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Abstract: This paper addresses the cognitive basis of anticipatory 
action. It does so by taking up what we call the acuity problem: the 
problem of explaining how skilled action seems, on the one hand, to 
be executed and unfold automatically and reflexively and, on the other 
hand, to involve anticipation of context-sensitive and constantly 
changing conditions in performance. The acuity problem invites two 
contemporary forms of reply, which we label non-inferential 
enactivism and Helmholtzian inference, respectively. We advance a 
third avenue for replying to the acuity problem, which takes active 
inference under the free energy principle as its theoretical starting 
point. This third way is, we contend, preferable to the other two 
across a number of important theoretical dimensions. 
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1. Introduction 

There is a philosophical puzzle at the heart of our understanding of 
skilled action. To see this, consider a baseball outfielder running to 
intercept a fly ball. On the one hand, catching a fly ball is a skilled 
action that seems almost automatic. Well-honed skilful action seems 
to be executed and unfold automatically and reflexively, ad certainly 
without the involvement of deliberation or reflection.2 Indeed, 
deliberation on the part of the outfielder would seemingly be too slow, 
attention-hogging, and effortful to properly account for this kind of 
on-the-fly, super-fast activity. In a slogan: skilful performers do not 
consider their actions, they just do them. On the other hand, skilled 
activity cannot simply be automatic and unreflective. Skilled actors 
are often characterized by virtue of their demonstrating such astound-
ing control over their motor acuity, and by their having honed a 
capacity to anticipate and adapt to unfolding events on the fly and in 
ways indicative of their being intricately attuned to present context. 
Outfielders in baseball, for example, intelligently adjust strategy, often 
rapidly, and often under highly-pressuring circumstances, in the heat 
of the moment. We will refer to this puzzle as the acuity problem 
henceforth. 

There are several approaches to understanding the cognitive basis of 
anticipatory action. A classical approach casts the skilled performer as 
transducing information from different sensory receptors into rich and 
reconstructive models of the real-world scene, and then using those 
models to guide their actions. Said approach rests on what Brooks 
(1999) called the ‘sense-model-plan-act’ view of cognitive archi-
tecture. The problems with this approach are familiar. It treats the 
brain as passively ‘waiting’ to be activated by perception. Yet given 
the presence of sensory and motor processing delays, anticipating 
sensory input ahead of time turns out to be central in enabling swift 
and acute performance (Hayhoe et al., 2012). The sense-model-plan-
act framework, functioning to reconstruct the world using stored 
knowledge, has therefore been deemed unfit to account for anticipa-
tory activity prior to impressions by the world on the sensorium. 
Indeed, such views have been repeatedly exposed as failing to 
acknowledge the dynamically-updated, on-the-fly character of the 

                                                           
2  David Papineau captures this sentiment nicely in his discussion of cricket batting, when 

he claims that there is ‘no time to think when the ball is released. You can only react’ 
(2013, p. 177; see Fridland, 2017, and Montero, 2016, for criticism of this view). 
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cognition involved in skilful action (Hurley, 2001; Hutto and Myin, 
2017; Sutton et al., 2011). 

It is becoming increasingly clear that to make headway on the acuity 
problem the once-standard picture needs to be flipped on its head. 
Instead of casting the brain as idly ‘waiting’ on sensory input in order 
to compute a plan of action for catching a fly ball, say, the brain is 
now increasingly viewed as serving up anticipations prior to sensory 
input that approximate the unfolding of worldly and bodily states 
(Bar, 2007). The cognitive activity involved in skilful action, then, is 
here depicted as anticipatory in such a way as should not be 
characterized as entirely an automatic, reflexive, and reactive 
response. And yet we should also resist its being cast as involving any 
labour-intensive, time-consuming processes of decision making con-
ditioned on abductive reasoning. 

In this paper we consider two contemporary and competing ways of 
understanding the cognitive basis of anticipatory action. 

The first we call non-inferential enactivism (Gallagher, 2017; Hutto 
and Myin, 2017). This brand of enactivism aims to explain anticipa-
tion without any appeal to inferential processes.3 It not only resists the 
idea of skilled action involving slow and time-consuming inferences 
(such as those associated with inferring a proposition Q from premises 
P and P → Q), but goes further in stating that inferential processes are 
not part of the explanatory basis of anticipation. On this account, 
anticipation is treated as a property of the entire cognitive system, 
which is taken to be a distributed system comprising elements of 
brain, body, and world. For enactivists of this stripe, anticipating the 
speed and trajectory of the fly ball results from internal (neural, 
bodily) dynamics becoming increasingly attuned to the external 
dynamics of the local environment, where these attunements are taken 
to be non-inferential in character. 

The second we dub Helmholtzian anticipation (Hohwy, 2013; 
Kiefer, 2017), as it conceives of anticipation in terms of Helmholtz’s 
notion of unconscious perceptual inference. This view is one way of 
thinking about inference in the now very influential predictive pro-
cessing scheme in theoretical neuroscience and philosophy. According 
to Helmholtzian anticipation, running and catching a fly ball is 

                                                           
3  We make use of the term ‘non-inferential enactivism’, as opposed to merely enactivism 

or radical enactivism, to capture any enactive view that eschews talk of inferential 
processes at the explanatory basis of cognition. 
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possible because brains like ours make probabilistic inferences about 
the causes of sensory input, enabling a player to latch onto salient 
environmental properties, as indicated by a forward flow of prediction 
error,4 whilst continuously tuning his or her model of the world in 
light of new incoming evidence from the sensory periphery.5 

We propose to go between the horns of these two approaches. We 
will argue that anticipation is a feature of sensorimotor dynamics 
coupling agent to environment. We find a reason in support of this 
conclusion in the active inference framework, from Section 3 and 
onwards. We agree with non-inferential enactivism that anticipation is 
a property of agent–environment couplings. Yet we disagree that 
anticipation is non-inferential. We shall develop a view of anticipation 
as inferential by addressing the acuity problem through the lens of 
what has been termed Bayesian enactivism (cf. Allen, 2018), which 
we associate with the active inference framework under the free 
energy optimization principle (Friston, 2018; Kirchhoff et al., 2018; 
Ramstead, Kirchhoff and Friston, 2019). This allows us to construct a 
compromise between non-inferential enactivism and Helmholtzian 
anticipation. Active inference differs from Helmholtzian anticipation 
in the following four ways: 

1. Helmholtzian anticipation falls under the predictive coding 
scheme (Rao and Ballard, 1999) and the Bayesian brain 
hypothesis (Knill and Pouget, 2004). Active inference is, how-
ever, not simply a view of the nervous system as reducing pre-
diction error through an action-based form of perceptual 
inference. It treats prediction error minimization as realized in the 
active sampling of the environment by an embodied agent 
(Friston, 2018). 

2. Helmholtzian anticipation implies that anticipation is a property 
of the internal states of an agent such that the agent encodes a 
model used to anticipate future events in the world. Active 
inference casts both perception and action as involved in 
prediction error minimization, making the entire inferential 

                                                           
4  Prediction error is a quantity that refers to a mismatch between a prior expectation 

about the causes of sensory input and the actual input. 
5  Model here refers to a generative model, which simplistically speaking is a model that 

generates predictions about the causes of sensory input and which can be updated by 
taking into account new evidence (i.e. by working to cancel out any backward flowing 
error signals). 
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processes between action and perception integrated and 
embodied, with inference spanning brain and body, on the one 
hand, and action dynamics, on the other. Thus, inference on this 
model is not ‘purely internal’ (Pezzulo, Kemere and Van Der 
Meer, 2017; see also Allen et al., 2019; Friston et al., 2012). 

