
NEUROSCIENCE

REVIEW ARTICLE
M. Heilbron, M. Chait / Neuroscience 389 (2018) 54–73
Great Expectations: Is there Evidence for Predictive Coding in

Auditory Cortex?

Micha Heilbron a,b* and Maria Chait c
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Abstract—Predictive coding is possibly one of the most influential, comprehensive, and controversial theories of
neural function. While proponents praise its explanatory potential, critics object that key tenets of the theory are
untested or even untestable. The present article critically examines existing evidence for predictive coding in the
auditory modality. Specifically, we identify five key assumptions of the theory and evaluate each in the light of
animal, human and modeling studies of auditory pattern processing. For the first two assumptions – that neural
responses are shaped by expectations and that these expectations are hierarchically organized – animal and
human studies provide compelling evidence. The anticipatory, predictive nature of these expectations also enjoys
empirical support, especially from studies on unexpected stimulus omission. However, for the existence of sep-
arate error and prediction neurons, a key assumption of the theory, evidence is lacking. More work exists on the
proposed oscillatory signatures of predictive coding, and on the relation between attention and precision. How-
ever, results on these latter two assumptions are mixed or contradictory. Looking to the future, more collabora-
tion between human and animal studies, aided by model-based analyses will be needed to test specific
assumptions and implementations of predictive coding – and, as such, help determine whether this popular grand
theory can fulfill its expectations.
This article is part of a Special Issue entitled: Sensory Sequence Processing in the Brain. � 2017 The Author(s). Published by

Elsevier Ltd on behalf of IBRO. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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INTRODUCTION

How does the brain make sense of the world? A popular

theory addressing this question is predictive coding

(PC). Simply put, PC states that the brain infers what is

‘out there’ by constantly predicting what is out there,

and then improving those predictions. More technically,

PC proposes that the brain constructs a hierarchical,

generative model of the world – a model capable of

generating patterns of activity ‘from the top-down’ that

external stimuli would elicit ‘from the bottom-up’. The

perceiving brain continuously tries to ‘fit’ such models by

predicting the incoming sensory input. Bad fits signal

prediction errors that leverage increasingly accurate
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estimates (recognition); and, over time, a modified

model (perceptual learning).

As a biological basis for Bayesian theories of

perception and cognition, PC offers compelling

explanations for phenomena from psychology (Knill

and Pouget, 2004) neuroanatomy (Friston, 2005) and

electrophysiology (Rao and Ballard, 1999). Hailed by

some as providing a ‘grand unified theory of the brain’

(Friston, 2010) the framework has drawn a considerable

amount of attention (Hohwy, 2013; Clark, 2013, 2016).

But predictive coding faces many challenges. By ascrib-

ing a central role to top-down expectations of bottom-up

inputs, PC advocates a radical break with traditional

feed-forward accounts of perception. A break, some

worry, too radical since core tenets of the theory are,

at best, untested (Egner and Summerfield, 2013) or,

at worst, untestable (Kogo and Trengove, 2015).

Initially, PC was conceptualized in the context of

visual processing (Rao and Ballard, 1999; Lee and

Mumford, 2003). However, the auditory system quickly

became a popular test bed, with many studies capitaliz-

ing on the auditory Mismatch Negativity (MMN;
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Näätänen et al., 1978, 2007), perhaps the most well-

studied neural signature of surprise or error processing.

The present review critically evaluates the evidence for

PC in auditory cortex. In keeping with this Special

Issue, we will limit ourselves to relatively low-level audi-

tory patterns (as opposed to e.g. speech and language;

but see Arnal et al., 2011; Sohoglu et al., 2012;

Gagnepain et al., 2012). There exist several recent

reviews of predictive representation in audition

(Winkler and Schröger, 2015; Schröger et al., 2014,

2015; Winkler and Czigler, 2012; Winkler et al., 2009).

In contrast, the present analysis specifically attempts

to delineate key assumptions shared by different PC

models (cf. Rao and Ballard, 1999; Rao, 2005;

Friston, 2005, 2010; Bastos et al., 2012; Spratling,

2008a,b, 2010; see Spratling, 2015 for review) and

assess whether these assumptions are supported by

empirical evidence in the auditory modality.

In the next section we will briefly recap these basic

assumptions and their empirical ramifications, before

evaluating them in more detail in the light of recent

evidence.
PREDICTIVE CODING IN CORTEX –
FOUNDATIONS AND ASSUMPTIONS

Sensory cortex is organized hierarchically. At each

processing level, neurons integrate information from

multiple neurons at the level below, thus encoding

increasingly abstract information over ever larger

temporal and spatial scales. But cortex is reciprocally
Fig. 1. Different arrangements of error and expectation neurons in auditor

Columns denote hierarchically arranged cortical columns corresponding to p

standard PC (left), errors flow upward and predictions downward; error units

units with deep layers (V/VI). Prediction units at higher levels can suppre

connections (black circles). In Biased Competition models of PC (Spratling

computed at input layer IV, prediction units suppress error units only via in

(black arrows). Please note that this schematic is intended to illustrate differe

omitted, such as the distinction between excitatory and inhibitory populations

exposition of the a models, and possible physiological mappings, see Shipp

auditory cortex was adapted from Winer (1985).
connected, so neurons also receive input from the level

above (Felleman and van Essen, 1991).

