regime F 684

is reached, then evaluate the sum 685

·total =
ÿ

L

·L +
ÿ

c

P F,T
c (0)·F

fold, c [5] 686

Where the second sum is over clusters in the full length F, P F,T
c (0) 687

is the initial probability of occupying cluster c (obtained by propa- 688

gating from the penultimate length regime as described above), and 689

·F
fold, c is the mean first-passage time to reach the cluster containing 690

the folded cluster starting from cluster c. This mean first passage 691

time is obtained by setting an absorbing boundary at the folded 692

cluster and solving the equation: 693

(ML(T ))| · F
fold = ≠1 [6] 694

Where (ML(T ))| is the transpose of the transition matrix, · F
fold 695

is a vector whose elements are the mean first passage times to the 696

folded cluster from each initial cluster c, and the right hand side is 697

a vector of negative ones. 698
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Protein PDB ID 
MarR 1JGS 

FabG 1Q7C 

CMK 2CMK 

DHFR 1DRA 

HEMK 1T43 

Arginine 34 was replaced with Lysine to 

match construct used in (1) 

 
Table S1: List of PDB files used to simulate each protein 
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Figure S1: (A) Native contact map and substructures for MarR monomer. (B) and (C ) Potentials 

of mean force (PMF) as a function of topological configuration for MarR at T = 0.55 TM and  T = 

1.03 TM, where TM is the DNA-binding region melting temperature. As the melting transition is 

crossed, configurations with less native structure become more favorable. (D) Sample Arrhenius 

plots for MarR showing that rates of transition between clusters, indicated in table S2. (E)  

Probability of forming minimal set of substructures associated with each folding step as a 

function of length as in main text Fig. 2D, at various temperatures. Colors are the same as in Fig. 

2D, but different marker styles indicate different temperatures. As the temperature approaches 

the dimer melting temperature T = 0.65 TM, DNA binding region (substructures b and c) and 

dimerization region folding (substructures a-d) become less favorable, while the beta hairpin 

(substructure b) remains folded with high probability. But at all temperatures, a significant 

increase in DNA binding region stability is observed at length 100.   (F and G) Same as (B) and 

(C) for 100 residue MarR nascent chain. The maximum substructures that can form at this chain 

length are a, b, and c. As shown in (F), the nascent chain at length 100 adopts a stable native-

like topology (abc) at low temperatures. (H) Average nonnative contact map for snapshots of 

MarR, 100 residues assigned to topological configuration abc. The probability of each nonnative 
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contact is indicated by color. Native contacts are shown in light gray in the background. (I) 

Minimum free energy relative to fully unfolded state as a function of chain length using the 

coarse-grained model in (2). A decrease in free energy around length 110 is observed that is 

analogous to our predicted rise in stability around length 100. 
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Figure S2: (A) Average energies of MarR snapshots assigned to topological configurations b 

(prior to rate-limiting step) and abcdef (maximally folded). A relatively small energy gap at low 

temperatures is indicative of non-native contacts stabilizing the b state. 

(B - D) Folding rates as a function of temperature for nascent MarR at chain length 100 (B), 

chain length 112 (C) and fuly synthesized monomer (D). In each panel, each line refers to a 

transition between a given pair of clusters (see methods). Topological configurations included 

in each cluster are listed in Table S2. For each transition, we only plot rates at temperatures for 

which the free energy difference between the clusters involved in the transition is less than 10 

kT—for differences higher than this, statistical convergence of PMFs becomes poor. Error bars 

are obtained by bootstrapping (see Methods). (E) Fraction of native contacts as a function of 

temperature for MarR chain at length 100 and fully synthesized MarR as a function of 

temperature in the natives-only potential. The 100 residue chain shows worse stability than in 

the complete potential, where it is stabilized by non-native contacts. (F) Same as Fig. 3B, but for 

different values of N, the threshold number of non-native contacts that must be broken during 

rate-limiting step for a snapshot to be declared trapped (see methods). As in Fig. 3B, dashed 

lines represent MarR chain at length 100 while solid lines are full MarR. Each color represents a 

different threshold. For all thresholds, the full protein experiences deeper traps at 

temperatures below ! ≈ 0.88	!', indicating that this result is robust to the choice of threshold 

over a range of values. 
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Table S2: Clusters for each MarR construct. Each cluster is defined as a set of topological 

configurations (listed above) that exchange quickly with one another relative to the timescale 

of exchange between clusters (see Methods). Native contact maps and substructures for MarR 

are shown above for reference. Other clusters that are not listed here are observed 

infrequently during unfolding simulations—these are not used for unfolding/folding rate 

calculations. For the full protein, we indicate which clusters are referred to in the text as having 

the beta hairpin region folded, DNA binding region folded, or being fully folded.  

