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Abstract: 

The aim of this paper is twofold: (1) to assess whether the construct of neural representations 

plays an explanatory role under the variational free-energy principle and its corollary process 

theory, active inference; and (2) if so, to assess which philosophical stance—in relation to the 

ontological and epistemological status of representations—is most appropriate. We focus on 

non-realist (deflationary and fictionalist-instrumentalist) approaches. We consider a 

deflationary account of mental representation, according to which the explanatorily relevant 

contents of neural representations are mathematical, rather than cognitive, and a fictionalist or 

instrumentalist account, according to which representations are scientifically useful fictions 

that serve explanatory (and other) aims. After reviewing the free-energy principle and active 

inference, we argue that the model of adaptive phenotypes under the free-energy principle 

can be used to furnish a formal semantics, enabling us to assign semantic content to specific 

phenotypic states (the internal states of a Markovian system that exists far from equilibrium). 

We propose a modified fictionalist account – an organism-centered fictionalism or 

instrumentalism. We argue that, under the free-energy principle, pursuing even a deflationary 

account of the content of neural representations licenses the appeal to the kind of semantic 

content involved in the ‘aboutness’ or intentionality of cognitive systems; our position is thus 

coherent with, but rests on distinct assumptions from, the realist position. We argue that the 

free-energy principle thereby explains the aboutness or intentionality in living systems and 

hence their capacity to parse their sensory stream using an ontology or set of semantic 

factors.   
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1. Introduction: Neural representations and their (dis)contents 

  

Representations figure prominently in several human affairs. Human beings routinely use 

representational artifacts like maps to navigate their environments. Maps represent the terrain 

to be traversed, for an agent capable of reading it and of leveraging the information that it 

contains to guide their behavior. That human beings consciously and deliberately engage in 

intellectual tasks, such as theorizing about causes and effects—which entails the ability to 

mentally think about situations and states of affairs—is quite uncontroversial. Most of us can 

see in our mind’s eye situations past, possible, and fictive, via the imagination and mental 

imagery, traditionally cast in terms of representational abilities. 

 

In the cognitive sciences, neurosciences, and the philosophy of mind, the concept of 

representation has been used to try and explain naturalistically how the fundamental property 

of ‘aboutness’ or ‘intentionality’ emerges in living systems (Brentano, 1973). Indeed, living 

creatures must interact with the world in which they are embedded, and must distinguish 

environmental features and other organisms that are relevant for their survival, from those 

that are not. Living creatures act as if they had beliefs about the world, about its structure and 

its denizens, which guide their decision-making processes, especially with respect to the 

generation of adaptive action. This property is aboutness is thus a foundational one for any 

system that must make probabilistic inferences to support their decision-making in an 

uncertain world, which are central to the special issue to which this paper contributes.  

 

In this context, to provide a naturalistic explanation is to explain some phenomenon by 

appealing to physical processes (Haugeland, 1990). The strategy deployed by cognitive 

science has been to naturalize intentionality by postulating the existence of physical 

structures internal to the agent that carry, encode, or otherwise bear semantic content; 

classical accounts include Fodor (1975); Millikan (1984, 1989).  

 

In the sciences that study the mind and in philosophy, representations are typically defined as 

some internal vehicles – neural representations – that carry semantic content (Ramsey, 

2007). Representations are thus physical structures that are internal to an organism; typically, 

states and processes unfolding in their brains, which carry or encode representational content. 

The epistemic role played by neural representations is to explain how creatures are able to 

engage with relevant features of their environment and plan situationally appropriate, 

adaptive behavior (Boone and Piccinini, 2016; Ramsey, 2007). The semantic content of a 

representation is what the representation is about, that towards which it stands in an 

intentional relation – that “in virtue of what they represent what they do, or get to be ‘about’ 

what they are about” (Kiefer and Hohwy, 2018, p. 2390). The problem of specifying the 

nature and origins of semantic content is known as the hard problem of content (Hutto and 

Myin, 2017; Hutto and Satne, 2015).  

 

There are several well-accepted constraints for the appropriateness of representational 

explanations: such an account should (1) cohere broadly with the actual practices that are 

used in computational cognitive science research; (2) allow for misrepresentation, i.e., the 

representation must be able to “get it wrong”; (3) provide the principled method for 

attributing of determinate contents to specific states or structures (typically internal to the 

system), and finally (4) be naturalistic, meaning that the account of semantic content does not 

itself appeal to semantic terms when defining how the representational capacity is realized by 

the physical system, on pain of circularity in reasoning (Egan, 2019; Sprevak, 2019).  
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A fundamental and thorny question is whether there is some construct of representation that 

not only applies in all cases (i.e., to the construct of neural representations and to our more 

familiar, deliberate, everyday representational activities), but that also really explains the 

intentional relation between living creatures and their environment. An equally thorny issue 

involves the ontological and epistemological status of neural representations: Do such things 

really exist? Do they have explanatory value?  

 

The aim of this paper is twofold. First, we aim to determine whether or not the construct of 

neural representations plays an explanatory role in an increasingly popular framework for the 

study of action and cognition in living systems, namely, the variational free-energy principle 

and its corollary process theory, active inference. Second, if the postulation of neural 

representations is warranted under the free-energy principle, we aim to assess which of the 

available philosophical positions about the ontological and epistemological status of 

representations is most appropriate for the construct under this framework. Since the issue to 

be determined cannot merely be decided by appeal to formal frameworks, we first discuss the 

issue of representationalism.  

 

In the remainder of this first section, we review the issues surrounding representationalism. In 

the second section, we present and motivate the view of the brain under the free-energy 

principle, as a self-organizing nonequilibrium steady-state enshrouded by a statistical 

boundary (called a Markov blanket). In the following section, we consider non-realist 

accounts of neural representation: a deflationary account, according to which the contents of 

neural representations are mathematical, and a fictionalist account, according to which 

representations are scientifically useful fictions. In the fourth section, we propose to combine 

aspects of both these accounts, yielding a nuanced realist account that defines semantic 

contents of representations formally – what one might call a deflationary, organism-centered 

fictionalist interpretation of neural representations. We argue that even pursuing a minimalist, 

deflationary account of the content of neural representations under the free-energy principles 

licenses an appeal to a robust kind of semantic content, the kind at stake in the ‘aboutness’ or 

intentionality of cognitive systems. The ensuing position coheres broadly with, but rests on 

distinct assumptions from, the realist one.   

 

1.1. The faces of representationalism: Realism and non-realism 

 

In the philosophy of mind, there are, roughly speaking, two main ways to think about the 

ontological status of the neural representation construct, which have implications for the 

available epistemological positions. One is realism about neural representations. This view 

combines two positions: ontologically, that neural representations really exist (typically, that 

they are physically instantiated in the brain); epistemologically, that they are scientifically 

useful postulates as well (Kiefer, 2017; Ramsey, 2007). Non-realist positions also are 

available, which do not share all of these assumptions. Non-realists are either agnostic about 

the reality of neural representations or explicitly reject the assumption. Anti-realism says that 

neural representations do not exist. Several varieties of non-realism are available, which have 

different epistemological implications. Eliminationism is the anti-realist view that the 

construct of neural representation should be eliminated from scientific practice (Hutto and 

Myin, 2013; Thompson, 2010). Instrumentalism or fictionalism is the non-realist view that 

argues that neural representations are useful fictions: they are a scientifically useful way of 

describing the world (Dennett, 1989; Egan, 2019; Egan, 2018; McGregor, 2017; Sprevak, 

2013, 2019).    
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To get clear on which of these positions is most appropriate, it is useful to review the 

different versions of the neural representation construct. The classical view of neural 

representations casts them as symbolic structures that are realized by brain states and that are 

manipulated by rule-governed processes. This follows from the computational theory of mind 

(Fodor, 1975), according to which cognition is the rule-governed manipulation of symbol-

like, internal cognitive structures (i.e., neural representations). In these classical accounts, the 

content of a representation is determined either by appealing to an innate stock of concepts 

and mechanisms that ensure the accuracy and objectivity of what is represented (Fodor, 1975; 

Fodor and Pylyshyn, 1988); by accounting for contents through the actions of a biological 

proper function (Millikan, 2017; Shea, 2018; Shea et al., 2018); or by referring to the 

phenomenal content of our first-person experience of things in the world (Horgan and 

Graham, 2012; Macpherson, 2012). All such accounts have in common a construct of neural 

representation as an internal symbol (or type) that gets instantiated (or tokened) in the 

appropriate circumstances; what varies is how the appropriateness condition gets 

implemented. There are also non-representational versions of the computational theory of 

mind, which will not concern us here; see Miłkowski (2013); Piccinini (2015).  

