
Brain and Cognition 112 (2017) 92–97
Contents lists available at ScienceDirect

Brain and Cognition

journal homepage: www.elsevier .com/locate /b&c
Special Invited Review
A review of predictive coding algorithms
http://dx.doi.org/10.1016/j.bandc.2015.11.003
0278-2626/� 2016 Elsevier Inc. All rights reserved.

⇑ Address: Department of Informatics, King’s College London, Strand, London
WC2R 2LS, UK.

E-mail address: michael.spratling@kcl.ac.uk
M.W. Spratling ⇑
King’s College London, Department of Informatics, London, UK

a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 May 2015
Revised 9 November 2015
Accepted 13 November 2015
Available online 19 January 2016

Keywords:
Predictive coding
Signal processing
Retina
Cortex
Free energy
Neural networks
Predictive coding is a leading theory of how the brain performs probabilistic inference. However, there
are a number of distinct algorithms which are described by the term ‘‘predictive coding”. This article pro-
vides a concise review of these different predictive coding algorithms, highlighting their similarities and
differences. Five algorithms are covered: linear predictive coding which has a long and influential history
in the signal processing literature; the first neuroscience-related application of predictive coding to
explaining the function of the retina; and three versions of predictive coding that have been proposed
to model cortical function. While all these algorithms aim to fit a generative model to sensory data, they
differ in the type of generative model they employ, in the process used to optimise the fit between the
model and sensory data, and in the way that they are related to neurobiology.
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1. Introduction

To correctly interpret sensory data the brain is faced with solv-
ing an inverse problem: one where the causes need to be inferred
from the perceived outcomes. For example, during visual percep-
tion the brain has access to information, measured by the eyes,
about the spatial distribution of the intensity and wavelength of
the incident light. From this information the brain needs to infer
the arrangement of objects (the causes) that gave rise to the per-
ceived image (the outcome of the image formation process).
Inverse problems are typically ill-posed, meaning that they have
multiple solutions (or none at all). For example, different sets of
objects arranged in different configurations and viewed under dif-
ferent lighting conditions could potentially give rise to the same
image. Solving such an ill-posed problem requires additional con-
straints to be imposed in order to narrow down the number of pos-
sible solutions to the single, most likely, one. In other words,
constraints are required to infer the most likely causes of the sen-
sory data. Constraints on perceptual inference might come from
many sources, including knowledge learnt from prior experience
(such as typical lighting conditions, the shapes and sizes of com-
mon objects, etc.), the recent past (knowledge about recently per-
ceived causes, and expectations about how these might change
or stay the same), and the present (such as information from else-
where in the image or from another sensory modality).

Predictive coding suggests one way in which the brain might
apply constraints in order to solve the inverse problem of percep-
tion (Bubic, von Cramon, & Schubotz, 2010; Clark, 2013; Huang &
Rao, 2011; Rao & Ballard, 1999; Spratling, 2014a). Specifically, pre-
dictive coding suggests that the brain is equipped with an internal
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model of the world, or multiple models of specific aspects of the
world embedded in different brain regions. This internal model
encodes possible causes of sensory inputs as parameters of a gen-
erative model. New sensory inputs are then represented in terms of
these known causes. Determining which combination of the many
possible causes best fits the current sensory data is achieved
through a process of minimising the error between the sensory
data and the sensory inputs predicted by the expected causes.

Predictive coding sets out a process theoryof informationprocess-
ing. One defined at the computational level in terms of Marr’s levels
of analysis (Marr, 1982). There are many possible ways in which this
scheme could be realised at the algorithmic level, and several differ-
ent algorithms have been proposed to implement predictive coding.
This article sets out to describe each of these algorithms in order to
provide a concise summary of their similarities and differences. The
algorithms are reviewed in roughly the chronological order in which
they were developed, starting with linear predictive coding (LPC)
which was developed for signal processing not as a model of brain
function. These ideas were then applied to explain efficient encoding
in the retina and then subsequently to model approximate Bayesian
inference in the cortical visual system (as described in the preceding
paragraph). To aid comparison between algorithms a consistent
mathematical notation is used throughout: x is used to denote sen-
sory input (or the ‘‘signal”); y is used to denote the inferred causes
of the sensory input (or the ‘‘coefficients”); V denotes the parameters
of the generative model (or the ‘‘weights”); r denotes the sensory
input predicted by the current estimate of the causes (or the ‘‘recon
struction”); and e is used to denote the error between the reconstruc-
tion and the actual sensory input (or the ‘‘residual”). The same letters
in bold are used to denote vectors and matrices containing multiple
values of these parameters and variables.