3. Helmholtzian anticipation takes anticipation to be representa-
tional, assuming that it is not possible to forecast events in the 
absence of states representing such events. We will argue that 
under active inference there is no need necessarily to posit the 
presence of representations to provide an account of anticipation 
to address the acuity problem. 

4. Helmholtzian anticipation typically casts internal (brain) states as 
informationally secluded from external (worldly) states. Active 
inference, however, implies an informational coupling between 
internal and external states given sensory and active states 
(Kirchhoff and Kiverstein, 2019b; Ramstead, Kirchhoff and 
Friston, 2019). Given restrictions of length, we omit further 
discussion of this specific point. 

The structure of this paper is as follows. In Section 2 we review key 
tenets of non-inferential enactivism and Helmholtzian anticipation, 
and explicate how they differ in explaining the cognitive basis of 
anticipatory action. In Section 3 we suggest that a plausible view of 
anticipatory action can be located in between non-inferential 
enactivism and Helmholtzian anticipation. We shall argue that the 
mechanism enabling anticipation is a species of inference, which we 
will cast in terms of active inference. We will highlight the plausibility 
of casting anticipation in terms of active inference by demonstrating it 
to be significantly distinct from Helmholtzian anticipation (points 1–4 
above), while, at the same time, addressing points of overlap and con-
trast with non-inferential enactivism. In Section 4 we turn to consider 
two objections to our inferential characterization of anticipatory 
action. We will argue that both objections rest on misconceptions 
about the properties of active inference. We end this paper by showing 
that understanding anticipatory action as inferential — qua the active 
inference framework — can help in developing a novel set of first 
steps towards addressing the acuity problem. Such a characterization, 
we submit, allows us to explain the intelligent aspects of the anticipa-
tion involved in skilful action in inferential terms. That said, it does 
not require characterizing anticipation as a form or variation of Helm-
holtzian inference. In this way, we are concerned with the following 
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research question: in what sense might active inference, by way of 
walking a sensible line between inferentialism and non-inferentialism, 
provide a framework within which to approach the acuity problem? 

2. The Outfielder Problem: 
Anticipation versus Inference 

Our aim in this section is to examine how non-inferential enactivism 
and Helmholtzian anticipation purport to explain the cognitive basis of 
anticipatory action. We will do this by highlighting salient differences 
between them in how they explain the cognition involved in anticipa-
tion, before showing how these differences result in their offering 
competing solutions to the outfielder problem (the problem of explain-
ing how expert baseball outfielders are so gifted at anticipating and 
thereby intercepting fly balls). 

2.1. Helmholtzian anticipation 

One solution to the acuity problem casts the cognitive basis of antici-
patory action as a form of unconscious inference, where inference is 
understood as a species of inference to the best explanation realized 
by neuronal activity. This view is typically defended under the 
auspices of the predictive processing theory of mind (PP). PP states 
that brains must deal with uncertainty about the (hidden) causes of 
sensory observations, and claims that the best way for the brain to 
handle uncertainty is by approximating a form of Bayesian inference. 
This is not an inference in the conscious sense of the word; rather, it is 
unconscious and probabilistic, arguably driven by conformity with 
Bayesian norms.6 

Proponents of PP take one of the main explanatory advantages of 
their theory to be that it explains how the brain solves an inverse prob-
lem (Hohwy and Michael, 2017). The key assumption is that the brain 
is taken to be epistemically isolated from the world, and thereby 
‘needs to represent the world so we can act meaningfully on it, that is, 
it has to figure out what in the world causes the sensory signal it 

                                                           
6  There is ongoing and increasingly intricate debate as to the sense in which a cognitive 

system would need to be constrained by or comply with Bayesian norms in order to be 
characterized as non-trivially performing a Bayesian operation (see e.g. Orlandi, 2016; 
Colombo, Elkin and Hartmann, 2018). We mention this here in order to set it aside — a 
task for a different paper. 
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receives’ (Hohwy, 2012, p. 2; see also Clark, 2013). The inverse prob-
lem demands explanation as to how the brain infers the (hidden) 
causes (or latent variables) of the sensory input (or data) it receives. 
The difficulty is that impinging input is assumed to be ambiguous, 
uncertain, and noisy. Hence, the sensory stream underdetermines its 
hidden (true) causes. PP provides an answer to the inverse problem by 
claiming that the brain uses hierarchical generative models in approxi-
mating a probabilistic form of causal inference that minimizes pre-
diction errors between actual and expected sensory signals. In this 
fashion, generative models function so as to probabilistically map 
hidden causes to sensory data under prior expectations. 

The idea of unconscious inference underwriting perceiving and 
cognizing finds a precursor in the work of Hermann von Helmholtz 
(1867/1962). He compared perceptual inference to syllogisms, the 
premises of which have to be garnered and established by means of 
induction. PP, however, does not characterize the brain as engaged in 
inference of a traditional form, whereupon there is a transition 
between premises and a conclusion. Instead, the updating of neurally-
instantiated predictive models is taken to be inferential in the sense of 
approximate Bayesian inference. Thus, what we perceive is the 
expression of a form of abductive inference under prior (Bayesian) 
beliefs. This means that inference is a matter of sampling evidence for 
prior expectations (i.e. the brain’s model). 

Cognizing (including perception) on this view is just a matter of 
reducing prediction error, which can be cast as garnering evidence for 
one’s prior beliefs. According to models of PP predicated on Helm-
holtzian inference, this can be achieved in one of two ways: (a) via 
perceptual inference — i.e. updating one’s model to fit with incoming 
sensory observations; or (b) via active inference — i.e. to act so as to 
make the world fit with one’s expectations. By adopting the latter 
strategy, Hohwy thinks that the brain ‘vicariously enslaves an external 
body plant to fulfill its predictions of sensory input, given its internal 
model of the world and itself’ (2016, p. 276). By making use of the 
former, the brain is conceived of as testing hypotheses in a manner 
akin to a scientist. As Burr and Jones put it: ‘Just as scientists test 
hypotheses by conducting experiments using well-calibrated lab 
equipment, so too perceivers must test their predictions by using their 
bodies to interact with their environment’ (2016, p. 596; see 
Bruineberg, Kiverstein and Rietveld, 2018, for discussion). 
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2.2. Non-inferential enactivism 

Enactivists find inferential views of mind, including Helmholtzian PP, 
to be problematic. They think that casting the brain as engaged in a 
form of unconscious inference is explanatorily otiose (at best), if not 
outright theoretically distorting (at worst). Enactivists emphasize the 
role of the acting body in generating cognition. The fundamental 
enactivist credo is that cognition is realized not only by neural goings-
on but in a dynamic network comprising brain, body, and world 
(Varela, Thompson and Rosch, 1991; Thompson, 2007; Colombetti, 
2014; Di Paolo, Buhrmann and Barandiaran, 2017; Hutto and Myin, 
2013; 2017). Given that the brain is part of a system including parts of 
the local microenvironment, enactivists take their view to undermine 
the rationale for claiming that the brain need execute complex 
inferences to ‘get at the world’. Hence, there is no reason to think that 
brains must do work inferring a model of the world so that the 
organism can then act upon the model in order to act in the world 
(Hutto, 2018). 