Traditionally, higher levels were assumed only to

modulate lower levels, e.g. by prioritizing the processing

of certain inputs over others. But in PC, following the

proposal by Mumford (1992), the abstract information at

higher levels informs and potentially drives neurons at

lower levels by signaling a (prior) ‘best guess’ of their

activity. At the lower level, the difference between the pre-

dicted and actual activity elicits a prediction error that is
propagated back to the level above, where it is used to

generate a new and improved (posterior) estimate.

This routine is repeated, simultaneously throughout the

hierarchy, until the most likely estimate is reached and

the stimulus is perceived.

In this scheme – arguably the standard version of PC

(Rao and Ballard, 1999; Friston, 2005; Bastos et al.,

2012) – a strict cortical asymmetry exists between back-

ward connections (carrying predictions) and forward con-

nections (carrying prediction errors). Since forward

connections originate in superficial (II/III) pyramidal neu-

rons, and backward connections originate in deep (V/VI)

pyramidal neurons (Felleman and van Essen, 1991) this

asymmetry has a straightforward anatomical conse-

quence: prediction neurons reside in deep layers, and

error neurons in superficial layers (Fig. 1).

Note that this ‘standard model’ is not the only

implementation of PC. Other models propose different

arrangements, some dispensing with the functional

asymmetry between forward and backward connections,

and locating prediction and error neurons differently
y cortex implied by different formulations of Predictive Coding (PC).

rimary (A1), secondary (A2) and higher order (An) auditory areas. In

are therefore identified with superficial layers (II/III) and expectation

ss error units at lower levels via (poly-synaptic) top-down inhibitory

, 2008a,b; right), expectations flow upward and downward, error is

tracolumnar inhibition, and top-down connections are fully excitatory

nces in laminar profiles only. For simplicity, various details have been

, and between hidden causes and hidden states. For a more detailed

(2016), Bastos et al. (2012), and Spratling (2015). Laminar image of
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(Spratling, 2008a,b, 2010; See Fig. 1). However, all for-

mulations assume that predictions and errors are com-

puted by separate neurons in different cortical layers –

as such, prediction and error responses are assumed to

have distinct laminar profiles.

InPC, attention is formalizedasaprocess that infers the

level of predictability of sensory inputs. Again, models differ

in details (FeldmanandFriston, 2010;Rao,2005;Spratling,

2008a,b, 2010) but all conceptualize attention as the

weighting of sensory signals by theirprecision (inverse vari-
ance). The brain thus not only generates (first-order) pre-

dictions about the content of a signal, but also generates

(second-order) estimates about its reliability. When this is

low, deviations are down-weighted and may go unnoticed;

when it is high, deviations are amplified and prioritized for

further processing. Physiologically, this is thought to be

implemented by the post-synaptic gain on superficial (error

or prediction) neurons tuned to the attended dimension

(e.g. feature-based or spatial attention).

Finally, different PC-variables are sometimes

associated with different cortical rhythms: error cells are

thought to propagate their messages forward via the

gamma-band (>30 Hz), while deep layers send

downward predictions via beta-band (12–30 Hz) or lower

frequencies (Arnal and Giraud, 2012; Bastos et al.,

2012). Since this assumption is based on known oscillatory

differences between forward and backward signals (e.g.

van Kerkoerle et al., 2014) it only applies to standard PC,

which postulates a strict functional asymmetry between

backward connections (carrying predictions) and forward

connections (carrying errors).

In sum, PC makes a number of key assumptions with

clear empirical consequences:
(1) Sensory cortex implements a hierarchical, gen-

erative model of the world: neurons at higher

processing stages generate predictions that bias

processing at lower levels.

(2) Population responses (i.e. gross activity mea-

sured with MEG, EEG or BOLD) reflect (at least

in part) ‘transient expressions of prediction

error’ (Friston, 2005, p.829) – therefore, neural

responses should be shaped by (hierarchically

nested) expectations.

(3) Prediction-generation and error-detection are

implemented by separate neural subpopulations

that reside in different cortical layers – as a con-

sequence, prediction and error computations

should have distinct laminar profiles.

(4) Attention is the weighting of sensory input by its

reliability – accordingly, the gain on upward projec-

tions should reflect (estimated) sensory precision.

(5) In standard PC, top-down predictions and

bottom-up errors have distinct oscillatory pro-

files: predictions are conveyed via lower frequen-

cies (beta and below) and (precision-weighted)

prediction errors via higher frequencies (gamma).
In the next sections, we will evaluate each assumption

in the light of recent evidence.
ANIMAL STUDIES

Prediction in auditory cortical neurons

Most animal research on auditory prediction and surprise

focusses on Stimulus Specific Adaptation (SSA). SSA

refers to the selective attenuation of responses to

repeated (common) stimuli and can be seen as a single-

cell analog of MMN (Ulanovsky et al., 2003). Although

their exact relation remains debated, SSA is probably

not a direct substrate of MMN, since the phenomena differ

in latencies, NMDA-dependence, and sensitivity to certain

regularities (Khouri and Nelken, 2015). There is a large lit-

erature on SSA, most of which is beyond the scope of this

review as it does not address key features of PC such as

prediction (but see Khouri and Nelken, 2015 for review).

Interestingly, it is unclear whether SSA, despite what

the name implies, is caused by simple adaptation.

Ulanovsky et al. (2004) showed that SSA – here defined

as the difference in responses to the same sound pre-

sented with different probabilities – depended not just

on local context but also on a longer stimulus history,

beyond the order of seconds at which habituation pro-

cesses like synaptic depression are thought to occur.

Moreover, SSA is observable for tones with frequency dif-

ferences smaller than typical tuning curves, which also

cannot be explained by models of synaptic habituation

(Taaseh et al., 2011; Yaron et al., 2012).