 

Motivated by parallel distributed processing, connectionist models of neural representations 

disagree with proponents of the classical approach over the nature of the representational 

vehicle; but agree that the brain harnesses internal cognitive structures that act as the vehicles 

for content (Chalmers, 1993; McClelland et al., 1986). Rather than discrete symbolic 

structures, the connectionist argues that neural representations are distributed representations; 

that is, that they accomplish their function of representing states of affairs in terms of joint 

configurations of their activity.  

 

Today, the most popular (and in our view, the most compelling) representationalist accounts 

are of the connectionist type. They cast neural representations as structural representations. 

On this account, neural representations are able to represent their target domain (i.e., to 

encode semantic content about their target domain) because their neural vehicles encode 

exploitable structural similarities shared with the target domain (Kiefer and Hohwy, 2018, 

2019; O’Brien and Opie, 2004; Williams and Colling, 2017). On this account, representations 

function much like maps: they recapitulate the high-order structural features of that domain, 

for example, its statistical properties. More specifically, structural representations encode 

information in a format that the organism can exploit to guide its behavior, that can afford the 

detection of errors (i.e., that affords misrepresentation), and that can be used for ‘offline’ 

navigation (Gładziejewski, 2016; Gładziejewski and Miłkowski, 2017; Hohwy, 2014; Kiefer 

and Hohwy, 2018, 2019). Structural representations operate iconically, via a process “in 

which the structure of internal representations in the brain come to replicate the structure of 

the generative process by which sensory input impinges upon it” (Williams and Colling, 

2017, p. 1962).  

 

1.2. Towards anti-realism: deficiencies of the realist view 

 

Most research in the cognitive sciences and neurosciences tacitly operate on realist 

assumptions about neural representation and design experiments that aim at explaining how 

our experience of, and action in, the world is mediated by structured bodies of knowledge 

that are encoded in the networks of the brain. The existence and explanatory value of neural 

representations is a basic premise of almost any psychology textbook. For instance, one can 

read in The MIT Encyclopedia of the Cognitive Sciences: “Psychology is the science that 
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investigates the representation and processing of information” (Wilson and Keil, 2001, p. xl, 

emphasis added).  

 

Although realism about mental representation is the default mode of operation in most of the 

cognitive sciences and neurosciences, it is not the consensus position. The motivation for 

adopting an anti-realist, anti-representationalist approach comes from the observation that, 

despite enormous efforts and scientific investment, representations have yet to be naturalized 

(Chemero, 2009; Hutto and Myin, 2017; Kripke, 1982; Loewer, 1997; Putnam, 1981; Quine, 

1969; Ramsey, 2007). This is notably because extant attempts to articulate a theory of neural 

representation have so far failed to provide a naturalistic theory of semantic content that does 

not presuppose the very intentional relation and representational content that it seeks to 

explain, securing point (4) discussed above. Thus, scholars such as Ramsey (2016) call for 

caution about the use of the construct. They argue that often, the appeal to semantic content is 

a philosophical gloss that does not add any explanatory value: 

  

“The roles provided by commonsense psychology are those that 

distinguish different types of mental representations. What we need 

and what is not provided by commonsense psychology is, more 

generally, the sort of physical condition that makes something a 

representational state, period. In functional terms, we would like to 

know what different types of representations perhaps have in 

common, qua representation. Neither commonsense psychology nor 

computationalism tells us much about the sort causal/physical 

conditions that bestow upon brain states the functional role of 

representing (at least not directly).” (Ramsey, 2016, p. 6, emphasis 

added) 

  

In the literature, it is quite common to see the selective responsiveness of neural tissue to a 

given stimulus described as the representation or encoding of stimuli. This conceptualization 

is adopted in the study of perception, particularly to highlight cellular specialization in 

detecting certain features of the perceptual object (Bonnen et al., 2020; Díaz-Gutiérrez et al., 

2020; Hubel and Wiesel, 2004; O’Sullivan et al., 2019; Shadlen and Newsome, 1994); in the 

study of memory (Kiyonaga et al., 2017; Manohar et al., 2019) and motor activity (Anderson 

et al., 1990; Gregory, 2018; Stengel, 1994) as well. However, as Ramsey (2007) notes, 

response-selectivity by itself cannot make a physical state a representation. Many physical 

states have response-selectivity but are not representations. For instance, the states of my skin 

vary with the weather (e.g., it gets darker the more it is exposed to the sun), but we would not 

(intuitively) count my skin as a representation of the sun or weather.  

 

We find approaches in the biological sciences and in the neuroscience less committed to the 

view of cognition as a representational process taking place within the boundaries of the brain 

(Calvo and Friston, 2017; Engel et al., 2016; Hipolito and Kirchhoff, 2019; Ramstead et al., 

2019b; Williams, 2018). These views include perceptual and motor control theory (Arsiwalla 

et al., 2019; Rosenbaum, 2009); robotics (Beer, 2000); cybernetics (Pickering, 2010; Porush, 

2018; Seth, 2014; Von Bertalanffy, 1950); and, arguably, the free-energy principle and active 

inference (Engel et al., 2016; Friston, 2020; Ramstead et al., 2019b). These accounts, which 

often hail from embodied and enactive approaches in cognitive science (Gallagher, 2020; 

Newen et al., 2018; Noë, 2004; Thompson, 2010; Varela et al., 1991), converge on the idea 

that the primary aim of cognition is not internally reconstructing proxies for the structure of a 

hidden world, but rather to adapt to and act in an environment. 
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In this setting, Sprevak (2013) suggests that there appear to be two options. We can take a 

hard-headed realist assumption that the naturalization of neural representations will 

eventually succeed. (Even though no account has succeeded so far.) Alternatively, non-

realism (eliminativism and fictionalism) downplays the value of representation talk in 

cognitive science. Non-realists observe it is not possible to define the content of a neuronal 

representation without conflating it already with the cognitive process: We borrow our 

semantics (and thereby, the content of the representation) from our scientific practice. More 

precisely, if the supposed representational content cannot be determined without appealing to 

what we know about the cognitive activity itself, then it is the cognitive activity that has 

explanatory power. Conversely, if the explanation in terms of the cognitive activity suffices 

without appealing to an experimenter-imposed semantics, then there is no reason to postulate 

representational content. This may motivate restraining the use of neural representation use to 

an “informal gloss” (Egan, 2019; Egan, 2018).  

 

The cost of eliminating the construct of neural representation altogether is that it requires a 

painful revision of the mainstream representational paradigm in cognitive science. Indeed, we 

typically appeal to neural representations to explain goal-directed, probabilistic inference, 

and decision-making. To abandon this posit leaves us with the obligation to abandon some of 

the most powerful explanatory tools that we can use. Is this legitimate? 

 

1.3. Representations under the free-energy principle? 

 

The object of this paper is more precisely the status of neural representations in Bayesian 

neuroscience, known as the free-energy principle and active inference. In Bayesian 

neuroscience, the brain is cast as a statistical organ or inference engine that minimizes its 

uncertainty about the state of the world. In this family of theories, the brain is depicted as 

doing its predictive work by drawing on probabilistic knowledge about its environment to 

explain the likely causes of the sensory signals with which it is bombarded (Hinton and 

Sejnowski, 1983; Hohwy, 2014; Rao and Ballard, 1999; Seth, 2014)—and to act in ways that 

bring about its preferred or expected sensory states (Clark, 2015; Hohwy, 2020). 

 

Some Bayesian approaches based on predictive coding algorithms for describing canonical 

microcircuits in the cortex have strong representationalist commitments (Clark, 2015; 

Gładziejewski, 2016; Gładziejewski and Miłkowski, 2017; Hohwy, 2014, 2016; Kiefer and 

Hohwy, 2018, 2019; Williams and Colling, 2017). These accounts argue that the Bayesian 

brain entails the postulation of structural representations. Thus, neural representations are 

taken to be internal, map-like structures that are instantiated in the networks of the brain and 

that encode exploitable information.  