Gallagher (2017) has provided a recent defence for what we here 
call non-inferential enactivism. For Gallagher, construing the brain as 
employing inference in order to establish epistemic access to the 
world ignores the fact that perception is highly organism-relative, and 
how an organism’s perception is determined by its anticipation of 
reward — its ‘ulterior motives’ (ibid., p. 116). He argues that positing 
complex, neurally-realized inference to explain how the brain over-
comes such isolation threatens to paint perception as a straight-
forwardly intellectual process, the role of which is ‘identifying or 
recognizing objects or guiding bodily movement in the world’ (ibid.; 
see also Varela, Thompson and Rosch, 1991, p. 136). Non-inferential 
enactivism recognizes that the organism does not receive ‘sensory 
data first, followed by inferential processes that conclude reward 
possibility (an additional neural or cognitive function added to sensory 
activation)’ (Gallagher, 2017, p. 116). It instead construes perception 
as ‘an intrinsically reward-oriented response or attunement to stimuli 
due to prior experiences and plastic changes — there’s no room for or 
need for inferences in this respect. Perception is already attuned to 
reward possibilities’ (ibid., emphasis added). 

Non-inferential enactivism — following research principles estab-
lished by ecological psychology — also takes the notion of the brain 
receiving only impoverished sensory data from the world (and thereby 
having to ‘solve’ its inverse problem by engaging in complex 
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inference) to be undermined by the exploratory nature of organisms, 
and how they are almost always moving around and investigating their 
environmental niche. Gallagher advances exactly this view when he 
writes: 

The poverty of stimulus problem… is addressed by the possibility of 
bodily movement… Moving around the environment provides more 
information and reduces the ambiguity. The point in such action is that 
the environment specifies itself (the environment is what it is) — it is 
not impoverished; the poverty only arises if we think that the brain has 
no access to the rich structure of the environment. It disappears if we 
acknowledge that the organism has access — is attuned or coupled — 
to the environment over time and is not only capable of movement, but 
is almost always moving. (ibid., p. 119) 

Thus, non-inferential enactivists reject the idea that the brain receives 
for the most part noisy and ambiguous input. Due to the organism’s 
capacity to investigate and probe its environment (changing it around 
its own requirements along the way) while navigating it, the brain will 
not, for the most part, receive only highly underdetermined sensory 
signals. As Froese and Ikegami (2013) put it, the brain should be 
characterized ‘not as a black-box prison of the mind, but rather as a 
self-organized perspectival reference point that serves to enact a set of 
meaningful relations with its milieu’ (p. 33; see also Dreyfus, 2002; 
Orlandi, 2014). Qua non-inferential enactivism, then, recognizing the 
propensity of the organism to be constantly investigating and inter-
acting with its environment undercuts the motivation for arguing that 
brains perform unconscious inference. 

2.3. The outfielder problem: Helmholtzian and non-inferential 
solutions 

Helmholtzian anticipation and non-inferential enactivism offer com-
peting solutions to the outfielder problem. The outfielder problem can 
be summarized, briefly, as follows. Professional baseball outfielders 
demonstrate exceptional skill when pacing their run so as to position 
themselves suitably for intercepting fly balls. Empirical data, how-
ever, indicate that stationary outfielders are not very adept at pre-
dicting the landing locations of fly balls (Shaffer and McBeath, 2005). 
Explanation is required as to how outfielders are — while running to 
make a catch — able to anticipate the trajectory the fly ball will take 
and dictate their locomotion accordingly. A solution to the outfielder 
problem, then, would need to answer the following question: how are 
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running outfielders able to anticipate where and when to end up so as 
to successfully intercept fly balls? 

The non-inferential enactivist solution to the fly ball problem can be 
viewed as a response to more traditional accounts, on which it is con-
jectured that expert outfielders, in their pursuance of intercepting a fly 
ball, construct and utilize an internal predictive model for the purposes 
of inferring its landing location, and guide their run accordingly. This 
kind of traditional solution to the outfielder problem depends on the 
outfielder’s constructing and utilizing an internal model of the fly ball 
trajectory, maintaining and updating it even while running to make a 
catch. Said model would have to be sensitive to an extremely intricate 
and interwoven manifold of factors. Factors such as how wind 
direction is likely to affect the ball’s flight path, and other complex 
(often random) variables.7 

A non-inferential enactivist solution to the outfielder problem 
differs from this kind of traditional, inferential one primarily in that it 
jettisons any appeal to the notion of the outfielder exploiting a detailed 
internal reconstruction or representation of the fly ball trajectory 
(Anderson, 2014; Gallagher, 2017). Instead, non-inferential enactivists 
take the outfielder to be executing what has come to be known as the 
Chapman strategy. The Chapman strategy, named after noted physicist 

                                                           
7  One way to cast this distinction between inferential and non-inferential accounts of the 

outfielder problem, specifically, or action, more generally, is in terms of a distinction 
between model-based and model-free strategies to choice and decision making. Crudely 
put, model-based strategies are ones where action results from deployment of rich and 
context-sensitive encoded knowledge. Model-free strategies, on the other hand, turn on 
learning about the world via trial and error, without invoking a model of the world (see 
e.g. Stepp and Turvey, 2009). A simplified picture of the distinction between these 
strategies would seem to map onto familiar, yet almost certainly too simplistic, 
divisions between habit and reason, or automaticity and intelligence (cf. Fridland, 
2017). This overly simplistic division between model-based and model-free strategies 
assumes rather than addresses the features giving rise to the acuity problem. Looking 
ahead, the active inference framework provides a unified theoretical basis for ‘delicately 
combining [these] two modes [i.e. strategies] within an overarching economy, adaptive 
agents may identify the appropriate contexts in which to deploy the model-free 
(“habitual”) schemes. “Model-based” and “model-free” modes of valuation and 
response, if this is correct, simply name extremes along a single continuum and may 
appear in many mixtures and combinations determined by the task at hand’ (Clark, 
2016, p. 255). Active inference also implies that there are no clear-cut boundaries 
between these two strategies, as most agents are capable of both, often in a combined 
form (ibid.). There is an ongoing discussion in the literature as to whether the model-
based vs. model-free distinction maps onto the representation vs. non-representation 
distinction in forms of cognition under active inference. Addressing this issue will be a 
task for another occasion. 
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Seville Chapman, says that expert outfielders run under the fly ball — 
increasing and decreasing acceleration and changing running direction 
where appropriate — in such a way as to nullify or abrogate the per-
ceived vertical acceleration of the fly ball (Chapman, 1968; see also 
Fink, Foo and Warren, 2009; Dienes and McLeod, 1993; Postma et 
al., 2017; see also Beer, 2000; Anderson, 2014, pp. 184–5). Her doing 
so will, so contended Chapman, reliably result in the skilful outfielder 
being well-positioned to intercept the fly ball. 