Recently, Rubin et al. (2016) re-analyzed the data

from Ulanovsky et al. (2004), in a first attempt to quantify

the longer-term dependencies. Anesthetized cats were

exposed to ‘Bernouli sequences’ with two tones occurring

independently with a fixed probability. The authors rea-

soned that some representation of (long-term) stimulus

history influenced responses; moreover, this representa-

tion was not a one-to-one copy but a reduced representa-
tion. Assuming that only stimulus probability was

represented, rather than transitional probability (but see

Meyniel et al., 2016; Mittag et al., 2016) the authors com-

puted the predictive power of representations reduced to

a different degree. The key assumption here was that

responses reflected prediction error, expressed as nega-

tive log probability. The prediction error account offered

good fits, explaining up to 50% of observed variability.

Interestingly, representations incorporating less than 10

preceding stimuli (7.3 s) were almost never in the top

10% with the most power. The authors concluded that

neurons in A1 signal prediction errors, based on reduced

representations incorporating long-term stimulus history

‘to generate predictions about the future’ (2016, p.2).

Although the authors are agnostic about the underlying

mechanism – which may or may not resemble schemes

envisioned by PC – the interpretation forms a departure

from earlier accounts of SSA, which (as the name sug-

gests) tend to focus on stimulus-driven explanations such

as synaptic depression.

More fundamental insights are presented by Gill et al.

(2008) who explored surprise as a model for auditory

receptive fields. At several levels in the Zebra Finch audi-

tory hierarchy, the authors compared three receptive field

models: first, a traditional approach modeling neurons as

responding to specific spectrotemporal patterns of intensi-
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ties (STRF); secondly, a derivative approach, modeling

changes in intensities; finally, a model describing neurons

as responding to surprise, quantified as the inverse condi-

tional probability of a range of frequencies, given the pre-

ceding frequencies, based on naturalistic Zebra Finch

song. This ‘surprise model’ substantially outperformed tra-

ditional models. Interestingly, its advantage depended on

hierarchical level: in area MLD (homolog of inferior collicu-

lus) models did not differ significantly. In field L (homolog of

thalamorecipient neurons in A1) surprise was 20% better

than STRF models on average. And in CLM (homolog of

higher-order auditory cortex) the surprisemodel performed

a striking 67% better on average. The authors concluded

that expectations are increasingly important at higher

levels, leading to an ever sparser neural code that eventu-

ally only propagates input not expected on the basis of pre-

ceding input. The authors stress that these ‘expectations’

were based on very short preceding time windows (3–

7 ms), and that the effect is thus not a direct substrate of

high-level (conscious) ‘surprise’. The paper is also silent

onhow theexpectations are implemented.But it does show

that, at a fundamental level, ‘expectations . . . form a key
part of the [auditory] neural code’ (2008 p., 218).

The laminar profile of prediction

Laminar differences between prediction and error signals

(Assumption 3) are a key tenet of predictive coding

theories. This important notion remains woefully under-

studied; we have only found two papers relevant to this

assumption. The first is by Szymanski et al. (2009), who

studied the laminar profile of SSA in rat auditory cortex

using an oddball paradigm. To the best of our knowledge,

this is the first auditory study comparing laminar profiles

for expected and unexpected stimuli. Remarkably, their

results seemed opposite to what PC predicts: the authors

found no clear differences between layers. In all layers,

neurons responded more strongly to deviants than to

the same stimulus when it was a standard (SSA). If any-

thing, this difference seemed to be stronger for deeper

layers. If SSA is an expression of prediction error, this

effect seems to contradict PC schemes that identify deep

layers as ‘prediction layers’. It is worth noting, however,

that the rats where anesthetized with ketamine, an

NMDA-antagonist that, probably by blocking NMDA-

dependent plasticity, impairs MMN (Umbricht et al.,

2002) and abolishes global mismatch responses (Uhrig

et al., 2016) leading to a pattern of effects that has been

interpreted (Strauss et al., 2015) as a ‘disruption of pre-

dictive coding’ (see Section Expectation and surprise

along the auditory hierarchy).

A recent study in awake animals did find strong

laminar-specific effects. The authors (Rummell et al.,

2016) trained mice to press a lever that generated noise

bursts. Every 5–10 s the bursts were also generated ran-

domly, allowing the researchers to compare responses to

the same sound when it was self-generated and when it

occurred randomly (Fig. 2A). Clear attenuation of

responses to self-generated sounds was observed in pri-

mary auditory cortex, replicating non-invasive work in

humans (Baess et al., 2009). The predictive, stimulus-

specific nature of this effect was confirmed when the
authors replaced the noise bursts by pure tones that

had one frequency in 75% of trials and another in 25%.

Responses to common (‘expected’) self-generated

sounds were attenuated more strongly – suggesting that

auditory cortex embodied a stimulus-specific expectation

of the generated sound. Multi-site recordings from audi-

tory thalamus, auditory cortex and hippocampus revealed

increasing attenuation, often resulting in near-silencing in

hippocampus (see Fig. 3). This again points to a familiar

picture of the auditory hierarchy in which predictable com-

ponents are progressively ‘filtered out’.

Intriguingly however, the authors found that

attenuation was much stronger in deep layers. This

again seems to contradict the idea that deep layers

encode predictions, since it should be the error that is

suppressed. Conclusions should be drawn with care,

however, since predicting the sensory consequences of

motor commands may be very different from sensory

prediction in general, so that evidence for the one (see

Eliades and Wang, 2008; Keller and Hahnloser, 2009

for earlier evidence for auditory efference copy) is not

necessarily evidence for the other.