 

Protein construct Clusters 
MarR, 100 residues Cluster 1: [abc, bc] 

Cluster 2: [b] 

Cluster 3: [Ø] 

MarR, 112 residues Cluster 0: [abcde] 

Cluster 1: [bcd, abc, bc] 

Cluster 2: [b] 

Cluster 3: [Ø] 

MarR, fully synthesized (144 residues) Cluster 0: [abcdef, abcde, abcd] (Fully folded) 

Cluster 1: [bcd, abc, bc] (DNA binding region folded) 

Cluster 2: [b] (Beta hairpin folded) 

Cluster 3: [Ø]  
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Figure S3: (A) Probability of occupying various MarR folding intermediates as a function of time 

assuming post-translational folding at T = 0.55 TM, for the same parameters and time period as 

in Fig. 4B. During this time period, nearly the entirety of the population remains kinetically 

trapped in the misfolded cluster 2 (red state with hairpin folded, but DNA binding region not 

folded). Color scheme is the same as in Fig. 4. (B) Fraction of homologous MarR sequences from 

sequence alignment enriched in rare codons as a function of sliding sequence window position , 

and associated p-value. Beginning around position 120, a large fraction of sequences contain 

rare codons. For details, see (2).(C) Same as main text Fig. 4B, except now assuming the slowest 

folding rate is 10-4 times the protein synthesis rate. Under this condition, folding is so slow 

compared to synthesis that the chain has insufficient time to fold co-translationally, even if rare 

codons are used.  (D) Same as main text Fig. 4B, except now assuming the slowest folding rate 

is 0.02 times the protein synthesis rate (note change in x scale). Now, folding is fast enough that 

the protein folds co-translationally regardless of whether rare codons are used, so there is no 

benefit to slowing down. Arrows under plot indicate time spent in each length regime. 

 

 

 

A B

C

D

100 - 112 

      AA

112 - 144 

      AA

Full monomer
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Figure S4:  Summary of results for FABG (A) Native contact map and substructures for 

monomeric FABG. Crystal structures of the native tetramer and individual monomer are shown 

above the contact map. (B-E) Computed folding rate as a function of temperature at various 

nascent chain lengths for each transition.  Topological configurations included in each cluster 

are listed in table S3. (F-H) Mean contact maps for the three most prevalent clusters among 

snapshots assigned to topological configuration A, prior to rate-limiting step. As with MarR, all 

clusters contain non-native contacts involving the C-terminus which must be broken before 

folding can proceed. (I) Fraction of homologous FabG sequences from sequence alignment 

enriched in rare codons as a function of sliding sequence window position , and associated p-

value. In kinetic modeling, when rare codons are included, we introduce a slowdown in 

synthesis between AAs 80-94, 125-138, and 179-192 (roughly 30 amino acids upstream of each 

rare stretch). (J) Sample kinetic model results for probability of occupying various FabG folding 

intermediates as a function of time, assuming total protein synthesis time is  ~105 times faster 

than slowest folding time and no slowdown at rare codons (left) and slowdown by factor of 6 at 

rare codons (middle).  We consider the following length regimes (indicated under x axis): 80-94 

A B C D

E F G H

I J K

80-94

  AA

95-175

   AA

176-192

     AA

Post-

trans

193-244

     AA
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AAs (assumed to have folding properties of 85 AA chain), 95-175 AAs (folding properties of 128 

AA chain), 175-192 AAs (folding properties of 181 AA chain), 192-244 AAs, and post-translation 

(the latter two regimes have properties of full 244 AA protein). At each length regime, each 

curve corresponds to the population that has undergone the respective folding step shown in 

panels (E-H) from which the folding properties are derived indicated by the same color.  (K) 

Reduction in mean first passage time to complete folding and synthesis relative to post-

translational folding as a function of folding rate/synthesis rate ratio assuming various 

slowdowns at rare codons as in 4C (same colors). When folding is much slower than synthesis 