Characterizing the outfielder as performing the Chapman strategy, 
then, dispenses with any explanatory need to appeal to the notion of 
the outfielder employing an internal predictive model for representing 
the arc and trajectory or inferring the landing location of the fly ball. 
As Fink, Foo and Warren (2009) put it, ‘fielders are led to the right 
place at the right time by coupling their movements to visual informa-
tion in a continuous “online” manner’ (p. 1).8 

In this way, a Chapman solution to the outfielder problem 
apparently does away with the need to characterize the outfielder as 
engaged in any rigorous, labour-intensive inference, or detailed, 
cognitively-exorbitant computations of the fly ball’s trajectory 
(Shapiro and Spaulding, 2018; Anderson, 2014; Clark, 1997). As 
Gallagher puts it, there is, on this non-traditional account of outfielder 
catching, no necessity for the outfielder ‘to compute in-the-head 
mental representations — of the ball, its speed, its trajectory, and so 
on’ (2017, p. 14). The non-inferential enactivist takes this to be an 
example of anticipatory action that does not require inference. The 
outfielder ‘is operating within the situation itself rather than on a 
model of the situation inferred by the brain’ (ibid., p. 115). 

Although more traditional, inferential solutions to the outfielder 
problem are increasingly unpopular among contemporary sports 
psychologists, one might intuitively take such solutions to be con-
sistent if not heavily consonant with Helmholtzian anticipation. After 
all, Helmholtzian anticipation — in the contemporary PP guise we 
have been considering — posits hierarchical probabilistic models that 
unfold across multiple spatial and temporal scales. The advantage of 
the brain employing these models is that they enable us, as Clark puts 
it, ‘to lock us onto worldly causes that are ever more recondite, 
capturing regularities visible only in patterns spread far in space and 

                                                           
8  What we refer to here as the Chapman strategy is often referred to in the current sports 

psychology literature as the optical acceleration cancellation strategy. 
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time’ (2015, p. 5). One might thereby take PP to suggest that the out-
fielder is endowed with the capacity to model or represent exactly the 
kinds of exceptionally complex and concealed variables that would 
need to be calculated in order to infer the likely landing location of the 
fly ball. Granted, such a solution might seem to introduce an 
unsettling divide between the outfielder and her environment, but, as 
we have already seen, some proponents of Helmholtzian anticipation 
seem all too happy to allow for ‘a schism between the prediction-
generating models of the brain and the modeled states of affairs in the 
world’ (Hohwy, 2016, p. 5). 

As is happens, though, the most prominent advocates of Helm-
holtzian anticipation — even those who allow for a clear divide 
between mind and world — anticipate the landing location of the fly 
ball by virtue of constructing and operationalizing an explicit, detailed 
predictive model of its flight trajectory. In fact, they take PP to 
support the idea that skilled outfielders will carry out the Chapman 
strategy: they argue that the outfielder could ‘simply treat as salient 
(highly weighted) all and only the prediction errors associated with 
optical acceleration of the ball’, and then run in order to nullify per-
ceived optical acceleration (Clark, 2017). The outfielder’s strategy of 
running to do away with perceived optical acceleration will then 
amount to their suppressing prediction error (prediction errors will be 
engendered whenever there is perceived optical acceleration). In this 
way, PP advocates deny that the outfielder will need to ‘rely on 
internal inference’, such that she is required ‘to compute the arc, 
acceleration, and distance of the ball much like one would do by 
following a physics textbook’ (both quotes from Hohwy, 2016, p. 
278). Yet what is not up for discussion is that inference in the form of 
approximate Bayesian inference is centrally involved. Even if the use 
and sampling of sensory input may seem to be less substantial in cases 
such as fly ball catching, ‘the kind of selective, sparse sampling in 
play here requires heavy, explicit modeling of external causes, 
including complexity reduction and updating of expected precisions’ 
(Hohwy, 2016, p. 279). For this reason, Hohwy claims that skilled 
action requires the brain to harness ‘a model that is rich, slow and 
reconstructive in the sense that it has significant causal depth, which it 
uses to take causal interactions at multiple spatiotemporal scales into 
account when generating predicted sensory flows’ (Hohwy, 2019, p. 
5). We will seek to disabuse any persuaded readers of this notion in 
Section 3.3. 

C
op

yr
ig

ht
 (

c)
 Im

pr
in

t A
ca

de
m

ic
 2

01
9

F
or

 p
er

so
na

l u
se

 o
nl

y 
--

 n
ot

 fo
r 

re
pr

od
uc

tio
n



 

50 I.  ROBERTSON  &  M.D.  KIRCHHOFF 

3. Anticipation as Active Inference 

Our aim in this section is to show that it is possible to go between the 
pillars of Helmholtzian anticipation and non-inferential enactivism. 
We argue the notion of unconscious inference posited by Helm-
holtzian anticipation is problematic, but, at the same time, claim that 
there is a significant sense in which anticipatory action is inferential. 
As mentioned in Section 1, we will do this by unpacking inference via 
the active inference framework (AIF) — also known as the free 
energy optimization principle (Friston et al., 2017). Approaching 
anticipation from this perspective offers a set of solutions to the acuity 
problem that neither Gallagher’s form of non-inferential enactivism 
nor Helmholtzian anticipation can properly address. 

3.1. The brain–body–environment system 

Gallagher (2017) contends that we should prefer the non-inferential 
enactivist solution to the outfielder problem to the Helmholtzian 
alternative. For him, the assumptions underlying Helmholtzian antici-
pation are clear yet problematic. As we saw above, one assumption is 
that the brain is hidden away inside the skull, having only access to its 
own predictions and error signals. Crucially, such a view implies ‘the 
brain has no direct access to the world’ (ibid., p. 109). Another 
assumption is that all cognition (including perception) is realized in 
the brain. In the parlance of philosophy of mind this implies realizer 
internalism, i.e. cognitive activity is taken to be realized exclusively 
by neural activity. The other explanation is enactivism. The latter 
explanation turns on different assumptions and is superior, Gallagher 
claims, because: 

The human brain not only evolved along with the human body, and 
works the way it does because of that; it’s also not isolated, but rather is 
dynamically coupled to the body that is dynamically coupled to an 
environment. The organism (the brain–body system) is operating within 
the situation itself rather than on a model of the situation inferred by the 
brain. This coupling of brain–body–environment is structured by the 
physical aspects of neuronal processes, bodily movements, affects, 
anatomy and function, and environmental regularities. (ibid., p. 115) 

Non-inferential enactivists find this latter explanation, or something 
close to it, a convincing reason to be sceptical about optimization 
schemes such as predictive processing, and the AIF (ibid.; Hutto and 
Myin, 2017). Gallagher sketches a view in which cognitive activity is 
not simply a result of brain functioning; rather, it arises out of a 
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complex and delicate interplay between resources spread across brain, 
body, and world (for further detail, see Sections 2.2 and 2.3 above). 
On the enactive account, there is no need to appeal to Bayesian 
inference and principles from machine learning to explain cognitive 
activity (we return to this point in the next subsection). 

We find Gallagher’s dismissal of the AIF too quick. The reason is 
that the AIF can accommodate the enactivist view of cognitive 
systems being extended in the sense of extended organism–environ-
ment systems coupled via perception and action (Kirchhoff, 2015; 
2017; 2018; Ramstead, Kirchhoff and Friston, 2019). 