 

Several recent papers have discussed whether a realist interpretation of neural representations 

is warranted under the free-energy principle (Gładziejewski, 2016; Gładziejewski and 

Miłkowski, 2017; Kiefer and Hohwy, 2018, 2019; Ramstead et al., 2019b). Besides a few 

notable exceptions (van Es, 2020), few papers have sought to evaluate the variety of non-

realist arguments in light of the free-energy principle. In this paper, we will argue that taking 

seriously two forms of the non-realist position (the deflationary and fictionalist views) leads 

back to a nuanced form of realism that is apt to provide a naturalistic basis for the study of 

intentionality.  
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2. The free-energy principle and active inference: From information geometry to the 

physics of phenotypes  

  

2.1. State spaces, nonequilibrium dynamics, and bears (oh my) 

 

Our paper will focus on a prominent Bayesian theory of action and cognition, the variational 

free-energy principle, and its corollary, active inference (Friston, 2010, 2020). The free-

energy principle starts with the observation that biological systems like living creatures have 

a phenotype. Living organisms maintain their phenotypic integrity and resist the tendency 

towards thermodynamic equilibrium with their ambient surroundings – that is usually 

dictated by the fluctuations theorems that generalize the second law of thermodynamics 

(Kiefer, 2020; Parr et al., 2020). Living creatures do so by upper bounding the entropy (the 

dispersion or spread) of their constituent states. To get a better handle on this, in this section, 

we introduce two formal notions: the state space and nonequilibrium steady states. A brief 

technical treatment of what follows can be found in the Technical appendix and Glossary of 

terms and expressions. 

 

In physics, equilibrium and nonequilibrium are distinguished by the end-state towards which 

a dynamics evolves. Equilibrium dynamics resolve when all the energy gradients have been 

consumed; at which the point system is at thermodynamic equilibrium with its environment. 

For living creatures, thermodynamic equilibrium is death. Living creatures are open systems 

that remain far from equilibrium. How can we model this using formal resources?  

 

The state or phase space formalism comes from dynamical systems theory and allows us to 

get a formal grip on the predicament of living systems. A state or phase space is an abstract 

space that allows us to model the time evolution of a system in terms of all the possible states 

in which it can find itself. To construct a state space, we identify all the relevant quantities 

that can change in the system (i.e., all the relevant variables) and then plot each variable on a 

dimension in an abstract space. This space is called a state space. Every dimension of this 

space corresponds to a variable in the system; such that a point in this space corresponds to a 

complete instantaneous specification of the system, since we assign a value to every variable 

of the system; i.e., we assign a position to the system along every dimension. A trajectory in 

this space, in turn, corresponds to the flow of the states of the system over time.  

 

The state space formalism allows us to describe the time evolution of a system implicitly by 

depicting trajectories through state space. This turns out to be crucial. If we draw a 

probability density over all the states that a system can find itself, those combinations of 

states with the highest probability, to which the system returns periodically, are known as a 

pullback attractor (Crauel and Flandoli, 1994; Friston, 2020). We can associate the states 

(i.e., the regions of this space) in which a creature finds itself most of the time with its 

phenotypic states.  

 

The probability density that describes the system at its nonequilibrium steady state (i.e., its 

phenotypic states) is aptly called the nonequilibrium steady state density. Such a probabilistic 

description of the system’s dynamics can be interpreted in two mutually consistent and 

complementary ways. First, the system can be described in terms of the flow of the system’s 

states—that are subject to random fluctuations—in which case, we can formulate the flow in 

terms of a path integral formulation, as a path of least action. Equivalently, we can describe 

the nonequilibrium steady-state in terms of the probability of finding the system in some state 

when sampling at any random time. These two descriptions are linked mathematically by the 
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fact that at nonequilibrium steady-state, the flow is the solution to something called the 

Fokker Planck equation that describes the density dynamics. This dual interpretation will play 

a crucial role later.  

 

2.2. Markov blankets and the dynamics of living systems 

 

The free-energy principle builds on the dynamic systems theoretic approach, which concerns 

the time evolution of systems, but now augmented with considerations about the statistical 

properties and the measurability of those systems. The free-energy principle allows us to 

describe the flow of a system’s states in one of two mathematically equivalent ways, 

statistical and dynamical – an equivalence that is warranted by virtue of the conditional 

independence entailed by the presence of a statistical boundary (called a Markov blanket) and 

the existence of the system in a regime of steady (phenotypic) states far from equilibrium. 

 

 
Figure 1. The structure of a Markov blanket. A Markov blanket highlights open systems exchanging matter, 

energy, or information with their surroundings. Variables are conditionally independent of each other by virtue 

of the Markov blanket. If there is no route between two variables, and they share parents, they are conditionally 

independent. Arrows go from ‘parents’ to ‘children’. From (Hipólito et al., 2020). 

 

 

For a system to exist (separately from the rest of the universe), it must be endowed with a 

degree of independence from its embedding environment. A Markov blanket is a set of 

variables or states that we use to stipulatively individuate a system in terms of what is part of 

it (internal states, denoted μ), and what is not (external states, denoted η). The Markov 

blanket itself is defined as those states that mediate interactions between the system and its 

embedding environment (active and sensory states, denoted a and s). The Markov blanket is 

defined by the absence of certain connections: internal states do not cause sensory states, and 

external states do not cause active states. See Figure 1 and Figure 2. 

 

The presence of a Markov blanket induces a conditional independence between internal and 

external variables. The key word here is ‘conditional’: internal and external are not really 

independent of one another—they just appear to be so if we discount their dependencies via 

the blanket states.  
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Figure 2. Markov blankets of life. This figure depicts a Markov blanket around a system of interest; here, the 

brain. The figure associates the Markovian partition to internal (μ), blanket (b), and external states (η); where 

blanket states can be active (a) or sensory (s) states, depending on their statistical relations to internal and 

external states. Here, the flow of each kind of state (denoted with a dot) is expressed as a function of other states 

in the partition (plus some random noise, denoted ω), as a function of the independences that are harnessed by 

the Markov blanket. Autonomous states (α) are those that follow a free-energy gradient. Particular states (here, 

denoted π) are those identified with the system itself (internal and blanket states).   

 

 

2.3. Information geometries and the physics of sentient systems  

 

The core intuition behind the free-energy principle is that if a system is endowed with a 

phenotype (i.e., a nonequilibrium steady state density) and has a Markov blanket, then there 

are two ways of describing the flow of a system’s states that turn out to be equivalent: one 

rooted in the state space description of the system that is formulated in terms of the flow or 

dynamics of the internal states; the other rooted in a statistical interpretation of the same flow. 

The presence of a Markov blanket in such a system ensures that both descriptions are 

coincidentally true or conjugate to each other (Friston, 2020; Friston et al., 2020). 

 

This description of the system—in terms of movement in internal phase space—is the 

system’s ‘intrinsic’ information geometry, which is closely related to measure theory and 

statistical thermodynamics. Measure theory is a field of mathematics about how we can 

systematically assign a number to subsets of a given set, where a measure or metric consists 

precisely in such an assignment; for example, a probability measure assigns a probability 

value systematically to elements of a subset. We can think of measures as capturing 

something about size, or distances in an abstract space. Generally, an arbitrary set of points 

that compose a state space does not have a measure, and so no associated notion of distance 
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can be defined for that space. However, one can equip a space with a metric, usually in the 

form of a matrix that describes how ‘far’ one has moved as a function of small changes in 

position. 

 

In Euclidean geometry, this metric is just an identity matrix, i.e., if I move 100 meters along 

some particular direction, then I will have moved a total of 100 meters. This is not true, e.g., 

of movement on a sphere: the planet Earth, for instance, has a circumference of 

approximately 40,000 km; if I move (approximately) 40,000 km in the same direction on 

Earth, I will not have moved at all in total relative to the Earth’s surface (since I will be back 

where I started). 

 

This notion of metric plays a special role when dealing with sufficient statistics and statistical 

manifolds. Sufficient statistics are the minimal set of numbers that are needed to reconstruct 

or parameterize a probability distribution (which contains an infinite number of points). For 

normal or Gaussian distributions, these numbers are the mean and variance. A statistical 

manifold is a space in which the coordinates are the sufficient statistics of a family of 

probabilities densities. For instance, the sufficient statistics of a Gaussian distribution are its 

mean and variance, giving a two-dimensional statistical manifold or state space. Given any 

position on this manifold, it is possible to reconstruct the probability density (which assigns a 

probability to an infinite number of points). Trajectories on a statistical manifold correspond 

to changes in the shape (i.e., the value of the parameters) of the associated probability 

density. 

 

Information geometry, in turn, is the field of mathematics dealing with measures or metrics 

on a statistical manifold (information manifolds, typically endowed with a Fisher or 

Riemannian information metric). In other words, information geometry allows us to define a 

metric for probability distributions (or probability densities for continuous variables); that is, 

we can talk about distances between probability densities. Furthermore, if we associate 

probability densities with probabilistic beliefs, we now have a naturalized way of talking 

about the distance between beliefs. 

 

With all this in place, we can appreciate what the free-energy principle brings to the table. 