Finally, Jaramillo and Zador (2011) studied expecta-

tion in rat auditory cortex. Rats were presented a train

of short pure tones containing a frequency-modulated tar-

get. The target, which appeared either ‘early’ (450 ms) or

‘late’ (1500 ms), signaled if the correct (rewarded)

response was right or left. Expectation was manipulated

over blocks in which the target appeared early in 85% of

trials and late in 15%, or vice versa. Behaviorally, rats

responded faster and more accurately to targets appear-

ing at the expected time-window. Expectation also modu-

lated single-unit and LFP responses, and this modulation

correlated with performance. For both the preceding stim-

ulus and the target itself, expectation increased rather

than attenuated the neural response, which apparently

contradicts the notion that neurons signal surprise. How-

ever, the stimulus of which expectancy was manipulated,

was also the target. As such, prediction (what is likely?)

and attention (what is relevant?) are confounded. This

confound characterizes many common paradigms,

including the classic Posner task (Posner, 1980), where

attention is controlled by manipulating probability

(Fig. 2B). In such situations, PC makes similar predictions

as conventional accounts of attention: enhanced gain on

the relevant (informative) feature, which is prioritized for

processing. Hence, to distinguish assumptions of PC,

attention and prediction must be manipulated indepen-

dently (see Section Attention as precision).

Discussion

In sum, animal-model studies relevant to the assumptions

of predictive coding are scarce and show mixed results.

None of the discussed studies explicitly tested PC, which

may contribute to the inconclusiveness of the results.

Nevertheless, they report some remarkable findings.

Firstly, in support of Assumption 2, expectation appears

to shape neural responses in auditory cortex. Surprise –

both task-based at timescales of several seconds (Rubin

et al., 2016), and species-based at timescales of millisec-

onds (Gill et al., 2008) – offers a good model for neural



Fig. 2. Paradigms often used in the literature to study the effects of context and predictability on behavioral and brain responses. In the schematic

representations colored squares represent sounds. (A) The ‘Self-Generated vs. Random sounds’ paradigm compares responses to sounds when

they are self-generated (triggered by a button press; and therefore predictable) or randomly generated by a computer (and therefore unpredictable).

Another version of the paradigm (b) compares self-generated sounds (triggered by a button press) to omissions (when the participant pressed the

button but no sound was presented). (B) The ‘Posner paradigm’ is a class of experimental designs where a ‘cue’, which can be implemented as

specific stimulus or a context which is induced during the experimental session, predicts the target with a certain probability. The paradigm therefore

allows to measure responses to the target as a function of its predictability. (C) The standard MMN Oddball paradigm involves the presentation of a

repeating standard tone, occasionally replaced by a deviant tone. (D) The standard MMN omission paradigm is similar to the Oddball paradigm

except the deviant tone is replaced by silence. (E) The Roving standard paradigm is a variation of the oddball paradigm that replaces the deviant

stimulus with a variable standard. After a number of repetitions, the standard changes, creating a ‘deviant’ that becomes a ‘standard’ – while

remaining physically identical. (F) The unexpected repetition paradigm consists of pairs of sounds that are infrequently replaced by a repetition. The

schematic here shows a simple version of the paradigm where the tone pairs consist of the same sounds, but instances where different pairs are

presented are also used. (G) The ‘Repetition vs. Expectation’ paradigm is used to dissociate the effects of prediction from simple effects of

repetition. The paradigm depicted here was used in Todorovic and de Lange (2012). The stimulus set consisted of 3 different tones (illustrated here

by the use of different colors) arranged in pairs but such that the first tone in a pair was predictive of the second one. For example tone1 (green) was

predictive of tone2 (blue) in 75% of the trials but was occasionally (in 25% of the trials) followed by tone2 (purple). Tone2 (blue) was predictive of an

omission but which was replaced in 25% of the trials by tone 3 (green), etc. (H) The Local/Global paradigm is designed to dissociate responses to

local deviants from responses to global deviants. In the example depicted here the stimulus consists of ‘standard’ (commonly occurring) and

‘oddball’ (rarely occurring) sequences. The last tone in each ‘standard’ sequence is a local deviant; In contrast, ‘global deviance’ is manifested here

by the absence of change. A similar approach with expected and unexpected tone omissions is also commonly used. (I) The ‘Emergence of

regularity’ (RAND-to-REG) paradigm introduced by Barascud et al. (2016) is based on rapid tone-pip sequences which contain transitions from a

random (RAND) frequency pattern (in yellow) to a regularly repeating (REG; predictable) frequency pattern (in orange). In this example the REG

pattern consists of a cycled sequence of 4 different tones.
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responsiveness. The methodological differences between

these studies, and the fact that both did not address the

mechanisms of prediction, unfortunately limit their conclu-

siveness with respect to PC. However, both studies make

the conceptual shift from characterizing neurons as

encoding bottom-up data features, to encoding hypothe-

ses or predictions, and propagating only the divergence

from these predictions. In support of Assumption 1, there
is also evidence for the idea that the effects of expecta-

tions are hierarchical, in the sense that expected compo-

nents seem to be progressively filtered out (Rummell

et al., 2016; Gill et al., 2008). Attention, as shown by

Jaramillo and Zador (2011), can influence processing in

A1 in an anticipatory way – however, it remains unclear

whether this form of modulation is in line with attentional

modulation as described by PC. Finally, the two studies

that investigated laminar differences in processing of
expected versus unexpected stimuli – a signature charac-