Under active inference, organisms act to minimize variational free 
energy (Friston, 2010). The active element in active inference captures 
the idea that agents work to infer action policies to ensure that their 
actions align with their expectations about sensory input. In other 
words, in active inference agents not only act to reduce free energy 
(the sum of prediction error), they also act to minimize expected free 
energy, i.e. the free energy associated with the sensory state they will 
occupy conditioned on future action. In this sense, active inference 
captures the counterfactual character involved in recurrent cycles of 
perception and action; or, in sensorimotor contingencies (Mirza et al., 
2016; Seth, 2014). Technically, variational free energy is a mathe-
matical bound on ‘surprisal’ or ‘surprise’ (Friston et al., 2012; 
Kirchhoff et al., 2018). The time average of surprise is ‘entropy’, 
which in information theory is a measure of uncertainty. In the AIF, 
agents reduce surprise by minimizing variational free energy. 

The connection between variational free energy and surprise is 
important. Surprise amounts to a measure of how surprising it would 
be for a system to inhabit a specific state given the kind of organism it 
is. This suggests that surprise is conditioned on the phenotypic states 
of an organism. Crucially, as Hohwy observes, surprise ‘cannot be 
changed by perceptual inference because perceptual inference changes 
the hypotheses about the sensory input and not the sensory input 
itself’ (2013, p. 85). Active inference is a story about how it is possi-
ble to change the sensorium by changing the hidden or external causes 
of sensory input. It thus takes centre stage in accounting for how 
agents minimize surprise. Under active inference, organisms infer the 
policy (i.e. action routine) that is most likely to combat an increase in 
surprise. For example, if one is hungry, one policy to select for would 
be to open the kitchen fridge and get to cooking. Yet it will not suffice 
merely to be inferring over a distribution of action policies, if the aim 
is to satisfy one’s hunger, say. Embodied action is needed to align 
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prior beliefs about expected sensory observations with actual sensory 
observations. Crudely put, locking your front door is more likely to 
result in you being in states with low surprise, avoiding the highly 
surprising state of being confronted by an intruder (Chen et al., 2019). 
This active and embodied dimension of active inference is precisely 
that sensory outcomes at any given time depend on hidden states or 
causes, while such states, in turn, evolve in a way that depends on 
action (Mirza et al., 2016). The AIF is thus a story about reducing 
expected free energy via inferring action policies on the side of the 
generative model, on the one hand, and ensuring that expected sensory 
inputs are met via embodied action in the local environment, on the 
other hand. 

It is unsurprising that Gallagher takes something like predictive 
processing qua Helmholtzian inference as implying realizer internal-
ism, for cognition on this view is usually cast as the result of Bayesian 
belief updating performed over neuronal states, i.e. inferring posterior 
probabilities of predictions, P(H|E), conditioned of a likelihood func-
tion, P(E|H), and a prior probability, P(H). Helmholtzian anticipation 
is in this sense akin to other theories such as predictive coding and the 
Bayesian brain hypothesis. Yet this group of views has been argued to 
be incomplete theories of how we infer states of the environment. As 
Friston has put it: the ‘missing bit is the enactive compass of the 
[active inference framework]. In other words, the [AIF] is not just 
about making the best (Bayesian) sense of sensory impressions of 
what’s “out there”. It tries to understand how we sample the world and 
author our own sensations’ (Friston, 2018, p. 12). As we saw above, 
perceptual inference per se cannot address how an agent is able to 
minimize surprise. If this is correct, it follows that it is to active 
inference one must turn to find an account of surprise minimization. 
This also means that the AIF denies that it is possible to engage in 
model optimization exclusively via perceptual inference, i.e. by 
working only to optimize one’s posterior (Bayesian) beliefs via 
perception. 

In the AIF, authoring our own thinking and sensations is con-
ditioned on enacting a generative model (Ramstead, Badcock and 
Friston, 2018; Ramstead, Kirchhoff and Friston, 2019; Kirchhoff and 
Kiverstein, 2019a). Technically, a generative model is a statistical 
mapping from hidden (external) causes to input under a set of joint 
probability distributions of outcomes or consequences and their causes 
(Parr, Rees and Friston, 2018). If one approaches generative models 
from a long-term evolutionary perspective, the AIF treats the entire 
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embodied organism as a model of the organism-relevant dynamics of 
its niche (Linson et al., 2018, p. 2). Models are in this sense not 
distinct from the organism. Although both AIF and non-inferential 
enactivism place heavy explanatory emphasis on organismic action, 
Gallagher worries that schemes like the AIF give some special 
privilege to the brain in cognition and action. However, as Linson et 
al. (2018) further note: during later evolutionary stages when neural 
systems arises, ‘brains come to augment the more fundamental 
embodied agent with a neuronal-connectivity-based extension to the 
generative model that handles more complex organism/niche 
dynamics… the human (neural) instantiation of active inference… the 
brain should be understood as “taking a back seat” to the body, 
serving the body by facilitating more complex coordination’ (ibid., p. 
2). Brains, on this view, are nested within bodies, which are nested 
within environments. All factors play a role in action coordination 
(Clark, 2016; Kirchhoff and Kiverstein, 2019a,b). 

This brings out a further point of contrast between predictive pro-
cessing under Helmholtzian inference and the AIF. The former takes 
organisms to have a generative model — realized over neuronal 
dynamics. Crucially, under the AIF, the organism does not have a 
generative model as if there were two distinct things; namely, the 
organism and then a model inside its head. Instead an organism is 
understood as being a model of its milieu, where being a model is 
defined as follows: ‘We must here understand “model” in the most 
inclusive sense, as combining interpretive dispositions, morphology, 
and neural architecture, and as implying a highly tuned “fit” between 
the active, embodied organism and the embedded environment’ 
(Friston et al., 2012, p. 6). Kirchhoff and Kiverstein (2019b) extend 
on this, noting that this embodied and enactive characterization of the 
generative model means that an organism can be cast as a 
hierarchically nested probabilistic model conditioned on the sensory, 
physiological, and morphological states that are highly reliable given 
the kind of life it leads and the environment it inhabits (cf. Friston, 
2010; 2013).9 

‘Being a model’ in this sense is consistent with Conant and Ashby’s 
(1970) Good Regulator Theorem, which states that two systems are 

                                                           
9  We note that Gallagher (2017, p. 130) refers to the distinction between ‘having a model’ 

and ‘being a model’. Yet he does not elaborate on it. This seems to us to be a missed 
opportunity. 
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coupled to one another when one of the systems can remain in states 
of low surprise despite pressures on the system from the outside (i.e. 
its environment). This yields a clear connection to the free energy 
principle, which states that ‘adaptive systems minimize a limit on free 
energy (long-run average surprise) by inducing and refining a genera-
tive model of the causes of sensory signals’ (Seth, 2014, p. 8). This 
means that generative models can be cast as control systems in the 
precise sense of being ‘good regulators’ of the larger system (i.e. 
environment) within which the organism is embedded and with 
respect to which it must resist perturbations to maintain the surprisal 
of its states to a local minima. 