Starting from our state space description of the system, we can define a metric that allows us 

to speak about distances between probabilistic configurations of a system’s internal states. 

Such a geometry is ‘intrinsic’ because it describes the structure of a system’s possible 

configurations in a manner that only refers to internal states themselves (rather than the 

external states of the environment). The free-energy principle says that so long as the system 

is at hand is equipped with a nonequilibrium steady state density and a Markov blanket is in 

play, then an additional—and mathematically conjugate—information geometry can be 

defined (Friston, 2020; Friston et al., 2020). These two information geometries can take the 

form of the following (Fisher information) metrics, where the sufficient statistics correspond 

to expected thermodynamic states and internal states, respectively: 

 

( ) [ ( ) || ( )] | intrinsic

( ) [ ( ) || ( )] | extrinsic

g D p p

g D q q

     

     

  

  

   =

   =

= 

= 
 

 

This licenses a spectacular observation: namely, that internal states can be interpreted in 

terms of their extrinsic geometry, i.e., as parameterising a probability density over external 

states. This simple fact is a natural consequence of the conditional independences that define 
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the Markov blanket. Put simply, for every blanket state (i.e., joint sensory and active state) 

there is a conditional probability density over internal and external states. Crucially, these are 

conditionally independent, by definition, given the blanket state in question. This means that 

for every expected internal state, given the blanket state, there must be a conditional 

probability density over external states. In turn, this means that the expected internal state is a 

statistical manifold—equipped with an extrinsic information geometry. This extrinsic 

information geometry describes the distance among probabilistic beliefs about external 

states, which are parameterized by the expected internal states. In other words, expected 

internal states constitute the sufficient statistics of beliefs about external states. 

 

2.4. Phenotypes: A tale of two densities 

 

Essentially, the free-energy principle is a story about two probability densities (Ramstead et 

al., 2019b). The first is the nonequilibrium steady state density itself, which harnesses the 

statistical structure of the phenotype. The second, variational density, is parameterized or 

embodied by the internal states of the system. We have seen that internal states constitute the 

sufficient statistics of probabilistic beliefs about external states. Another way of looking at 

this is to say that internal states encode a probability distribution—the variational density—

over the states of the external world that are generating sensory (and active) states. 

Technically, that a system will evolve towards—and maintain—its nonequilibrium steady 

state means that it minimizes the discrepancy between the variational density that it embodies 

and the probability density over external states, given blanket states (Friston, 2020; Friston et 

al., 2020). This discrepancy is the variational free-energy, and the steady state flow that 

underwrites nonequilibrium steady-state becomes a gradient flow on variational free-energy. 

In other words, it will look as if internal states are trying to optimize their posterior beliefs 

about external states. When cast in terms of movement in the extrinsic geometry, one can 

interpret existential behavior in terms of Bayesian belief updating. This all follows because 

the expected internal states parameterize a conditional or Bayesian belief about external 

states. 

 

Anthropomorphically, the system does not ‘know’ in what state it is in, but it will look as if it 

is inferring the state of its external milieu ‘out there’, based on prior beliefs and its current 

sensory states. The state of the external world is thus never directly perceived, it is instead 

something that the organism infers and brings about actively through interactions with the 

world. In this sense, the implicit inference is enactive, in the pragmatist sense of being for 

action (Anderson, 2017; Engel et al., 2016; Ramstead et al., 2019b). When the organism 

interacts with the world, it perturbs external states and consequent sensory states. These 

sensory impressions couple back to internal states that attune to the world around them. Put 

otherwise, the organism engages in a form of Bayesian inference, with respect to the state of 

its ecological environment, based on the situated interaction.  

 

Why inference? The free-energy principle says that living things exist in virtue of gradient 

flows on an information theoretic quantity called surprisal. This is the solution to the Fokker 

Planck equation that furnishes nonequilibrium steady-state. Crucially, the dynamics of 

internal (and active) states at nonequilibrium steady-state can be cast equivalently as flowing 

down surprisal or free-energy gradients. Free-energy scores the atypicality of sensory (and 

active) states, given a (generative) model of how those data was generated (Bogacz, 2017; 

Buckley et al., 2017; Friston, 2020). 
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The equivalence between surprisal and free-energy rests upon the fact that the (expected) 

internal states parameterize beliefs about external states. When this variational density 

corresponds to the density over external states, conditioned on blanket states, surprisal and 

free-energy are the same. Crucially, free-energy is a functional (i.e., function of the function) 

of the variational density and an implicit generative model. The generative model is just the 

nonequilibrium steady-state density over external and blanket states. And can be regarded as 

a description of how external states generate blanket states.  

 

In what follows, we will treat the generative model as an implicit attribute of any 

nonequilibrium steady-state that possesses a Markov blanket. The generative model is 

implicit because the only thing needed to describe self-organization and belief updating are 

the free-energy gradients. This means that the free-energy and its generative model are not 

evaluated or realised explicitly. This is sometimes referred to as entailing a generative model. 

(Friston, 2012; Ramstead et al., 2019b). In short, the free-energy is a functional of two 

densities, the generative model and the variational density encoded by internal states. 

 

For people familiar with information theory, surprisal is also known as self-information, 

where the long-term average of self-information is entropy. This means that nonequilibrium 

steady-state flows counter the entropy production due to random fluctuations. In turn, this 

means that the kind of inference implicit in the flow of autonomous (internal and active 

states) underwrites the existential imperative to maintain a steady-state far from equilibrium. 

 

What the free-energy principle says then, is that so long as a Markov blanket is in play at 

nonequilibrium steady state density, gradient flows on surprisal (a function of states) are 

equivalent to gradient flows on free-energy (a function of sufficient statistics), where the 

sufficient statistics parameterize probability distributions over—or beliefs about—external 

states. This echoes the reasoning above about the conjugate information geometries, in terms 

of dynamics and in terms of statistics. Gradient flow here just means that the autonomous 

states (i.e., internal and active states; see Figure 2) flow down variational free-energy 

gradients. And this, in turn, is just another way of talking about action and perception. This 

scheme, naturalizing action and perception as the gradient flow of active and internal states 

(respectively) on variational free-energy, is known as active inference, the corollary process 

theory of the free-energy principle.  

 

The main take-home message is that the free-energy principle casts the phenotype in two 

complementary ways: as a flow of states at nonequilibrium steady state (described via an 

intrinsic information geometry) and a flow that entails belief updating (described via an 

extrinsic information geometry). In virtue of the active states, the apparent role of internal 

states is not merely to infer the causes of sensory data, but to generate appropriate patterns of 

interaction. This means that internal states could parameterize beliefs about the consequences 

of action, and facilitate the consequences of action for beliefs (Friston, 2020). Generative 

models are thus not designed to merely do the interpretative work of determining the true 

state of the world, they cover the consequences of acting on worldly states.  

 

2.5. Living models: A mechanistic view on goal-directed, probabilistic inference and 

decision-making under the free-energy principle 

 

With this setup in place, we are in a position to appreciate how generative models allow 

organisms to engage in goal-directed, probabilistic inference, and decision-making under the 

free-energy principle. The free-energy principle is often cast as the claim that living systems 
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just are generative models of their environment (Allen and Friston, 2016; Friston, 2011; 

Ramstead et al., 2018; Ramstead et al., 2019a; Ramstead et al., 2019b; van Es, 2020). We can 

now make sense of this seemingly enigmatic claim. The free-energy principle says that 

organisms leverage the statistical structure of their acting bodies to remain in their phenotypic 

states, where that typical structure is interpreted probabilistically, as a joint distribution over 

all systemic states. Decision-making about what to do next is then based on a probabilistic 

inference about “what I must be doing, on the assumption that I am a free-energy minimizing 

creature.” 

 

Hitherto, we have considered inference as an emergent property of self-organization to 

nonequilibrium steady-state. The ensuing Bayesian mechanics is licensed by an equivalence 

between surprisal and variational free-energy. In what follows, we can make a further move 

and describe creatures or particles in terms of the generative model that defines free-energy. 

Once we have the free-energy, we know the gradients. Once we have the gradients, we know 

the gradient flow. Once we have the gradient flow, we can naturalize any embodied exchange 

with the environment. 

 

A typical generative model is depicted in Figure 3. Here, hidden states () correspond to the 

external states that are hidden from the internal states behind the Markov blanket. The crucial 

thing to appreciate is that beliefs about hidden states correspond to a hypothesis—that the 

organism embodies— about the causes of its sensations. These hidden states arguably have 

all the properties that would make them the content of structural representations (Constant et 

al., 2019; Gładziejewski, 2016; Gładziejewski and Miłkowski, 2017; Kiefer and Hohwy, 

2018, 2019; Ramstead et al., 2019b; Williams and Colling, 2017). The hidden states of the 

generative model are parameterized by the internal states of the system (e.g., the brain) and 

encode exploitable information about external states that guide adaptive behavior. We will 

return to this point later.   