2. Linear predictive coding in digital signal processing

Digital signal processing concerns the manipulation and analy-
sis of a continuous signal, x, sampled at discrete time points
(indexed by i) so that the signal is represented as a sequence of
numbers, xðiÞ, called a ‘‘time series”. The basic idea of linear predic-
tive coding (Makhoul, 1975; O’Shaughnessy, 1988; Vaseghi, 2000)
is that each sample of a time series can be approximated as a linear
combination of preceding samples, such that:

xðiÞ � rðiÞ ¼ y1xði� 1Þ þ y2xði� 2Þ þ � � � þ ynxði� nÞ
Or more compactly:

xðiÞ � rðiÞ ¼
Xn
j¼1

yjxði� jÞ ð1Þ

where rðiÞ is the estimate of xðiÞ and n is a parameter, called the
order of the model, that determines how many previous samples
are used in the estimation. For the predictor coefficients, y1 . . . yn,
to be appropriate for estimating every sample, Eq. (1) needs to be
true for all values of i. The coefficients are therefore determined
by minimising the error (the squared difference) between the actual
value of the signal and the linearly predicted one, summed over
every sample in the time series:
X
i

xðiÞ � rðiÞ½ �2

Several different methods (such as the autocorrelation method and
the covariance method) have been developed for finding the param-
eters thatminimise the sumof the squarederror. For signals that vary
over time (such as continuous speech) it is necessary to split the time
series into shorter sequences (or ‘‘frames”) and calculate the coeffi-
cients, separately, for each frame. Alternatively, it is possible to con-
tinuously update the coefficients as each new sample is received.
Having found the coefficients it is possible to use them to pre-
dict future samples of the signal. It is also possible to use the coef-
ficients to estimate samples of the signal that are missing or have
been corrupted. Hence, LPC has applications in signal interpolation,
signal restoration, and noise reduction. The original signal is char-
acterised by relatively few coefficients values. This can be used for
signal compression, where only the coefficients and the first n sam-
ples need to be stored or transmitted and then the remaining sig-
nal is approximated (or synthesised) from these values by the
recursive application of Eq. (1). Finally, the coefficients are a (com-
pact) representation of the original signal. Similar signals should
have similar coefficients which can be exploited to recognise sim-
ilar signals or to identify the content of a signal by comparing its
coefficients to those of known signals.

3. Predictive coding in retina

When LPC is applied to signal restoration, interpolation, compres-
sion or recognition (as described in the preceding paragraph), it is
assumed that the coefficients, y1 . . . yn, or the resulting reconstruction
of the signal, rðiÞ, are informative and worth preserving, while the
residual error between thepredictionand the actual signal is uninfor-
mative and can be discarded. However, in other applications the
opposite is true: the predictable component of the signal is removed
to reduce the signal amplitude in order to allowmore efficient trans-
mission (Harrison, 1952; Oliver, 1952). In this case, the estimated
value of the signal, as calculated byEq. (1), is subtracted from the true
value, xðiÞ, to determine the residual error, eðiÞ, for transmission:

eðiÞ ¼ xðiÞ �
Xn
j¼1

yjxði� jÞ ð2Þ

This residual has a smaller dynamic range than the original signal,
and hence, can be transmitted with greater accuracy using the same
bandwidth.