This speaks to skill and habit formation, elements crucial to 
successfully catching a fly ball. Recent work by Chen et al. (2019) 
addresses this by introducing a new aspect to the AIF; the ability to 
update and refine a policy space. First, prior probabilities of sensory 
input given action are specified over a distribution of possible action 
policies, where each specific action policy specifies a series of actions 
over time. This means that learning action policies takes the form of 
working to optimize or improve the distribution of policies. Second, 
highly specialized skills can be associated with the acquisition of 
habits, given policy pruning, i.e. learning that some rather than other 
policies are ultimately more preferable given the situation. Leveraging 
the idea of ‘being a model’ in the sense of the Good Regulator 
Theorem means that agents, given a history of learning, become good 
regulators of the kind of environments they tend to frequent. The 
optimal policy in the case of the running to catch a fly ball is to infer a 
sequence of actions enabling one to run under the ball — as predicted 
by the Chapman strategy. Agents prune away, over time, less than 
optimal policies, thus limiting the space of action possibilities.10 This 
kind of policy pruning can account for specialization (behaviours 
tightly adapted to a given environment or situation), generalization 
(behaviours requiring the agent to take a larger number of action 
policies into consideration), and what we might refer to as a kind of 
mixed-strategy between specialization and generalization. A mixed-
strategy is what one might expect is involved in enabling agents to 
successfully navigate the outfielder problem, for agents need to 
behave flexibly both to the speed of the ball, direction of wind, and 
other context-specific contingencies. Policy pruning, as Chen et al. go 

                                                           
10  This strikes us as a nice way to address the frame problem in cognitive science as well. 
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on the observe, ‘would explain the effects of practice — as we gain 
expertise in a given task, the time it takes to complete the task and the 
subjective experience of planning during the task diminishes, likely 
because we have learned enough about the structure of the task to 
discern and learn appropriate habits’ (2019, pp. 4–5). Optimizing the 
distribution over action policies thus speaks to how agents, over time, 
attune appropriately to the dynamics of their environments via the 
perception–action cycle, coupling the agent to the environment, and 
vice versa. 

3.2. Active inference isn’t just a ‘doing’ 

The claim that adaptive agents are generative models is consist with 
the enactive emphasis on extended, brain–body–world systems pre-
cisely because being a generative model in the inclusive sense as 
defined above is to be a system dynamically coupled with its local 
niche. This also falls out of the idea that it is the continuous cycles of 
perception and action that establishes the conditional independencies 
between the internal states of the agent and the external states of the 
environment (Ramstead, Kirchhoff and Friston, 2019). So, there is no 
obvious reason why one should take Gallagher’s dismissal of active 
inference seriously on this point. 

Gallagher (2017), however, still thinks there is a deep tension 
between the AIF and his brand of non-inferential enactivism. The 
main issue now turns on the reference to inference in the AIF. 

Gallagher frames the issue as follows. He starts by saying: 

With respect to PC [predictive coding] models, enactivist views 
emphasize a more holistic system of brain–body–environment would 
clearly favor a move away from internalist and intellectualist vocabu-
laries (and conceptions) of ‘hypotheses’, ‘inference’, and ‘representa-
tion’ in favor of more embodied terms like ‘adjustment’, ‘attunement’, 
and ‘affordance’. Such terms not only simply substitutes for the PC 
terms; they change the way that we think of the brain’s engagement. 
(Gallagher, 2017, p. 21) 

He considers the AIF. Recall that we argued above that active 
inference says that perception evolved and is for facilitating action. It 
denies the Helmholtzian notion that action is for vindicating or 
disproving perceptual hypotheses like an intervening scientist. This is 
one of the main differences between the AIF and predictive coding 
schemes such as predictive processing under Helmholtzian inference. 
Against this view of the AIF, Gallagher says the following: ‘active 
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inference is not “inference” at all, it’s a doing, an enactive adjustment, 
a worldly engagement’ (ibid., p. 19, italics added). 

We will now argue that the enactivist references to ‘doings’, ‘adjust-
ment’, and ‘worldly engagement’ come up short when having to 
address the acuity problem. We find it odd that Gallagher would 
object to anticipation being inferential, as it is difficult to see how 
reference to things like doings and worldly engagement can account 
for conditional future states — i.e. the bringing about of possible 
future states conditioned on sensorimotor contingencies. Note that any 
plausible answer to the acuity problem will need to explain how 
skilful performers ‘stay ahead of the curve’ and thus anticipate, even 
in the heat of the moment, how slight variable changes would compel 
or demand intricate adjustments in action. It is on this precise issue 
that the surprise minimization framework of the AIF becomes relevant 
for making headway on the acuity problem, with reference to counter-
factual inference (or model inversion) and temporally deep generative 
models. 

In interceptive expertise a common observation is that elite players 
do not keep or align their central foveal gaze with the ball during its 
flight path. This observation has been made in a range of different 
sports, from baseball (Hubbard and Seng, 1954; Bahill and LaRitz, 
1984), cricket (Croft, Button and Dicks, 2010; Land and McLeod, 
2000), table tennis (Ripoll and Fleurance, 1988), to squash (Hayhoe et 
al., 2012). A recent study by Mann, Spratford and Abernethy (2013) 
comparing elite and club-level cricket batters found that elite batters 
used two distinctive eye movement strategies, suggesting that saccadic 
eye movements play a significant role in interceptive expertise. They 
found that experts rely on two predictive saccades to anticipate (a) the 
location of the spot where the ball would bounce after ball-release, 
and (b) the location of the bat–ball point of contact, enabling the 
batters to direct their gaze at the ball as they hit it. As they state: ‘elite 
batters directed their gaze ahead of the flight-path of the ball 
immediately prior to bat–ball contact, whereas the gaze of the club-
level batters tended to be behind the ball. The elite batters appeared to 
use a strategy that ensured they could “park” their gaze ahead of the 
ball so that gaze could “lie-in-wait” for the ball to arrive’ (2013, p. 6). 
Crucially, Mann et al. found that predictive saccades employed to 
anticipate where the ball would bounce occurred earlier as the skill 
level in the batters increased, ‘reflecting a superior ability to predict 
the future landing point of the ball’ (ibid., p. 1). 
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Assuming these results are correct, how might one explain this with-
out appeal to inference but merely by reference to doings? There 
seems no denying that batters are doing something; they are engaged 
in an embodied activity in the world. Is that all they are doing, 
however? Are there reasons to deny that these doings either are or 
involve a form of inference? How would doings — understood in non-
inferential terms — address the issue of conditional outcomes of 
future states given action, when batters make use of epistemic actions 
such as eye movements to anticipate where the ball will bounce prior 
to it happening? 

One option might be to say that ‘neural plasticity mitigates to some 
degree the need to think that subpersonal processes are inferential. 
The neural networks of perception are set up by previous experience 
— “set up to be set off”...’ (Gallagher, 2017, p. 115). But this cannot 
be quite right, for elite batters are not simply ‘set up’ so as to be ‘set 
off’ but are able to handle variations in ball speed, direction, and 
bounce on the fly. Another option might be to say that batters are 
responding to what the situation affords. The concept of affordance is 
a term of art in the tradition of ecological psychology (Gibson, 
1979/1986). Crucially, it is a relational notion in the sense that it 
belongs to the directly coupled organism–environment system. 
Specifically, it concerns perception of niche-specific information as 
providing action opportunities relative on an organism’s sensorimotor 
capabilities. There is something clearly problematic with appealing to 
affordances to do the explanatory work here. One cannot stand in a 
directly coupled relation to future states, for such states are yet to be 
present (Linson et al., 2018).11 Hence, if Gallagher’s brand of non-
inferential enactivism is to explain the cognitive basis of anticipatory 
action, then he needs to explain the capacity of skilful performers to 
adapt to novelty while maintaining the fluidity of their action. 