 

 
Figure 3. A generative model. Here, sensory states are observed outcomes, denoted s. The generative model 

represents external states as hidden states, denoted . Depicted in this schema are the likelihood mapping from 

hidden states (denoted A), prior beliefs about the probability of state transitions (B), and the prior beliefs about 

initial (hidden) states (D). The G term is an expected free-energy that drives policy selection (π) in elaborated 

generative models that entail the consequences of action (not shown here). The form of this generative model 
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assumes discrete states and steps in time shown from the left to the right. This kind of generative model is 

known as a hidden Markov model or partially observed Markov decision process.  
 

To summarize, the presence of a Markov blanket at nonequilibrium steady state allows us to 

associate a living particle or creature with its internal and blanket states. The flow of the 

internal states acquires a dual aspect, described by conjugate intrinsic and extrinsic 

information geometries. These geometries inherit naturally from the Markovian structure of 

the partition. The intrinsic information geometry describes the thermodynamic behavior of 

internal states (e.g., neuronal dynamics). However, the internal states also are equipped with 

an extrinsic geometry, which pertains to the probability distributions over, or beliefs about, 

external states that are parameterized by internal states. A gradient flow of active and internal 

states on free-energy (action and perception), effectively implements active inference; 

namely, inferring external states and planning what to do next. This completes our technical 

review of the free-energy principle.  

 

 

3. Deflationary and fictionalist accounts of neural representation 

 

Having reviewed the technical core of the free-energy principle, we turn to the question of 

which interpretive frame—from cognitive science—is best positioned to make sense of its 

representational commitments (or lack thereof). Since realist accounts have been reviewed 

extensively elsewhere, we focus on two novel non-realist accounts.   

 

3.1. A deflationary approach to neural representation 

  

In this section, we examine an interesting position that accommodates aspects of realism and 

non-realism; namely, the function-theoretic, deflationary account of representation (Egan, 

2019; Egan, 2018); for a related but distinct account focused on the contents of the brain, but 

which does not appeal to information geometry under the free-energy principle, see Wiese 

(2017). We argue that a suitably amended version of this position yields the best 

interpretation of representations under the free-energy principle.  

 

A deflationary account of representation (Egan, 2019; Egan, 2018) blazes a path between 

realism and non-realism: it is realistic about the existence of neural representations as 

information processing mechanisms that can be characterized using computational methods, 

but anti-realist about the cognitive contents of these representations. The deflationary account 

is the view that semantic contents ascribed by scientists merely have an facilitatory role in the 

explanation of a cognitive capacity; and that whatever aspect of content is explanatorily 

useful can be specified mathematically. The account builds upon two premises: (1) that 

representations are not individuated or picked out by their contents, but instead by the 

mathematical function that it helps to realize; (2) that this content is not essentially 

determined by a naturalistic relation between states and the structure of the target (i.e., some 

target domain in the world), but instead by what the mathematical contents are.  

 

Thus, a deflationary account of representations argues (1) that a computational theory of a 

cognitive capacity must provide a functional theoretic characterization of that capacity, where 

(2) for the sake of scientific practice, this can be accompanied by an ‘intentional gloss’ or 

semantic interpretation, “content is the ‘connective tissue’ linking the sub-personal 

mathematical capacities posited in the theory and the manifest personal-level capacity that is 

the theory’s explanatory target” (Egan, 2019, p. 253) 
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The deflationary account argues that the explanatory work accomplished by representational 

theories of cognition consists in providing mathematical (functional-theoretic) analyses of a 

given capacity; and that this computational theory is, more often than not, accompanied by a 

cognitive or intentional interpretation, which plays a heuristic role, not an explanatory one 

(Egan, 2019; Egan, 2018). On this account, the contents of a cognitive capacity can be 

explained naturalistically by appealing to the mathematical functions that are realized by a 

system. This mathematical content is essential to the computational characterization of the 

physical process, "if the mechanism computed a different mathematical function, and hence 

was assigned different mathematical contents, it would be a different computational 

mechanism” (Egan, 2019, p. 252). This allows for a computational description of the system 

that is not yet related to a cognitive activity in a certain environment. 

 

Determining content is, on this account, relatively easy, as the mathematical functions 

deployed in computational models can be understood independently of their use by the 

system being studied, i.e., independently of the process that is modeled. This happily 

responds to the most common lacuna of naturalistic representational theories, which is to 

presuppose the very content they seek to explain by appealing to scientific practice. The 

characterization of the mathematical content of a neural representation is harnessed in the 

computational theory proper, which is composed of five elements (Egan, 2019; see Figure 3): 

  

1. A mathematical function that is realized by the cognitive system; 

2. Specific algorithms that the system uses to compute the function; 

3. Representational structures that are maintained and updated by the mechanism;  

4. Computational processes that are defined over representational structures.  

5. Ecological component: physical facts about the typical operating conditions in which 

the computational mechanism typically operates. 

  

To this, it is often added a heuristic cognitive content (Egan, 2019). This cognitive content 

corresponds to observer-based ascriptions of semantics to neural vehicles, often based on 

reliable covariations between the responsiveness of neural tissue and stimuli presented to that 

tissue in experimental settings. On the deflationary account, these cognitive contents are an 

“intentional gloss” on the mathematical characterization provided by the computational 

theory, which does all the heavy lifting, in explaining the capacity or process under 

investigation. The environment properties that scientists take to the mechanism to be 

representing, on this account, are not an essential characterization of the device or 

computational theory. Rather, they are simply ascribed to facilitate the explanation of a 

relevant capacity, i.e., they are an intentional gloss on the mathematical content. 
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Figure 4. The deflationary account of the content of a representation. This figure depicts the main 

components of the semantic content of neural representations according to the mathematical-deflationary 

account of content (Egan, 2019). The computational component of the representational content (the 

computational theory proper) is interpreted in a realist sense. The computational component of the content 

comprises (1) a mathematical function, (2) specific algorithms that realize this function in the system, (3) 

physical structures that bear representational contents; (4) computational processes that secure these contents,  

and (5) normal ecological conditions under which the system can operate. The cognitive content is taken in an 

anti-realist sense, as a kind of explanatory gloss that only has an explanatory, instrumentalist role, as the 

interpretation given to the neural representation by the experimenter. 

 

The pressures inherent to the problem of the determination of content brings the proponents 

of non-realist views to downplay the role traditionally attributed to cognitive content (Egan, 

2019; Sprevak, 2019). On these views, and against the dominant view in the cognitive 

sciences, neurosciences, and philosophy, cognitive content is not the mark of cognition and 

does not stand in a naturalistic relation between internal states or vehicles of a representation 

and the structure of the target domain that it models. Specifically, the cognitive components 

that relate the computational mechanism to actual things in the world are not part of an 

essential characterization of cognitive activity on the deflationary account; they help define 

the explanandum but do not figure in the explanation itself. Instead, cognitive or semantic 

content is merely ascribed by experimenters to facilitate the explanation of a relevant 

capacity. In a nutshell, what we intuitively take to be the bona fide semantic content of a 

representation turns out to be a mere gloss that only has a heuristic role in the construction of 

a scientific explanation.  

 

This runs the risk of trivializing cognitive content—and the intentional relation that it 

purports to naturalize. The deflationary model does offer an approach to explanation in the 

sciences of the mind that is perspicuously informative and explanatorily useful to guide 

research practices in neuroscience. But this comes at a cost. In the deflationary account of 

content, the role attributed to cognitive content becomes so weakened that it is no longer 

essential to characterizing the cognitive activity; the only explanatory use of cognitive 

content is to help scientists systematically make sense of the normal operating conditions in 

which mathematical descriptions of various mechanisms are deployed. Ultimately, taking the 

deflationary option seems to undermine the supposed motivation for positing mental 

representations in the first place, and turn out to dovetail with radical enactivism (Hutto and 

Myin, 2017; Hutto and Myin, 2013). 
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3.2. Fictionalism and models in scientific practice 

 

Other accounts are available that have a non-realist and perhaps less resolutely anti-realist 

flavor (Salis, 2019; Sprevak, 2013; van Es, 2020). Fictionalist or instrumentalist accounts in 

the philosophy of science suggest that scientific models are useful fictions: they are not 

literally true, but “true enough” or “good enough” to make useful predictions about, and act 

upon, the world. A fictionalist account of neural representations suggests that they are useful 

functions used by scientists to explain intentional behavior: they are models used by 

scientists.  