This form of predictive coding has been used to explain the
function of the retina (Laughlin, 1990, Srinivasan, Laughlin, &
Dubs, 1982). Specifically, it has been proposed that, at each loca-
tion on the retinal surface, the coefficients act to calculate a mov-
ing average of the intensity of incident light, and that this average
intensity is subtracted from the instantaneous value, xðiÞ.
Srinivasan et al. (1982) extended this concept to the spatial
domain, proposing that the predicted local intensity value is calcu-
lated from intensity values measured at nearby locations as well as
from those measured at preceding times. To obtain the optimal
estimate of the predicted intensity the coefficient values should
change with the luminance (Srinivasan et al., 1982). More gener-
ally, experimental evidence suggests that the retina dynamically
adjusts the coefficients (and hence the predicted intensity of the
input) to the statistics of the current visual environment
(Hosoya, Baccus, & Meister, 2005). By removing predictable infor-
mation from the transmitted signal the retina can be considered
to perform efficient coding or redundancy reduction (Attneave,
1954; Barlow, 1960, 2001; Laughlin, 1990, chap. 2; Olshausen &
Field, 1996). However, it should be noted that if only the residual
error is transmitted, then the receiver (in the case of the retina
the receiver is the lateral geniculate nucleus and subsequently
the cortex) cannot recover the components of the signal that have
been removed, so rather than redundancy being reduced, redun-
dant information is being removed.
4. Predictive coding in cortex: Rao and Ballard’s algorithm

Consider applying Eq. (1) to predict a sequence of samples.
Rather than writing a separate version of Eq. (1) for each sample,
the calculation can be written in matrix form:
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Or more compactly as:

x � r ¼ Vy

where bold lower-case letters correspond to vectors, and bold
upper-case letters are matrices.

If the values of the coefficients (y) are unknown, then (as men-
tioned in Section 2) appropriate values can be determined by find-
ing those coefficients that minimise the sum of the squared error
between the actual sample values (x) and the predicted values
(Vy). One way to achieve this least-squares minimisation is to per-
form gradient descent on the residual error, by initialising y to zero
and then recursively applying the following equations (Achler,
2014; Harpur, 1997):

e ¼ x� Vy ð3Þ

y y þ lWe ð4Þ

where W is the transpose of V (i.e., W ¼ VT ) and l is a parameter
controlling the rate of the gradient descent. These equations can
be implemented by a neural network, like that shown in Fig. 1a
(Harpur, 1997). This neural network consists of two populations
of neurons, configured like an autoencoder. One population of neu-
rons receives the signal values (x) and the predictions of these val-
ues (Vy) and combines these using Eq. (3) to output the residual
error. These will be called the error neurons. The other population
of neurons receives inputs from the error neurons and implements
Eq. (4) to update the estimates of the coefficients (y). These will be
called the prediction neurons. The two populations of neurons are
linked by weighted connections with values defined by the matrices
W and V.

Up to this point it has been assumed that the inputs are a
sequence of values from a time series and that the weight matrices
contain preceding samples taken from the time series, and hence,
that the neural network defined by Eqs. (3) and (4) implements
LPC exactly. However, the algorithm is not constrained to this
one application (indeed Harpur (1997) did not consider this case).
The inputs need not be a temporal sequences of samples, they
could be values recorded simultaneously from multiple sensors,
they could be pixel intensity values from an image, they could be
the firing rates of neurons, or anything else. Furthermore, the
weight matrices are not restricted to contain input values recorded
in the recent past, instead they are free parameters that define a
generative model. One way to define the parameters of the gener-
ative model (i.e., the weights of the neural network) is through
learning. Harpur and Prager (1996) proposed a learning rule that
adjusts the weights so as to reduce the residual error. Hence, learn-
ing (finding the parameters of the generative model, V) and infer-
ence (calculating the coefficients, y) can both be implemented by
minimising, on different time-scales, the same objective function
of reconstruction error minimisation.