teristic of PC – found (under ketamine anesthesia) no dis-

tinct laminar profiles and (using self-generated sounds)

strong expectation suppression in the deep rather than

superficial layers of cortex. Although methodological

issues prevent strong conclusions from being drawn, the

animal-model literature contains fascinating results that

call for more experiments in awake animals, since only

studies of this type can ultimately confirm or falsify key

assumptions of predictive coding.
HUMAN IMAGING AND ELECTROPHYSIOLOGY

Predictive coding and MMN

Human auditory studies on predictive coding often use

some variation of the Mismatch Negativity or ‘MMN’
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paradigm. MMN is measured using a method in which a

sequence of stimuli (typically a repeated tone)

establishes a regularity that is violated by a ‘deviant’

stimulus (‘oddball paradigm’; Fig. 2C). MMN is the

negative component of a difference wave, obtained by

subtracting the ‘standard’ from the ‘deviant’ response,

and is found at 100–250 ms.

Traditionally, two main hypotheses on MMN exist.

According to the memory-based hypothesis (Näätänen

et al., 1978; Winkler and Czigler, 1998), MMN is gener-

ated by a system comparing auditory inputs with a mem-

ory template. When a difference is detected, the system

signals an error, and adjusts the template. According to

the adaptation hypothesis (May et al., 1999;

Jääskeläinen et al., 2004; May and Tiitinen, 2010) cells

tuned to repeated ‘standard’ tones simply adapt – due

to passive processes such as synaptic depression – while

neighboring cells tuned to ‘deviants’ remain unadapted

and elicit stronger responses. By implication, the

oddball-evoked MMN is not a separate evoked potential

but rather a delayed and attenuated N1, that appears sep-

arate only in the difference wave.

In this dispute, PC takes a middle ground position.

Like all memory-based accounts, PC interprets MMN

as a mismatch signal – a mismatch, however,

between the input and a prospective prediction, rather

than a retrospective template. But like the adaptation

hypothesis, PC considers MMN not as a separate

evoked response, but simply as an amplified contrast

between an expected (standard) response and a

surprising (novel) response. In the adaptation

hypothesis, however, both the response and its

suppression are stimulus-driven: there is no error

signal. Under PC, every response is an expression of

error and can be larger or smaller depending on

predictions. This last point – the dependence on

predictions – is also what makes PC considerably less

parsimonious than the adaptation hypothesis. Applying

Ockham’s razor, we can only consider evidence in

favor of PC if it cannot be explained by a simpler

process – which, in audition, is often simple

adaptation. Beyond the standard oddball paradigm, the

MMN literature has shown that listeners are sensitive

to the violation of potentially very complex patterns

(see Paavilainen et al., 2007, 2013 for review), which

is usually interpreted as evidence for the exquisite sen-

sitivity of auditory cortex to patterns in sound. Unfortu-

nately, most studies with an explicit focus on

predictive coding in the auditory modality (see reviewed

below) have used the standard oddball paradigm or its

variations in which predictability, or regularity, is manip-

ulated by repetition, making adaptation all the more dif-

ficult to exclude.

Repetition suppression – Adaptation or expectation?

The neuroimaging analog of the physiological

phenomenon of adaptation is repetition suppression

(RS). As reviewed by Grill-Spector et al. (2006), multiple

mechanisms for RS have been proposed. We can distin-

guish between mechanisms that explain RS via passive

adaptation effects, sometimes called ‘neural fatigue’,
and accounts that interpret it as a signature of increased

processing efficiency. PC belongs to the second type: it

ascribes the suppression not only to the repetition itself,

but also to the expectations it induces. Interesting support

for this account comes from Costa-Faidella et al. (2011)

who recorded EEG responses in a roving standard para-

digm (Fig. 2E). This is a variation of the oddball paradigm

that replaces the deviant stimulus with a variable stan-

dard. After a number of repetitions, the standard changes,

creating a ‘deviant’ that becomes a ‘standard’ – while

remaining physically identical. The authors used two con-

ditions, with predictable and unpredictable timing. In the

predictable condition, Inter Stimulus Intervals (ISI) were

fixed. In the unpredictable condition, ISIs varied ran-

domly. The suppressive effect of repetition was reduced

in the condition with unpredictable timing. Because the

average ISI and number of stimulations were identical

between conditions, this suggests that repetition suppres-

sion is modulated by predictability.

Also in a roving paradigm, Lieder et al. (2013) used

computational modeling to compare prediction and adap-

tation. For each stimulus presentation they calculated the

‘MMN amplitude’, by subtracting the final (‘standard’) pre-

sentation from the earlier (‘deviant’) presentations. The

authors then compared different models to explain trial-

by-trial fluctuations in this MMN amplitude. The first model

was an adaptation model. This model was ‘phenomenolo

gical’ in the sense that it made no assumptions on the

mechanism behind adaptation, but simply embodied fluc-

tuating responsiveness of populations tuned to different

frequencies. This ‘phenomenological’ approach was con-

trasted to a computational approach in which MMN ampli-

tudes were regressed on several parameters from a

hidden Markov model which tracked transition probabili-

ties by means of prediction error minimization. Overall,

prediction error and model update, as calculated by the

Markov model, explained the fluctuations better than

adaptation. Together, the authors write, this suggests that

attenuation observed in a roving paradigm is best

explained as a form of learning, rather than as adaptation.

More modeling results are found in Wacongne et al.