 

In the philosophy of science, model-based approaches (Giere, 1999, 2010; Van Fraassen, 

1980) suggest that the work of science consists in the comparison of different sorts of models. 

The notion of “empirical adequacy” or, heuristically, of the “true enough” occupies a center 

stage in the debate in epistemology and the philosophy of science (Elgin, 2017; Friend, 2019; 

Giere, 1999, 2010; Salis, 2019; Van Fraassen, 1980). This notion allows some degree of 

divergence between what the model postulates and what we find in reality; it entails that 

models need not be veridical representations of states of affairs. Scientific progress often rests 

on idealization, and successful models often deliberately contain “felicitous falsehoods” that, 

while not depicting the world as it “really is,” do have value and explanatory power. 

Examples of this kind of heuristic use of models include the ideal gas model in statistical 

mechanics and the Hardy–Weinberg model in genetics, both of which occupying central roles 

in their respective disciplines, but which are not literally true descriptions.   

 

On this account, models play a significant role in the understanding of a subject matter, not 

despite the fact they do not accurately reflect the world’s causal structure, but precisely 

because they are only “true enough” – they allow researchers to focus on the features that are 

relevant to the hypothesis being tested, by excluding non-relevant features that would serve 

only the purpose of satisfying representational ambitions (Giere, 1999, 2010). It is worth 

noting that modeling is a non-reductive context of inquiry, i.e., a target system that is studied 

using modeling methods does not have to be reduced to what is modeled (Weiskopf, 2018).  

 

The aim of an explanation is to generate understanding, which, beyond brute, isolated facts, 

concerns a topic, a discipline, or a subject matter. Gaining understanding from explanation 

means to have epistemic commitment to a comprehensive body of information that, grounded 

in facts, entails responsiveness to reasons or evidence, thereby enabling nontrivial inference 

regarding the topic the information pertains to (Elgin, 2017; Frigg and Nguyen, 2017; Grimm 

et al., 2016). This reasoning suggests that a full appreciation of science does not necessarily 

depend on a realist interpretation of models (Van Fraassen, 1980). Models are useful, 

sometimes independently of their capacity to explain a phenomenon. If a model provides 

explanations that do not accurately represent the causes of their target system, it does not 

necessarily follow that these explanations are not real explanations. In science, models can be 

used, for instance, to build still further models (Peschard, 2011). Thus, not only are there non-

explanatory uses of models (i.e., uses that do not leverage their representational capacities per 

se) (Isaac, 2013); but also, many kinds of models provide explanations that do function as 

accurate representations of the properties and dynamics of their target system (Rice, 2015). 

 

A subtle question is whether the generative models that figure in the free-energy principle 

and active inference are to be interpreted in a realist or instrumentalist way. That is, are the 

generative models of the free-energy principle models used by experiments to explain the 
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behavior of cognitive systems, or are such models literally being leveraged by organisms to 

remain alive and to act adaptively? This ambiguity has been highlighted in a recent paper 

(van Es, 2020). We turn to this issue next, as we critically amend the deflationist conception 

of neural representation. 

 

 

4. A variational semantics: From generative models to deflated semantic content 

  

4.1. A deflationary account of content under the free-energy principle  

 

In this last section, we combined elements of the deflationary and the instrumentalist 

accounts of neural representations to propose a kind of organism-centered fictionalism or 

instrumentalism. We expand upon the ecological component of deflated mathematical 

content, which we argue leads to a naturalistic theory of intentionality: a formal theory of 

semantic content based on the free-energy principle. The key to formulating a robust 

mathematical theory of semantic content, one capable of naturalizing intentionality, is to 

notice that the free-energy principle essentially tells a story about the mutual attunement 

between a system and its environment.  

 

In our view, the deflationary view of representational contents downplays the role of the fifth, 

ecological component of the computational theory proper. We argue that formulating the 

ecological component using the resources of the free-energy principle allows us to salvage 

the intentionality of semantic content—and thereby recover a robust conception of content 

tied to the domain to which it is intentionally related (or about)—without appealing to the 

artificial intentional gloss of cognitive content. The resulting view is of a semantics that 

emerges naturally from the fact that the system we are considering is equipped with a dual 

information geometry of states and beliefs.  

 

The formalism that underwrites the free-energy principle licenses a crucial observation: 

namely, that the mathematical structures and processes in play are defined over a state space 

and, implicitly, over an associated belief space or statistical manifold (Constant et al., 2019). 

The mathematical framework of the state space formalism means that the system’s dynamics 

are defined over states of the system; and that as a consequence of the associated extrinsic 

information geometry, we can always associate a semantics to this intrinsic description.  

 

This semantics comes from the ‘beliefs’ built into the extrinsic information geometry. The 

term ‘belief’ is used in the sense of ‘belief propagation’ and ‘Bayesian belief updating, which 

are just ways of talking about probability distributions or densities. ‘Beliefs’ in Bayesian 

terms are posteriors and priors, corresponding to the probability distributions (a world of 

possible states) that are shaped by physically realized states (i.e., the internal states that 

parameterize distributions over external states). They may or may not correspond to 

propositional beliefs.   

 

It is often noted that one does not obtain semantic content from mere systematic covariation 

(Hutto and Myin, 2013; Kirchhoff and Robertson, 2018; Ramsey, 2007). However, this 

argument can be defeated by noting that, under the free-energy principle, for any living 

system, there is an implicit semantics at play that is baked into the system’s dynamics. 

Importantly, that is just saying that the system’s internal dynamics have a probabilistic aspect 

(and extrinsic information geometry) that connects it to an embedding system. Via the 

Markovian partition, we can always associate this trajectory of states on internal (statistical) 
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manifold to a semantics – a formal semantics that falls out of the systemic dynamics and that 

can be characterized purely mathematically.   

 

Thus, we obtain a bona fide formal semantics from interactions between the system and its 

context, as well as the histories of environmental interactions between an organism and its 

niche. What follows from our account is a somewhat more ‘realistic’ deflationary position, a 

weakly deflationary position according to which the content of a representation is indeed the 

mathematical function that it realizes, but where this computational theory proper entails an 

implicit semantics.  

 

4.2. From a computational theory proper to a formal semantics 

 

Let us now take stock. We have retained the general description of representational content 

from the deflationary account. We now use this deflationary model to specify the 

computational theory proper that leads to a formal semantics via the free-energy principle. 

 

The computational theory proper has five components, which we can map to elements of the 

free-energy formulation. (1) Under the free-energy principle, the mathematical function that 

is realized by the (gradient flows of the) cognitive system is a free-energy functional that 

measures the divergence between the posterior and variational densities. (2) The specific 

algorithms that the system uses to compute this function is gradient descent on variational 

free-energy. (3) Echoing the literature on structural representations, the representational 

structures that are maintained and updated by the mechanism are the internal states of the 

system. (4) The computational processes that are defined over these representational 

structures, and which update and maintain them, are implemented as active inference. (5) 

Finally, the ecological component is provided by the dual information geometry.  

 

Figure 4 reformulates Egan’s (2019) account deflationary account of content in light of the 

free-energy principle. We amend the deflationary account to highlight that it provides us with 

a fully naturalistic, mathematical account of the origin of semantic content, in terms of a 

calculus of beliefs and intentions that is the counterpart of the intrinsic description of the flow 

of internal states. Note that the external states that figure in the generative model implicitly 

define the ecological component – and this, purely mathematically. This overcomes the 

problem of naturalizing intentionality by appealing purely to well understood mathematical 

and physical processes and properties. 

 

 

 
 
Figure 5. A formal semantics under the free-energy principle. Bayesian cognitive science does not have to 

commit to the classic notion of representation carrying propositional semantic content.  The free-energy 

principle allows us to formulate a formal semantics. “Representations” under the free-energy principle are, in 
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essence, formalized under the physics of flow (e.g., dynamical systems theory) and information geometry, and 

they are better understood as internal structures enabling the system to parse its sensory stream (i.e., as an 

ontology). Here, we relate the main components of the deflationary account of content (Egan, 2019) to the free-

energy formulation. The mathematical function that underwrites the free-energy principle is a variational free-

energy functional. The specific algorithm is gradient descent (i.e. flow) on this free-energy functional, which 

defines the gradients on which the system ‘surfs’ until it reaches a nonequilibrium steady state. Representational 

structures (i.e., the structures that embody or carry out these processes) correspond to the internal states of a 

system and associated intrinsic information geometry. The computational process itself is active inference, 

which provides an overarching framework to use the generative model for policy (action) selection. Finally, the 

ecological component is defined by the implicit semantics that is entailed by the dual (intrinsic and extrinsic) 

information geometries: via the associated extrinsic information geometry, the system looks as if it behaves as a 

functional of beliefs about external states.  
 