To make headway on this issue, consider that elite batters are not 
tracking the ball over its flight path; rather, they are using a saccadic 

                                                           
11  Gallagher might argue that the outfielder effectively engaging in the Chapman strategy 

means that the ball will continue to be perceived as afforded (as long as her running 
successfully nullifies perceived optical acceleration). The issue here is that outfielders 
— as observed by Postma et al. (2017) — seem often to perceive fly balls that are 
uncatchable by virtue of their travelling at very fast speeds as uncatchable (unafforded) 
even before they are at full running capacity. Non-inferential enactivists would need to 
explain this without appeal to the notion that outfielders are engaged in an inferring of 
conditional future states. 
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prediction enabling them to anticipate where the ball would bounce 
prior to ball–bat impact. Prediction refers to estimating future states of 
a system (Wolpert and Flanagan, 2001). In cases such as interceptive 
expertise, prediction takes the form of a probabilistic mapping of the 
counterfactual relation between perception and action. Interestingly, 
counterfactual mappings of this kind are at the heart of non-inferential 
enactivism. Gallagher, for instance, says that we ‘perceive things in 
terms of… sensorimotor contingencies and in terms of what those 
things pragmatically afford in relation to a body like mine, in the 
situation’ (2017, p. 116). Two things are important to mention here. 
First, sensorimotor contingencies underline the importance of per-
ception and action in ongoing organism–environment engagement. 
Second, sensorimotor contingencies qua counterfactual probability 
relations between perception and action underpin the future-oriented 
structure of anticipation: they are probabilistic mappings of future 
sensory states conditioned on action. Getting at expected sensory 
observation, like actually grabbing the ball in mid air, is a matter of 
selecting and executing the right action policy. Prediction is therefore 
not just doings; it is rather a matter of generative models actively 
inferring policies that if selected would bring about the expected 
sensory outcomes, and therefore the minimization of any expected 
variational free energy. Prediction in this context cannot be under-
stood absent the notion of inference, and certainly cannot be under-
stood qua AIF as a form of doing that does not involve inference. 
Such counterfactually equipped generative models are known as 
temporally deep generative models. As Friston puts it: 

[S]ystems that can grasp the impact of their future actions must 
necessarily have a temporal thickness. They must have internal models 
of themselves and the world that allow them to make predictions about 
things that have not and might not actually happen. Such models can be 
thicker and thinner, deeper or shallower, depending on how far forward 
they predict, as well as how far back they postdict, that is, whether they 
can capture how things might have ended up if they had acted differ-
ently. Systems with deeper temporal structures will be better at inferring 
the counterfactual consequences of their actions. (Friston, 2017, Aeon) 

The AIF thus provides us with a story about sensorimotor con-
tingencies, cast in terms of probabilistic inference, yet realized by 
embodied engagement in the world. 

Perhaps one could object that Gallagher’s (2017) claim is consistent 
with the claim that active inference involves inference but is not 
exhausted by it, because there is more to actions or what Gallagher 

C
op

yr
ig

ht
 (

c)
 Im

pr
in

t A
ca

de
m

ic
 2

01
9

F
or

 p
er

so
na

l u
se

 o
nl

y 
--

 n
ot

 fo
r 

re
pr

od
uc

tio
n



 

 ANTICIPATORY  ACTION 59 

terms doings than inference. The problem with this worry is that there 
are no doings that are not subserved by inference according to the 
AIF. Gallagher might object, however, that the emphasis on inferential 
models under the AIF neglects the key role of the action–perception 
cycle coupling organism and environment dynamics. There is, how-
ever, a complication with any such objection; namely, it overlooks the 
important distinction between generative model and generative pro-
cess. The generative process couples the organism to its environment, 
and vice versa, via sensing and acting. Put bluntly, there can be no 
sensory observations without the generative process. The generative 
process can therefore be understood in terms of the pragmatic and 
epistemic actions of an organism coupling organism and environment, 
where the modulation via action of the coupling relation reduces 
surprise. In this specific sense, the AIF implies the presence of an 
informational coupling between organism and its local niche 
(Kirchhoff and Kiverstein, 2019b; Ramstead, Kirchhoff and Friston, 
2019). 

We ended the previous section by considering the notion of 
optimizing a distribution of action policies by pruning suboptimal 
policies via learning, eliciting a view of skill and habit formation 
under the AIF. We can now add to this account by noting that the 
action policies being either selected for or pruned away are policies of 
counterfactual sensorimotor contingencies, over the temporal depth of 
a hierarchically organized generative model. 

3.3. Active inference isn’t (necessarily) representational 

We now turn to assess and dismiss another reason why Gallagher 
(2017) thinks there is a deep tension between the AIF and his brand of 
non-inferential enactivism, showing the latter to be preferable to the 
former. The issue is going to turn on the claim that inferences are 
representational and therefore incompatible with non-inferential 
enactivism, which conceives of the vast bulk of cognitive activity in 
non-representational terms. 

Gallagher wants to convince us that rather than invoking the 
vocabulary of representations, even in their action-oriented specifica-
tions (cf. Clark and Grush, 1999), we should rather think of cognitive 
activity as ‘a kind of ongoing dynamical adjustment in which the 
brain, as part of and along with the larger organism, settles into the 
right kind of attunement with the environment — an environment that 
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is physical but also social and cultural’ (Gallagher, 2017, p. 18, 
second italics added). 

The notion of ‘attunement’ is important in Gallagher’s account. But 
what does it amount to? It is somewhat surprising to observe that 
Gallagher only refers to this notion twelve times in his 2017 book. He 
says for instance that ‘social cognition is an attunement process that 
allows me to perceive the other as someone to whom I can respond…’ 
(ibid., p. 12). He also says that ‘brains play an important part in the 
ongoing dynamical attunement of organism to environment’ (ibid., p. 
20). Details are lacking. The closest Gallagher comes to spelling out 
what attunement means is when he states: ‘what do brains do as part 
of a dynamical attunement of organism to environment…? The 
answer is that the brain participates in a system, along with eyes and 
face and hands and voice, and so on’ (ibid., p. 163). This might be 
correct, even if somewhat abstract. In what follows we give an active 
inference account of attunement, giving this notion a firmer informa-
tion-theoretic articulation. 

We want to suggest that there is no tension between attunement and 
active inference. Our argument rests on the claim that active inference 
is what enables internal dynamics to attune to dynamics of the 
environment, and without implying the presence of internal repre-
sentations (contra Helmholtzian anticipation). The AIF effectively 
takes the form of the principle of least action, where seeking to 
occupy local minima of surprise yields critical transition points that 
can be leveraged to facilitate occupation of expected states, and there-
fore to militate against undesired (aka surprising) states. Running 
either too fast or too slow when out to catch a fly ball induces 
surprise. Conversely, combating surprise is to chart a course of least 
resistance or action; namely, to settle on action policies enabling one 
to keep the fly ball stationary on the retina. Under the AIF, attunement 
in this specific sense is formulated in terms of a generalized descent 
on the free energy of internal states of a system (Friston, 2014). 

Gradient descent optimization can be understood in terms of 
Bayesian belief parametrization. Bayesian belief parametrization or 
model optimization can be captured by the KL-divergence, DKL [q(h) || 
p(h|e)], which denotes the relative entropy between current beliefs or 
the prior density distribution, q(h), and the (true) posterior distribu-
tion, p(h|e). The KL-divergence is therefore a measure of the residual 
(or relative) surprise between the two probability distributions. When 
variational free energy is minimized, the prior density is approxi-
mately equal to the posterior distribution. The better this approxima-
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tion, the smaller the divergence. This means that the prior density 
approximates exactly the same quantity that Bayesian inference seeks 
to optimize; namely, the posterior density distribution. 