(2012) who present a PC model of A1. Contrary to

Lieder et al. (2013) and the DCM studies (see Sec-

tion Effective connectivity – clues from DCM) Wacongne

et al. (2012) specified their model at the level of individual

spiking neurons, thus committing to a much more detailed

implementation of PC. The model comprised two cortical

columns, each selectively responsive to a different tone

(A or B). Crucially (and unlike standard PC) error units

are located in the thalamorecipient granular layer. In that

same error layer, GABA-ergic neurons receive excitatory

input from predictive units in layer II/III, effectively sub-

tracting the prediction from the incoming input, resulting

in an error term. This error term is sent to the predictive

layers, where it forms a memory trace used to adapt the

internal model via spike-timing dependent plasticity at

NMDA-weights. Using the sum of postsynaptic currents

in each layer as a proxy for the ERP, Wacongne et al.

(2012) show that this set-up – intentionally lacking synap-

tic habituation mechanisms – can account for an array of

phenomena from the MMN literature, such as the para-
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metric modulation of MMN amplitude by stimulus proba-

bility (e.g. Sams et al., 1983); MMN to unexpected repeti-
tion (Fig. 2F; e.g. Saarinen et al., 1992; Horváth and

Winkler, 2004); MMN to omission (Fig. 2D; e.g. Yabe

et al., 1997; Raij et al., 1997); and blindness to context

(Wacongne et al., 2011, see below).
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accounts, Wacongne et al. (2012) performed a MEG
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standard MMN. The adaptation-

based explanation (May and Tiitinen,

2010) suggests this reflects adapta-

tion at higher order neurons, tuned

to the AB tone-pair. To exclude this

possibility, Wacongne et al. (2012)

inserted an interval of 10 s between

each pair – much longer than the

recovery time of synaptic depression.

In every individual participant, AA

indeed elicited an MMN, while no dif-

ference between BA and BB was

observed. Although this result seems

highly suggestive, a replication with

a larger number of participants is

needed, since Wacongne and col-

leagues tested only 5.

Using a similar paradigm,

Todorovic et al. (2011) measured RS

for expected and unexpected repeti-

tions. Expectancy was manipulated

in blocks where either 75% of stimuli

were tone-pairs and, 25% single

tones (repetition expected) or vice

versa (repetition unexpected). Clear

RS was observed in the 100–500 ms

range, that was strongly reduced in

the unexpected condition, suggesting

that RS itself might comprise an

expectancy effect. However, since

the blockwise manipulation affected

the overall occurrence of the tones –

and the authors used an inter-trial

interval of 4–6 s – the effect could,

theoretically at least, be explained by

passive adaptation.

Expectation and surprise along the
auditory hierarchy

In a follow-up study, Todorovic and de

Lange (2012) addressed this issue by

adding an extra hierarchical level of

expectations, that allowed them to

manipulate repetition and expectation

orthogonally (Fig. 2G). Each trial con-

sisted of either an identical or non-

identical tone-pair, or a single tone.

Orthogonally to this, the frequency of

the first tone predicted that of the sec-

ond tone with a high validity. Using

MEG, the authors observed a dissoci-

ation: repetition (but not expectation)

attenuated the early response (40–

60 ms) and expectation (but not repe-
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tition) attenuated the intermediate response (100–

200 ms). By contrast, both repetition and expectation

affected the late response (200–500 ms; Fig. 3). This sug-

gests that RS might be non-unitary, consisting of a late

stage, which reflects the effects of expectation, and an

early stage, which does not (cf. Grotheer and Kovács,

2015). However, the results may also be compatible with

PC, if one casts repetition as a special, low-level form of

expectation (cf. Auksztulewicz and Friston, 2015b).

Similar findings were reported by Wacongne et al.

(2011), who recorded MEG and EEG responses to viola-

tions of local and global regularities (Fig. 2H). Participants

passively listened to stimuli consisting of five tones, of

which the first four were always identical and the last

one varied. Within each block, a particular variation (e.g.

‘xxxxY’) was dominant, occurring 75% of trials. In the

remaining 25% of trials, the last tone was replaced by

either a deviation (e.g. ‘xxxxX’ within ‘xxxxY’ blocks) or

an omission (‘xxxx_’). The authors found that local devi-

ants (i.e. ‘xxxxY’ even when it was the common stimulus)

were always accompanied by a measurable MMN (at 80–

150 ms), but that in xxxxX blocks (where the local deviant
‘xxxxY’ was also globally unexpected) this deflection was

larger. By contrast, global deviant responses were found

at later latencies (150–600 ms), although no interaction

was reported for this dissociation. Note that, for xxxxY

blocks, a global deviant amounts to an unexpected repe-

tition eliciting a stronger response than an expected alter-

nation – an inversion of the MMN.

Recently, Dürschmid et al. (2016) provided more evi-

dence for a hierarchical organization of mismatch signals,

dissociating not time-scales but brain regions, using high-

gamma (>60 Hz) activity as an index of local spiking.