4.3. Phenotypic representations? Ontologies?  

 

Our last move is to leverage the fictionalist account to nuance the claim that the account just 

rehearsed vindicates the neural representations construct. This nuance is on two counts: with 

regards to the terms ‘neural’ and ‘representations’.  

 

First, the term ‘neural’ should be replaced by ‘phenotypic’, to reflect the expanded realization 

base of the vehicles of deflated, mathematical content under the free-energy principle. The 

spirit of deflated neural representationalism is vindicated by the free-energy principle. We 

can indeed assign mathematical content to structures that are internal to an agent, which come 

to encode or carry semantic content when the right ecological conditions are in play (thanks 

to the dual aspect information geometries of living systems). However, the internal states that 

play this role are very far from classical representations in the symbolic or connectionist 

traditions. They essentially comprise all internal states of a system and so are not strictly 

neural. This has the slight consequence that the neural representationalist intuition is 

vindicated by its traditional adversary, the embodied-enactive approach to cognition: if there 

is anything like structural representations under the free-energy principle, they correspond to 

the system's boldly states and are harnessed, maintained, and updated through histories of 

adaptive action. 

 

Second, with respect to the term ‘representation’, we note that under the free-energy 

principle, the deflated representational structures may best be understood as the ontology that 

system brings to bear in understanding its environment; that is, the set of hypotheses or 

categories that it uses to parse the flow of its sensory states.  

 

Heuristically, we say that the free-energy principle licenses the claim that the system believes 

that this or that environmental factor is causing its sensory impressions. In light of the 

discussion above, it appears more accurate to say that, when it is in its usual ecologically 

valid operating conditions, a system equipped with such a partition that exists at 

nonequilibrium steady state will act in a way that looks as if it has an intentional relation with 

some features of its environment. We now know what this “as if” character amounts to: it 

refers to the duality of information geometries and thereby the duality of possible 

descriptions (in terms of a flow towards nonequilibrium steady state and in terms of belief 

updating under a generative model).  

 

The free-energy principle descends from a modeling strategy called generative modeling. In 

this scheme, we write down alternative probabilistic models of the process that caused our 

data, and we score the probability of each model as a function of how well it explains the 

variance in our data. This score is the variational free-energy. Crucially, as discussed in the 
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previous section, these models are hypotheses about the structure of the process that caused 

our data. The hidden or latent (c.f., external) states in these models are essentially guesses 

about the causes of sensory data. Crucially, they need not reflect the existence of anything in 

reality (Baltieri and Buckley, 2019; Friston, 2020; Friston et al., 2020). This is a subtle but 

important point. The external states exist only relative to the generative model and 

accompanying phenotype, and only play a role so long as they subtend the generation of 

adaptive, contextually appropriate behavior. 

 

What is being described by the formalism that underwrites the free-energy principle, then, is 

less a story about how an internal reconstruction of the external world is constructed in the 

brain, as traditional (symbolic and connectionist) accounts of neural representations would 

have it. What is at stake is more like the ontology with which a system is equipped (Kohn, 

2013). An ontology, in this sense, is the set of semantic structures (a large part of which are 

learned through experience from immersion in specific contexts) that a living creature uses, 

implicitly or explicitly, to parse and order the flow of its sensory states (Kirmayer, 2018; 

Kirmayer and Ramstead, 2017; Ramstead et al., 2016; Veissière et al., 2020).  

 

We are effectively combining the deflationary account and the fictionalist or instrumentalist 

account to provide an interpretation that might be called organism-centered functionalism. 

The organism’s phenotype—its moving and acting body—is a nonequilibrium steady state 

density that can be interpreted as a manifold towards which the flow of system's states settles 

on average and over time; and also as a joint probability distribution over all the variables of 

the system. The organism’s behavior is driven by these density dynamics: by the tendency to 

settle towards its nonequilibrium steady state density, which is implemented as a gradient 

descent on variational free-energy (a.k.a. active inference).  

 

This is just another way of saying that the actions selected by the organism are driven by the 

statistical structure of its phenotype and interactions with the environment (Ramstead et al., 

2019). The organism leverages its own statistical structure in driving its action selection. This 

dovetails with embodied-enactive approaches to cognition and effectively constitutes a new 

take on morphological, developmental, and evolutionary computation (Fields and Levin, 

2020; Kuchling et al., 2019) and knowledge-driven skillful action (Hipolito et al., 2020). 

 

While our aim here was to explore the consequences of non-realist approaches to cognition, 

we note that the pragmatist interpretation that we propose may be compatible with certain 

realist, structural representationalist accounts, where content is determined by functional 

isomorphism, thereby illuminating the role of structural representations using a form of 

functional role semantics (Kiefer and Hohwy, 2018, 2019; Kiefer, 2020). These accounts are 

explicitly developed in a direction that does not require the represented system to actually 

exist in reality, which coheres with the account of ontologies just presented. The free-energy 

principle warrants the claim that there are phenotypic states that carry semantic content; here, 

we articulated a computational theory proper for such mathematical semantics. What we call 

these states, at the end of the day, may be a matter of preference.  

 

 

5. Conclusion 

 

In this paper, we aimed to assess whether the construct of neural representations plays an 

explanatory role under the variational free-energy principle, and to determine which 

philosophical position about the ontological and epistemological status of the representations 
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construct is most appropriate for that theory. We examined non-realist approaches, rather 

than the more commonly discussed realist ones. We started by a deflationary account of 

mental representation, according to which the explanatorily relevant contents of neural 

representations are mathematical, and a fictionalist account, according to which 

representations are scientifically useful fictions. We hope to have shown that under the free-

energy principles, even quite minimalist, deflationary accounts of the kind of content carried 

by neural representations warrant an appeal to a semantic content, which echoes (while being 

distinct from) the realist position. We hope to have shown that, by drawing on a modified 

fictionalist account, the formal semantics derived from the free-energy principle can provide 

us with an explanation of the aboutness or intentionality of living systems.  

 

Where does this leave us with regard to our initial questions? The upshot of our discussion is 

that, under the free-energy principle, there indeed are structures internal to an organism that 

act as the bearers of semantic content. These structures can be specified mathematically in 

terms of computational theory proper, as held by the deflationary account. However, by 

virtue of the dual information geometries in play under the free-energy principle, this purely 

mathematical account comes with an implicit semantics: the set of hypotheses about 

underlying causal factors (or the ontology) with which the system parses and makes sense of 

its sensory stream. This might be seen as vindicating the structural representationalist account 

discussed in the introduction, albeit with a critical twist: those structures that bear content are 

not merely neural representations, but indeed phenotypic representations (if they are 

representations at all), for it is all the internal states of an organism, given the Markovian 

partition,  that bear this content.  
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Technical appendix 

 

1. The Langevin formalism and density dynamics 

 

One can express a random dynamical system in terms of the flow of states over time that are 

subject to random fluctuations (please see glossary for a definition of variables): 

 

( ) ( , )x f x  = +          (1.1) 

 

This is a general specification of (Langevin) dynamics that underwrites nearly all of physics 

(Ao, 2008; Seifert, 2012; Sekimoto, 1998). We are interested in systems that have measurable 

characteristics, which means that they possess an attracting set or manifold, known as a random 

or pullback attractor (Crauel and Flandoli, 1994). This means that if we observe the system at 

a random time, there is a certain probability of finding it in a particular state. This is the 

nonequilibrium steady-state density (Seifert, 2012). 

 

One can now use standard descriptions of density dynamics to express the flow of states as a 

gradient flow on self-information or surprisal (Jaynes, 1957; Jones, 1979; MacKay, 2003; 

Tribus, 1961). This flow is the steady-state solution to Fokker Planck equation that 

accompanies (1.1) (Frank, 2004; Frank et al., 2003; Kerr and Graham, 2000; Kim, 2018; Tomé, 

2006).  

 
( ) ( ) ( )

( ) ln ( )

f x Q x

x p x

= − 

 = −
        (1.2) 

 

This equation says that, on average, the states of any random dynamical system with an 

attracting set evince a gradient flow on surprisal; namely, the negative logarithm of the 

nonequilibrium steady-state density (Friston and Ao, 2012; Yuan et al., 2010). The gradient 

flow effectively counters dispersion due to random fluctuations, such that the probability 

density does not change over time. See Figure 4. 