The prediction of the input to the network, Vy, is calculated as a
linear combination of columns of V weighted by the coefficients y.
Each column of V (each row of W) can be considered to be an ‘‘ele-
mentary component” or ‘‘basis vector”. The inference process,
implemented by Eqs. (3) and (4), finds appropriate values for the
coefficients so that the basis vectors are added together in the cor-
rect proportions to reconstruct the input with minimal residual
error. The basis vectors encode the possible causes of sensory
inputs that are known to the neural network (i.e., they constitute
the network’s internal model of the external environment). The
coefficients thus represent the estimates of the causes of the cur-
rent sensory-driven input.

The Rao and Ballard (1999) predictive coding model of cortical
function proposes that the cortex is built from a hierarchy of net-
works like that described above (see Fig. 1b). In common with
the predictive coding model of the retina (see Section 3), it is pro-
posed that the output of each cortical region is the residual error
(observe that Eq. (3) is equivalent to Eq. (2) for multiple samples).
The feedforward connections between cortical regions are thus
believed to transmit residual errors while the cortical feedback
connections convey the predicted causes. Hence, this version of
predictive coding, in common with several previous theories (e.g.,
Barlow, 1994, chap. 1; Mumford, 1992), hypothesises that cortical
feedback connections act to suppress information which is pre-
dicted by higher-level cortical regions. Rao and Ballard (1999) also
included additional connections within the hierarchical architec-
ture between error neurons and the preceding population of pre-
diction neurons. These connections allow the predictions
generated at one level of the hierarchy to influence (via the inter-
vening error neurons) the predictions generated at the preceding
stage of the hierarchy so that the predictions at different levels will
be mutually consistent. If superscripts of the form Si indicate pro-
cessing stage i of the hierarchical neural network, then (the linear
version of) the Rao and Ballard (1999) algorithm is as follows:

ySi  mySi þ lWSieSi�1 � geSi

where

eSi�1 ¼ ySi�1 � VSiySi and ðequivalentlyÞ eSi ¼ ySi � VSiþ1ySiþ1

and m; l, and g are non-negative parameters.

5. Predictive coding in cortex: PC/BC-DIM

PC/BC-DIM is a version of Predictive Coding (PC; Rao & Ballard,
1999) reformulated to make it compatible with Biased Competi-
tion (BC) theories of cortical function (Spratling, 2008a, 2008b),
and that is implemented using Divisive Input Modulation (DIM;
Spratling, De Meyer, & Kompass, 2009) as the method for updating
error and prediction neuron activations. DIM calculates the resid-
ual errors using division rather than subtraction. As a result the
equations for calculating the prediction coefficients and the resid-
ual errors underlying the Rao and Ballard (1999) algorithm (i.e.,
Eqs. (3)), are replaced with the following equations:

e ¼ x ø �2 þ Vyð Þ ð5Þ

y �1 þ yð Þ �We ð6Þ
where ø and � indicate element-wise division and multiplication
respectively, and �1 and �2 are non-negative parameters that,
respectively, prevent prediction neurons becoming permanently
non-responsive and prevent division-by-zero errors.