(ratio of ~10-6 to 10-4 ), slowing synthesis is beneficial because the rare codon stretch centered 

around position 115 allows the chain to take advantage of fast folding at the 85 residue length 

regime. Note that the y values in this region are relatively low due to incomplete stability of the 

native-like intermediate at this length, which results in relatively low yield. For intermediate 

ratios between ~10-4 and 10-2, the benefit due to co-translational folding increases, as the 

protein now has time to fold at the 128 amino acid length regime (where folding is slower than 

at length 85, but still faster than at full length). Slowing down synthesis is still useful, this time 

due to rare codon stretch centered around 155, which increases the time spent at the 128 

amino acid length regime. For ratios of 10-2 and above, folding is fast enough that there is no 

need to slow down synthesis. Furthermore, the benefit due to co-translational folding starts to 

decrease due to this fast folding.  
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Protein construct Clusters 
FabG, 85 residues Cluster 3: [ac] 

Cluster 4: [a] 

Cluster 5: [Ø] 

FabG, 128 residues Cluster 3: [ac] 

Cluster 4: [a] 

Cluster 5: [Ø] 

FabG, 181 residues Cluster 0: [abcdef, acdef, abcdf, acdf] 
Cluster 1: [abcd, acd] 

Cluster 3: [abc, ac] 

Cluster 4/5: [Ø] 

FabG, fully synthesized (244 residues) Cluster 0: [abcdef, acdef, abcdf, bcdf, acdf, 
cdf] 
Cluster 1: [abcd, acd, cd] 

Cluster 2: [abc] 

Cluster 3: [ac] 

Cluster 4/5: [a, Ø] 
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Table S3: Clusters for each FabG construct.  In cases where the configurations assigned to a 

cluster at one chain length do not have an exact match at the subsequent length, we number 

clusters so as to indicate how population would be propagated to the next length based on 

structural similarity in kinetic model (see methods). For example, any population that occupies 

cluster 0 at length 181 are propagated to cluster 5 at length 244, even if the two clusters are 

not exactly alike. Likewise, any population in clusters 4 or 5 at length 128 are propagated to 

cluster 4/5 at length 181. These differences in cluster definition arise because at different 

lengths, different non-native contacts form during unfolding simulations, which dictate whether 

or not topological configurations are in fast exchange. We further note that for the fully 

synthesized FABG, the completely folded topological configuration is abcdefghij. However, we 

begin our unfolding simulations from state abcdef, since the fully folded state is 

thermodynamically disfavored when the protein is monomeric. We expect tetramerization will 

stabilize this fully folded state 
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Supplementary figure 5: Summary of results for CMK: (A) Native contact map and 

substructures for CMK. (B-D) Computed folding rate as a function of temperature at various 

nascent chain lengths for each transition.  Topological configurations included in each cluster 

are listed in table S4 (E-F) Mean contact maps for the two most prevalent clusters among 

snapshots assigned to topological configuration A, prior to rate-limiting step. As with MarR and 

FabG, both clusters contain non-native contacts involving the C-terminus which must be broken 

before folding can proceed. (G) Fraction of homologous CMK sequences from sequence 

alignment enriched in rare codons as a function of sliding sequence window position, and 

associated p-value 
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Table S4: Clusters for each CMK construct. We note that the first folding step involves the 

formation of substructure a (not computed), but this transition involves the simple folding of a 

short-range antiparallel beta hairpin and is not expected to be rate limiting. We further note 

that our PMFs predict that state acdefg is slightly lower in free energy at physiologically 

reasonable temperatures than the state abcdefg in which all substructures are formed, 

although these two differ by a relatively minor conformational change.  

 

 

 

Protein construct Clusters 
CMK, 140 residues Cluster 2: [abcde, acde, abcd, ade, ace, acd, 

ad, ac] 

Cluster 3: [a] 

 

CMK, 145 residues Cluster 2: [acde, acde, ade] 

Cluster 3: [a] 

 

CMK, fully synthesized (159 residues) Cluster 0: [acdefg] 

Cluster 1: [acdef, adef] 
Cluster 2: [ade] 

Cluster 3: [ae, ad, a] 
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Supplementary figure 6: Summary of results for DHFR: (A) Native contact map and 

substructures for DHFR. (B-CD Computed folding rate as a function of temperature at various 

nascent chain lengths for each transition. Topological configurations included in each cluster 

are listed in table S5.  (E) Mean nonnative contact map for snapshots assigned to ∅ topological 

configuration (prior to rate-limiting step in fully synthesized DHFR). Nonnative snapshots 

cannot be readily clustered due to sparsity and lack of recurrence of non-native contacts.  