The AIF reminds us that it is not only internal (brain) states that 
engage in statistical inference, but also active states. This is what 
embeds the AIF in the context of both embodied and enactive views of 
mind, associating action with the process of selectively sampling 
sensory data to reduce surprise. 

Some think that the KL-divergence underpins a representational 
view of statistical inference. The most articulated view of this repre-
sentational reading comes via Kiefer and Hohwy (2018). Keifer and 
Hohwy state that any inference ‘of the states of the world [or body] 
given by q(h) is correct when q(h) corresponds to what Bayesian 
inference would yield, i.e., when KL(q|h) p(h|e)) = 0’ (ibid., p. 20). 
From this they then argue that the KL-divergence provides a measure 
of misrepresentation. As they say: ‘as long as KL(q|h) p(h|e)) > 0, the 
inferred state of the world given by q(h) is a misrepresentation’ (ibid., 
p. 21). It is therefore easy to see why Gallagher would think that 
optimization schemes like predictive processing and the AIF are 
committed to representationalism. 

This conclusion, however, need not follow. To see this consider that 
the KL-divergence is the relative (Shannon) entropy between two 
distributions. Relative entropy is the divergence of the KL-divergence: 
q(h|e) and p(h|e), KL(q(h)||p(h|e)). Shannon entropy (or self-informa-
tion) captures the insight that a variable is a source of information if it 
has a distribution of values, and that a variable can be said to express 
information about another variable in so far as the two variables are 
correlated (Godfrey-Smith and Sterelny, 2016). This is an important 
point, for it allows for the following observation: namely, that relative 
entropy can be spelled out as information in the form of covariance. 
The key idea of Shannon information is equivalent with long-term 
surprise. In the context of gradient descent optimization the prior 
distribution carries more information about the posterior distribution 
to the extent that it can be reliably used to approximate the posterior 
distribution conditioned on the prior and the posterior being 
systematically correlated. So the KL-divergence is an informational 
measure that equates to information as covariance, given that the 
tighter the divergence is the higher the covariance is between the 
correlated variables, and their associated values. This is a nice out-
come, for it highlights that high covariance implies a shrinkage of 
surprise. Crucially, Shannon information does not have any 
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representational or semantic implications. If it is information in the 
sense of Shannon that the KL-divergence is a measure of, then one 
cannot also say that one variable misrepresents or carries false 
information about another variable (ibid.; Kirchhoff and Robertson, 
2018; Hutto and Myin, 2013). Hence, when Bayesian belief optimiza-
tion is cast via the AIF, associating inference with inference over 
representational states need not follow (see Kirchhoff and Robertson, 
2018, for further details). 

We want to end by adding a further observation. One might insist 
that the higher one travels up the generative hierarchy of probabilistic 
inference, the more likely it is that there will be a need to associate 
inferences with representations. We do not wish to rule this point out 
here (for discussion, see Constant et al., 2019). Instead we shall high-
light two crucial points. The first is that it will not suffice to stick with 
a story about relative (Shannon) entropy to vindicate representational 
inference at the more abstract levels of probabilistic inference. This 
follows from our previous assessment that relative entropy can be 
expressed in terms of covariance, and covariance is not a free ticket en 
route to a representational meal (Kirchhoff and Robertson, 2018). The 
second is that the selective pruning of action policies can be 
associated with the context-sensitive formation of habitual action 
policies. A proposal is that habitual action policies are located at lower 
or shallower scales of hierarchical organization. These shallower parts 
of the hierarchy are much more specialized than operations at higher 
scales of organization, suggesting that far fewer selections are needed 
to select for relevant sequences of action. One way to think about this 
is that the AIF results in a kind of hierarchical embedding of non-
representational action routines. 

4. Conclusion 

This paper argued that anticipatory action is inferential qua the active 
inference framework. Accepting this can illuminate a tenable way of 
addressing the acuity problem. The acuity problem, recall, is the 
puzzle of explaining that, on the one hand, fast, skilful action seems, 
when well-honed, to unfold automatically, reflexively, and without 
conscious thought or reflection, and yet, on the other hand, we seem 
often to characterize skilful actors by virtue of their capacities to 
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anticipate and adjust to novelty or unexpected occurrences, often 
creatively and intelligently, under highly exigent circumstances.12 

If the intelligently anticipatory dynamics involved in fast, skilful 
action approximate — on average and over time — a form of 
Bayesian inference, we can describe automatically-executed and 
highly habitual forms of action as intelligent in the sense that they 
emerge as the result of and continue to be instantiated by a process 
that adheres — to some extent — to rational (Bayesian) norms. 
Appeal to active inference allows us to explain the intelligence behind 
the fluid and context-sensitive dimension of skilful action, while, 
simultaneously, acknowledging that although the more habitual, 
reflexive responses on the part of the skilled actor will correspond to 
the same intelligent process, they have become highly engrained over 
time. Perhaps one would be inclined to characterize the agent as no 
longer engaged in inference when their action is highly habitual and 
occurs in a seemingly context-insensitive fashion (even if these 
context-insensitive responses have aided in an approximation to 
inference over the long term) (Orlandi, 2014). But the more interesting 
issue, we submit, is that active inference dictates that both the fluid, 
context-sensitive and the reflexive, unreflective dimensions of skilful 
action will both occur in approximate conformity with Bayesian 
norms. Skilful action is, then, inferential in a non-trivial (technical) 
sense. 

We have argued that we should resist characterizing intelligent 
action as arising by virtue of participating in or facilitating Helm-
holtzian inference. The body plant is not enslaved in order to vindicate 
the hypotheses generated by the scientist-like brain. We have argued, 
contra Helmholtzian renditions of PP, that we should resist the notion 
of the brain executing an unconscious Bayesian inference over con-
tentful hypotheses. We have argued, moreover, that characterizing 
anticipatory action as inferential qua active inference does not imply 
cognition to be realized entirely by neural dynamics. We conclude, 

                                                           
12  Often philosophers distinguish skilful from habitual forms of action on the basis that 

skills are intelligent in a way that habits are not (see e.g. Stanley and Krakauer, 2013). 
The AIF might go about showing habitual action to be intelligent in the sense that it will 
correspond to action policies that have, on average and over time, allowed the predictive 
organism to inferentially navigate their specific environmental niche. In this case, the 
seeming divide between automatic and intelligent action highlighted by the acuity 
problem might not seem as large. Even highly engrained habitual actions will qualify as 
rational in the sense that they have, by way of a process that conforms to (Bayesian) 
norms of rationality, aided the organism on average and over time. 
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then, that our inferential understanding of anticipatory action is sub-
stantially less intellectualist than competing accounts that understand 
the cognitive basis of anticipatory action as inferential. 

Finally, and looking to the future, in this paper we did not provide 
an exhaustive mechanistic and information-theoretic account of the 
implementation of active inference. Rather, we have taken first steps 
towards addressing the acuity problem in terms of active inference. In 
future work we will augment this account by providing a formal and 
implementationally-informed framework for how the active inference 
paradigm not only addresses but solves the acuity problem. 
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