The motivations behind these changes are as follows. Firstly, the
Rao and Ballard (1999) algorithm requires neurons to be able to
produce both positive and negative firing rates, which is
biologically-implausible. While it is possible to re-implement the
algorithm using only non-negative firing rates (Ballard & Jehee,
2012), this results in a model that is extremely complex and
requires a degree of coordination between the actions of different
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Fig. 1. (a) A neural network implementation of predictive coding. Neurons are shown as large white circles and the connections between neurons are shown as lines with
arrowheads for excitatory connections and circular heads for inhibitory connections. (b) The hierarchical predictive coding architecture of Rao and Ballard (1999), which
consists of a stack of networks like that shown in (a). Populations of neurons are shown as rectangles. The assignment of neural populations to cortical regions proposed by
Rao and Ballard (1999) is indicated on the left, while that proposed by Spratling (2008a, 2008b) is indicated on the right. There is a one-to-one correspondence between
neurons in a prediction population and those in the subsequent error neuron population (e.g., between yS1 and eS1) and these neurons are connected in a one-to-one manner
(indicated by the vertical connections in the diagram). In the PC/BC-DIM algorithm, the one-to-one inhibitory feedback connections are replaced by many-to-many excitatory
connections (see Spratling, 2008a, 2008b, for details).
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connections that is unlikely to be feasible in a biological system. In
contrast, the neural activations in the PC/BC-DIM algorithm are
inherently bounded to be non-negative. Secondly, as discussed in
Section 4, Eqs. (3) and (4) perform gradient descent to find the
coefficient values (i.e., the estimates of the causes of the sensory
input) that minimise the sum squared residual error. However, this
method is slow if l is too small and unstable if l is too large
(Harpur, 1997). In contrast, PC/BC-DIM is closely related to the par-
ticular method of performing non-negative matrix factorisation
(NMF) proposed by Lee and Seung (2001) (Solbakken & Junge,
2011; Spratling et al., 2009). This form of NMF minimises the Kull-
back–Leibler (KL) divergence between the input (x) and the recon-
struction of the input (Vy). As a result PC/BC-DIM is stable and
converges quickly to an estimate of the causes (y). The stability
and speed of the PC/BC-DIM algorithm has enabled the develop-
ment of very large scale simulations containing 10 s of millions
of neurons and 100 s of billions1 of connections (Spratling, 2013,
2014b). PC/BC-DIM typically finds a sparse set of causes, meaning
that the input is reconstructed from a small number of basis func-
tions. This is important for finding a unique solution when the set
of basis functions is overcomplete (Olshausen & Field, 1997).2

Thirdly, the Rao and Ballard (1999) algorithm proposes that
inter-regional feedback connections carry predictions that need to
be subtracted from the input signal in order to calculate the residual.
Cortical feedback connections are the axon projections of a sub-
population of pyramidal cells which are excitatory. While a small
proportion (10–20%) of these connections terminate on inhibitory
neurons (Gonchar & Burkhalter, 2003), the primary targets are other
pyramidal cells (Anderson & Martin, 2006; Budd, 1998; Cauller,
1995; Salin & Bullier, 1995), where cortical feedback has an excita-
tory (modulatory) effect on response (Hupé et al., 1998; Johnson &
1 Where 1 billion equals 109.
2 A version of the Rao and Ballard (1999) algorithm that finds a sparse set of

coefficients has also been proposed (Jehee & Ballard, 2009; Jehee, Rothkopf, Beck, &
Ballard, 2006).
Burkhalter, 1997; Larkum, Senn, & Lüscher, 2004; Phillips, 2017;
Shao & Burkhalter, 1996) at least in the short term (Shlosberg,
Amitai, & Azouz, 2006). PC/BC-DIM proposes a different grouping
of neural populations (see Fig. 1b) that requires both inter-cortical
feedforward and feedback connections to be excitatory. Further-
more, if inter-cortical feedforward connections convey errors, as pro-
posed by Rao and Ballard (1999), then it would be expected that a
sub-population of cortical pyramidal cells, whose axon projections
form the feedforward connections, should have response properties
(as measured with single-cell electro-physiology) consistent with
calculating error. While Rao and Ballard (1999) showed that error
neuron responses could explain the phenomena of end-stopping
observed in primary visual cortex pyramidal cells, Spratling (2010)
showed that prediction neuron behaviour could explain end-
stopping and a very wide range of other response properties
observed in primary visual cortex pyramidal cells. These additional
pyramidal cell response properties were further shown to be incon-
sistent with error neurons (Spratling, 2010, supplementary
material). A final difference between PC/BC-DIM and the Rao and
Ballard (1999) algorithm is that in PC/BC-DIM the requirement that
W ¼ VT is relaxed, although typically, the two sets of weights are
still equal up to a scaling factor.
6. Predictive coding in cortex: free energy

The free energy principle is outwardly very similar to the Rao and
Ballard (1999) algorithm, in that it proposes a hierarchy of layers
that alternate between error detection and prediction and in which
the prediction errors are conveyed by inter-cortical feedforward
connections (Friston, 2009, 2010). However, unlike the Rao and
Ballard (1999) algorithm, or any of the other algorithms described
above, the variables in the free energy model do not represent the
values of signals, instead they represent the statistics of these sig-
nals. Rather than represent individual samples (like the xðiÞ values
in Eq. (1)), the free energy model reconstructs the probability
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distribution fromwhich these samples are believed to come: it esti-
mates a posterior probability density.