 

 
 

Figure 6. Density dynamics and pullback attractors. This figure depicts the density or ensemble dynamics of 

random dynamical systems that can be described via the Langevin equation. The right panel represents an arbitrary 

random attractor (a pullback attractor). One can think of this pullback attractor in two ways. First, the attractor 

can be cast as representing the trajectory of systemic states over time (in this case, two states are represented). 
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The crucial feature of this trajectory is that – after sufficient time has passed – it will revisit specific regions of 

state space, which make up the pullback attractor itself. The second interpretation is probabilistic: it casts the 

attracting set as a probability density over the states in which the system can be found when it is sampled at 

random. The Fokker-Planck equation allows us to describe the evolution of this probability density. This, in turn, 

licences a solution to the Fokker-Planck equation. The consequence of this is that we can establish a lawful 

relationship between the probability density and the flow of states at any point in the system’s state space. This 

solution describes the flow of systemic states in terms of gradients of log density or surprisal and in terms of the 

amplitude of random fluctuations. In turn, the Helmholtz decomposition allows us to express the nonequilibrium 

steady-state solution in terms of two orthogonal components. One of these is a curl-free gradient flow that depends 

on the amplitude of random fluctuations Γ. This component rebuilds probability gradients, effectively countering 

the effect of random fluctuations on states (i.e., countering their dispersion). The other component is a divergence-

free (or solenoidal) flow that circulates on isoprobability contours and that depends upon an antisymmetric (skew) 

matrix Q. The figure depicts the flow around the peak of a probability density that has a Gaussian or normal form. 

See (Friston, 2019; Friston and Ao, 2012) for technical details.  

 

The above equation holds (nontrivially) for the internal, blanket, and external states. If we just 

focus on internal and active (i.e., autonomous) states, we have the following flows. Note that 

as in (1.2) Q  and   denote antisymmetric and leading diagonal matrices, respectively. 

 

( ) ( ) ( )

{ , }

{ , } { , }

f Q

a

s b

    

 

  

= −  

=

= =

        (1.3) 

 

This means anything a system with a Markov blanket must evince the above gradient flows. In 

turn, this means that internal and active states will look as if they are trying to minimise the 

same quantity; namely, the surprisal of states that constitute the thing, particle, or creature. 

These are the internal and blanket states, i.e., particular states.  

 

2. Bayesian mechanics 

 

If internal and external states are conditionally independent, then for every given blanket state 

there is an expected internal state and a conditional density over external states. In other words, 

there must be a one-to-one relationship between the average internal state of a particle (or 

creature) and a probability density over external states, for every given blanket state. This 

means that we can express the posterior or conditional density over external states as a 

variational density that is parameterised by internal states: 

 

( ) ( | ) ( | )

( ) [ | ]

q p b p

b E b

   



= =μ

μ
        (1.4) 

 

This allows us to interpret the flow of autonomous states { , }a=α μ  (i.e., action and perception) 

as a gradient flow on variational free energy.  
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( ) ( )

( ) [ ( , )] [ ( )]

( ) [ ( ) || ( | )]

[ ( | )] [ ( ) || ( )] ( )

q

energy entropy

surprisal bound

q

inaccuracy complexity

f Q F b

F b E b H q

b D q p b

E b D q p b

 

 

 

  

= − 

 −

=  +

=  + = 

α α

μ

μ

μ

      (1.5) 

 

This functional can be expressed in several forms; namely, an expected energy minus the 

entropy of the variational density, which is equivalent to the self-information associated with 

blanket states (i.e., surprisal) plus the KL divergence between the variational and posterior 

density (i.e., bound), which, in this instance, is zero by (1.4). In turn, this can be decomposed 

into the expected log likelihood of blanket states (i.e., accuracy) and the KL divergence 

between posterior and prior densities (i.e., complexity). 

 

The second thing that (1.4) brings to the table is an information geometry and attending calculus 

of beliefs. From now on, we will associate beliefs with the probability density above that is 

parameterised by (expected) internal states. Note that these beliefs are non-propositional, where 

‘belief’ is used in the sense of ‘belief propagation’ and ‘Bayesian belief updating’ that can 

always be formulated as minimising variational free energy (Beal, 2003; Dauwels, 2007; 

Yedidia et al., 2005). To license a description of this conditional density in terms of beliefs, we 

can now appeal to information geometry (Amari, 1998; Ay, 2015; Caticha, 2015; Kim, 2018). 

Note the variational free energy—and its gradients—are functionals of a generative model 

( , ) ln ( , )b p b  = −  in the form of a surprisal over external and blanket states. This means 

that the nonequilibrium steady-state density over the states can be read as a generative model 

that underwrites autonomous gradient flows. 

 

3. Information geometry and beliefs 

 

Any statistical manifold is necessarily equipped with a unique metric tensor, known as the 

Fisher information metric (Amari, 1998; Crooks, 2007; Kim, 2018).  

 
2

( ) [ ( ) || ( )] | [ ln ( ) ln ( )]

i j

ij

q

d g d d

g D q q E q q         

 

       =

=

= =  
   (1.6) 

 

Here, d  is the information length associated with small displacements on the statistical 

manifold d  = −  induced by a probability density ( )q  . The information length scores 

the number of different probabilistic or belief states encountered in moving from one part of a 

statistical manifold to another. 

 

If we return to the independencies induced by the Markov blanket, Equation (1.4) tells us 

something fundamental. The (expected) internal states have acquired an information geometry, 

because they parameterise probabilistic beliefs about external states. In short, there is a unique 

geometry in some belief space that can be associated with the internal (physical) state of any 

particle or creature. Furthermore, we know that the gradient flows describing the dynamics of 

internal states can be expressed as a gradient flow on a variational free energy functional (i.e., 
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function of the function) of beliefs: see (1.5).  

 

Recall from above, that an information geometry is a property of any statistical manifold. The 

parameters of the probability density over the internal states are thermodynamic variables   

(e.g., pressure) that underwrite thermodynamics or statistical mechanics (Crooks, 2007; 

Holmes et al., 2019). We will refer to the accompanying information geometry as an intrinsic 

geometry, because pertains to the internal states per se. From our point of view, this means 

there are two information geometries in play with the following metrics:  

 

( ) [ ( ) || ( )] | intrinsic

( ) [ ( ) || ( )] | extrinsic

g D p p

g D q q

     

     

  

  

   =

   =

= 

= 
     (1.7) 

 

First, there is an intrinsic information geometry based upon thermodynamic variables. This 

forms the basis of statistical mechanics in physics. At the same time, there is an information 

geometry in the space of internal states that refers to belief distributions over external states. 

This is the extrinsic information geometry that inherits from the Markovian conditions that 

define, stipulatively, autonomous states (via their Markov blanket). The extrinsic geometry is 

conjugate to the intrinsic geometry, in the sense that they supervene on the same Langevin 

dynamics.  
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Glossary of terms and expressions 

 

(Note: a.u. stands for arbitrary units, e.g., metres (m), radians (rad), etc.) 

 

Expression Description Units 

Variables   
( )   Random fluctuations a.u. (m) 

{ , , , }x s a X =   Markovian partition into external, 

sensory, active, and internal states 

a.u. (m) 

   
{ , }a A =   Autonomous states a.u. (m) 

{ , }b s a B=   Blanket states a.u. (m) 

{ , }b P =   Particular states a.u. (m) 

E  External states a.u. (m) 

m Bk T =  Amplitude (i.e., half the variance) 

of random fluctuations 

J·s/kg 

Q  Rate of solenoidal flow J·s/kg 
2: j i

ijd d g d d = =  Information length  nats 

ij i j
g E

 

  
=    

 
Fisher (information metric) tensor a.u. 

Functions, functionals and 

potentials 
 

 

[ ] [ ] ( )pE x E x xp x dx= =   Expectation or average  

( ) : Pr[ ] ( )
A

p x X A p x dx  =   Probability density function 

parameterised by sufficient 

statistics   

 

( )q μ
 Variational density – an 

(approximate posterior) density 

over external states that is 

parameterised by internal states 

 

   
( ) ( )F b b   Variational free energy free energy 

– an upper bound on the surprisal of 

particular states 

nats 

Operators   

1 2

( ) , ,x x
x x x

   
  = =  

   
 

Differential or gradient operator (on 

a scalar field) 

 

Entropies and potentials   
( ) ln ( )x p x = −  Surprisal or self-information nats 

[ ( ) || ( )] [ln ( ) ln ( )]qD q x p x E q x p x= −  Relative entropy or Kullback-

Leibler divergence 

nats 
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