(F) Free energy difference between trapped and non-trapped subensembles that have yet to 

undergo the rate-limiting step in full DHFR (5->3 transition), defined as in main text Fig. 3b. At 

physiological temperatures around T = 0.9 TM, this free energy difference is nearly zero, 

indicating very shallow kinetic traps. (G) Average energy as a function of temperature for 

snapshots assigned to ∅ and abcdefg (fully folded) states. The energy gap between these states 

is relatively large due to a lack of substantial non-native contacts. This is in contrast to MarR, 

where the energy gap is much smaller between states prior to the rate-limiting step and the 

folded state owing to substantial non-native contacts (Fig. S2A). (H) Fraction of homologous 

DHFR sequences from sequence alignment enriched in rare codons as a function of sliding 

sequence window position, and associated p-value. Although conserved rare codons are 

present at the N-terminus of the sequence, they are not found at the C-terminus. 
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Protein construct Clusters 
DHFR, 133 residues 

 

Cluster 1: [abcde] 

Cluster 2: [abcd] 

Cluster 3: [abd, bd, ad] 

Cluster 4: [ab,b] 

Cluster 5: [Ø] 

DHFR, 149 residues Cluster 1: [abcde] 

Cluster 2: [abcd] 

Cluster 3: [abd, bd, ad] 

Cluster 4: [ab, b] 

Cluster 5: [Ø] 

DHFR, fully synthesized (159 residues) Cluster 0: [abcdefg] 

Cluster 1: [abcde, acde], 

Cluster 2: [abcd, acd] 

Cluster 3: [abd, ad, a] 

Cluster 5: [Ø] 

 

Table S5: Clusters for each DHFR construct. Note that although we did not construct a kinetic 

model for DHFR, if we did, cluster 4 at length 149 would be propagated to cluster 5 in the full 

protein. 
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Supplementary figure 7: Summary of results for HemK N-terminal domain: (A) Native contact 

map and substructures for HemK residues 1-85 (however, we only simulate up to length 74). (B-

F) Computed folding rate as a function of temperature at various nascent chain lengths for each 

transition.  Topological configurations included in each cluster are listed in table S6.  This 

protein is small enough that, for all these nascent chain lengths, our algorithm predicts that 

folding transitions are fast enough to be observable within a reasonable simulation timescale at 

the temperatures at which the unfolding simulations were run.  Indeed, reversible 

unfolding/folding events are observed within the unfolding simulations. For each transition, we 

plot the observed refolding rates as Xs alongside the respective predicted rate. In most cases, 

the rates agree within an order of magnitude. Deviations typically result from either 1.) 

misclassification, whereby trajectories are falsely classified as having transiently refolded, or 2.) 

the presence of unfolding events that do not result misfolded states that are predicted to slow 

folding. At length 54, no 1->0 refolding events are observed, consistent with the predicted slow 

rate for this step. (G) Free energy difference between trapped and non-trapped subensembles 

that have yet to undergo the rate-limiting step at length 74 (2->1 transition), defined as in main 

text Fig. 3b. At physiological temperatures around T = 0.9 TM, this free energy difference is 

relatively small, around -4 kBT, as compared to the differences in excess of -15 kBT observed for 

MarR. This indicates relatively shallow traps for HEMK.  (H) Fraction of homologous HemK 

sequences from sequence alignment enriched in rare codons as a function of sliding sequence 

window position , and associated p-value. No statistically significant conserved rare codons are 

found in the N-terminal domain (residues 1-74) 
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Protein construct Clusters 
HEMK, 29 residues Cluster 1: [a] 

Cluster 2: [ Ø] 

 

HEMK, 40 residues Cluster 1: [ab] 

Cluster 2: [a] 

Cluster 3: [b] 

Cluster 4: [Ø] 

HEMK, 54 residues Cluster 0: [abcd] 

Cluster 1: [abd, ab, a] 

Cluster 2: [b,Ø] 

HEMK, 70 residues Cluster 0: [abcde, abcd, abc, ab] 

Cluster 1: [a] 

Cluster 2: [ Ø] 

 

HEMK, 74 residues Cluster 0: [abcde, abcd, abc, ac] 

Cluster 1: [abd, ab, a] 

Cluster 2: [ b,Ø] 

 

 

Table S6: Clusters for each CMK construct. We note that for lengths 29 and 40, we skip the 

clustering step based on kinetic connectivity in our analysis (see methods), as applying this step 

leads to clustering together of topological configurations that are unreasonably different in free 

energy at physiological temperatures. This is why more clusters are present at length 40 as 

compared to other lengths.  
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