Dürschmid et al. (2016) were able to measure high-

gamma components using ECoG recordings from

patients with frontal and temporal electrodes, who lis-

tened to predictable and unpredictable deviants embed-

ded in an uninterrupted train of tones. In the predictable

condition, the deviant tone (550 Hz) always occurred after

four consecutive standard tones (500 Hz), rendering the

deviant ‘globally’ predictable. In the unpredictable condi-

tion, the deviant tone occurred randomly after at least

three presentations of the standard tone, rendering the

deviant fully unpredictable. The authors found no main

effect of block type, but they did find an interaction: high

gamma was found for unpredictable, but not predictable

deviants at frontal electrodes, while at temporal elec-

trodes both deviant-types elicited high-gamma

responses. The authors interpreted this as demonstrating

that frontal cortex monitors ‘the bigger picture’. This inter-

pretation is compatible with the source reconstruction

results by Wacongne et al. (2011), who also found that

global (but not local) deviants activated a broad fronto-

parietal network. However, this claim could have been

stronger had Dürschmid et al. (2016) manipulated local

and global regularities independently, instead of compar-

ing repeating versus random patterns.

Strauss et al. (2015) did present such an independent

manipulation. In the same MEG-EEG paradigm as used

by Wacongne et al. (2011), the authors showed that
late-latency responses to global deviants disappeared

categorically in all stages of sleep, concluding that predic-

tive coding was ‘disrupted’. This is remarkable, because

the MMN persists during sleep (Sculthorpe et al., 2009)

and even coma (Fischer et al., 2000; but see Dykstra

and Gutschalk, 2015). However, Strauss et al. (2015)

demonstrate that the persisting ‘sleep MMN’ is strongly

reduced and lacks sustained fronto-parietal activity. Over

and above these differences in degree, sleep-MMN also

seemed to be qualitatively different. Strauss et al.

(2015) showed this by training a classifier to distinguish

local standards and deviants. When trained and tested

on responses recorded during wakefulness, the algorithm

reliably distinguished signals from early (76 ms) to late

(620 ms) latencies. However, when the classifier – trained

on wakefulness data – was tested on sleep data, it only

generalized to early (76–100 ms) and late (212–588 ms)

signals. For signals from the MMN latency (100–

200 ms) it did not generalize at all, and failed to perform

better than chance. The authors interpret this result as

new evidence for the idea that MMN might be a conse-

quence of several independent processes: an automatic

process arising from passive adaptation (May and

Tiitinen, 2010) and therefore persistent during sleep, as

well as an active, predictive process which is abolished

during sleep.

Interestingly, the effects of sleep were corroborated in

the realm of anesthesia. Uhrig et al. (2014) had earlier

reported the first neural signature hierarchical novelty

responses (potentially an index of PC) in non-human ani-

mals, using primate fMRI in macaque. They found that

only globally deviant sequences recruited a large fronto-

parietal network known in humans as the neuronal work-

space (Dehaene et al., 1998). Recently, Uhrig et al.

(2016) repeated the experiment under varying degrees

of anesthesia. Both anesthetics (propofol and ketamine)

weakened local and distorted global mismatch responses.

Ketamine was especially powerful, effectively abolishing

the global mismatch effect. Since both plasticity

(Collingridge and Bliss, 1987) and intra-regional feedback

(Self et al., 2012) are thought to be NMDA-dependent,

and ketamine impairs MMN even at light dosages

(Umbricht et al., 2002), this is perhaps unsurprising. How-

ever, ketamine is a popular anesthetic, used by three of

the five animal studies here reviewed (Szymanski et al.,

2009; Jaramillo and Zador, 2011; Rubin et al., 2016).

Since it abolishes global mismatch responses, and the

persisting (local) mismatch responses may be qualita-

tively different (Strauss et al., 2015), these findings under-

line that future studies of PC should avoid the use of

ketamine – and, ideally, of anesthesia altogether.

Finally, Lecaignard et al. (2015) manipulated (global)

predictability of auditory deviants, but found no hierarchi-

cal effects. Deviant predictability affected ERP amplitudes

at early (<70 ms), MMN (100–250 ms) and late

(>300 ms) latencies. Puzzlingly, however, the biggest

effect of global predictability was found at the earliest

time-window (<70 ms), where the MMN was completely

abolished only in the globally predictable condition; an

effect which stands in contrast to other studies on hierar-
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chical PC and hierarchical deviance detection more gen-

erally (Grimm and Escera, 2012; Cornella et al., 2012;

Escera and Malmierca, 2014).

Altogether, hierarchy is central to PC and converging

evidence now demonstrates that effects of prediction

depend on hierarchical processing level. Nevertheless,

some ambiguities remain. A first issue is whether

hierarchically ‘high’ and ‘low’ effects reflect a single

mechanism. Some human electrophysiology studies

claim they do not (Todorovic and de Lange, 2012;

Strauss et al., 2015; López-Caballero et al., 2016). These

studies associate effects on early processing with passive

adaptation (e.g. the early, sleep-persistent MMN in

Strauss et al., 2015) and effects on later, ‘higher’ process-

ing with prediction (see also Grotheer and Kovács, 2015).

However, this hard dichotomy seems at odds with results

from animal electrophysiology which report prediction

effects already at A1 (Rubin et al., 2016; Rummell et al.,

2016; Gill et al., 2008; Ulanovsky et al., 2004). What adds

to the ambiguity is that most studies used repetitions or

Bernoulli sequences to manipulate prediction, causing

expectation and adaptation to be confounded. A second,

more subtle ambiguity is whether the discussed interac-

tions between hierarchy and prediction constitute evi-

dence for hierarchical prediction, in the sense of

hierarchical Bayesian inference. Theoretically, interac-

tions as those in the animal literature – showing that pre-

diction effects become stronger at higher hierarchical

levels (Rummell et al., 2016; Gill et al., 2008) – do not

necessarily support the notion of hierarchically nested

predictions, which would require a task which manipulates

multiple, nested (or hierarchically dependent) regularities

– as only few studies have done so far. Accordingly, while

there is clear evidence for the effect of expectations on

responses (Assumption 2) and suggestive clues for hier-

archical organization of expectations (Assumption 1) pro-

gress will now depend on studies that use stimuli with

multiple nested regularities, and which manipulate expec-

tation in a way not confounded by adaptation.