A particular, simplified, version of the free energy minimisation
scheme has been described as ‘‘predictive coding” (Friston, 2009,
2010; Friston & Kiebel, 2009). This predictive coding algorithm
assumes that the sensory data can be described by a Gaussian dis-
tribution (the ‘‘Laplace assumption”), and hence, that the posterior
density is Gaussian (Friston, 2009, 2010; Friston & Kiebel, 2009).
The parameterized generative model, which can have a deep hier-
archical structure, acts to estimate the mean and variance of this
Gaussian. The interaction between error and prediction layers in
the model implements an inference process that serves to update
the estimate the mean and variance, and this version of predictive
coding is therefore equivalent to Kalman filtering (Bastos et al.,
2012; Kiebel & Friston, 2011; Perrinet, Adams, & Friston, 2014).
By precluding multimodal beliefs this model is consistent with
our inability to perceive two things in the same place at the same
time, as demonstrated by binocular rivalry and bistable perception
(Hohwy, Roepstorff, & Friston, 2008).

7. Discussion

All the versions of predictive coding that have been reviewed
above share the common computational goal of fitting a model
to data. However, there are considerable differences in the specific
mechanisms that they apply in order to achieve this goal. The form
of the model varies between algorithms. It is a Gaussian in the free
energy version of predictive coding, it is a sequence of previous
samples from a time series in LPC, and it is a set of basis functions
in the PC/BC-DIM and the Rao and Ballard (1999) algorithms. The
criteria used to fit the model to the data also varies between algo-
rithms. Fitting is achieved by minimising the sum of squared error
in LPC and the Rao and Ballard (1999) algorithm, by minimising
free energy in the method proposed by Friston (2010, 2009), and
by minimising the KL divergence in PC/BC-DIM. Another difference
is that some predictive coding algorithms are concerned with find-
ing the coefficients which encode the underlying causes of the sen-
sory data (see Sections 2 and 5), while others are concerned with
finding these coefficients only for the purpose of calculating, and
transmitting, the residual error (see Sections 3, 4, and 6). Hence,
in some algorithms (i.e., the predictive coding model of the retina
and the Rao & Ballard (1999) model of cortex) redundant informa-
tion is removed from the signal that is transmitted for further pro-
cessing, while in others (i.e., the PC/BC-DIM algorithm) it is the
estimates of the causes of the input that are transmitted for further
processing. The original LPC algorithm was used in some applica-
tions to do the former, and in other applications to do the latter.

Moving down to the implementation level of analysis (Marr,
1982), the algorithms also vary in how they propose that the pre-
diction coefficients (the expected causes of the sensory data) are
represented in biological neural circuits. The coefficients are
believed to correspond to the synaptic weights of the lateral con-
nections in the retina (Srinivasan et al., 1982), to the firing rates
of feedback-projecting cortical pyramidal cells (Bastos et al.,
2012; Friston, 2009; Kiebel & Friston, 2011), or the responses of
feedforward-projecting pyramidal cells (Spratling, 2008b, 2012).
Finally, the role envisaged for learning differs between the algo-
rithms. Learning plays no role in LPC because the parameters of
the generative model are defined to be previous samples taken
from the time series. In contrast, learning, through minimising
variational free energy, is used as a method of finding the param-
eters of the generative model in the free energy version of predic-
tive coding. Similarly, learning is proposed as a way of defining the
basis functions that form the generative model in the PC/BC-DIM
(Spratling, 2012) and the Rao and Ballard (1999) algorithms. In
both these algorithms, these parameters of the generative model
are conceived as being stored in synaptic weights. This is in oppo-
sition to the predictive coding model of the retina (Srinivasan et al.,
1982) in which synaptic weights are believed to define the predic-
tion coefficients, not the parameters of the generative model.
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