Hearing silences: Omission as a window into
prediction

When omitting a highly expected sound such as a tone in

a beat, listeners can ‘hear’ the absence. In such

circumstances, neural responses time-locked to the

omitted sound have been observed (Yabe et al., 1997;

Raij et al., 1997; Fig. 2D). These ‘omission responses’

offer an appealing vantage point to study top-down pre-

diction decoupled from bottom-up input, and have

become a popular method for studies on predictive

coding.

Theoretically, detecting silences could happen either

retrospectively (by comparing perceptual input and

memory template after the input is processed) or

prospectively (by directly matching predictions to input,

as proposed by PC). Bendixen et al. (2009) attempted

to dissociate these possibilities. Participants listened to

isofrequent tone-pairs of which either the first or the sec-

ond tone was occasionally omitted. If the second tone

was omitted, it could nonetheless be predicted by the first

tone (‘predictable’ condition). But if the first tone was omit-
ted, its identity could only be ‘restored’ after hearing the

second tone (restorable condition). The authors com-

pared evoked responses to a control condition in which

the tones were neither predictable nor restorable. When

comparing the amplitudes of the early component (up to

50 ms post tone/omission onset) the authors found omis-

sion responses in the predictable condition but not in the

restorable condition. This was interpreted as pre-

activation of the sensory representations of the predicted

tones. The authors concluded that auditory expectation

works prospectively and not retrospectively. However,

since they looked for main effects at very short latencies

(<50 ms post onset, identical to the duration of the tone),

and focused exclusively on evoked (as opposed to not

time locked) responses the analysis may have been

biased to finding prospective pre-activations, and not ret-

rospective memory effects.

Hughes et al. (2001) took a similar approach to test

whether change-detection involves prediction. Patients

undergoing intracranial recordings from temporal cortex

performed an oddball paradigm with tones or tone-pairs

as standards and silences as oddballs. Strikingly, in all

patients, channels firing to tones also fired to omissions,

often more strongly. Furthermore, 5 of 10 patients exhib-

ited ‘omission selective’ channels that only responded to

unexpected omissions, and to other unexpected stimuli

like bird-chirps. Finally, and contrary to other demonstra-

tions of omission responses (Raij et al., 1997; Chennu

et al., 2016) the effects seemed wholly independent of

attention. The omission-selective channels may have

been the first recordings of error-units. Unfortunately,

Hughes et al. (2001) did not report the exact location or

depth of their electrodes, other than being associative

(non-primary) auditory cortex, which makes the striking

findings somewhat difficult to interpret.

A different approach is described in SanMiguel et al.

(2013a,b), who used self-generated sounds to elicit omis-

sion responses (Fig. 2A). Participants were asked to

press a button every 600–1200 ms, after which a sound

was generated in 88%, 50% or 0% of trials. To control

for motor activity, the response after button presses that

were never followed by a sound (the 0% block) was sub-

tracted from the omission AEP evoked by the unexpected

‘silence’. After subtraction, significant omission responses

were present in the 88% block, but not in the 50% (ran-

dom) block. In a follow-up experiment, SanMiguel et al.

(2013b) showed that omission responses to self-

generated sounds were only elicited if a button press

was predictive of both the identity and timing of the eli-

cited sound, rather than just the timing, which suggests

that timing alone is not enough to form an accurate pre-

diction of a stimulus.

Chennu et al. (2016) compared omission responses

recorded with EEG and MEG. Using a local–global para-

digm (Fig. 2H), the fifth tone was a global standard in 74%

of trials, and a global deviant or omission in 13% of trials.

To confirm that omission responses reflected expectation

effects and not passive carry-over effects such as oscilla-

tory entrainment (May and Tiitinen, 2010), unexpected

omissions of a fifth tone (occurring 14% of trials) were

compared to ‘expected omissions’ from sequences in
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which the fifth tone was always omitted. In the EEG

recordings, this revealed clear omission responses that

were modulated by attention. Surprisingly, in the MEG

data the omission response was absent. This divergence

between MEG and EEG is interesting but difficult to inter-

pret, and most likely arises from the orientation of the neu-

ral sources or measurement noise. However, it might also

be consistent with a specific interpretation of omission

responses as reflecting prediction units only, which may

reside in deeper layers and should therefore be more dif-

ficult to detect with MEG.

Fujioka et al. (2009), who also used MEG, induced

(and violated) expectations by using a regular musical

beat, from which tones were occasionally omitted. Each

tone elicited a short gamma (>40 Hz) burst, as is typical

for stimuli. However, the authors also observed a slow,

oscillatory modulation of the beta band that was phase

locked to the occurrence of the tone. This slow power-

modulation steadily decreased after each beat, reaching

its peak just before the occurrence of a new tone, poten-

tially indicating an internal rhythmic anticipation signal

(see also Fujioka et al., 2012). Intriguingly, when a tone

was unexpectedly omitted from the beat, the decrease

in beta power was not observed, but a (stimulus-like) sud-

den peak in gamma was observed. This observation not

only supports sensory prediction during beat perception,

but also, indirectly, the notion that beta (‘prediction’) and

gamma (‘error’) bands signal different computational vari-

ables (see Section The rhythms of prediction).

Finally, a number of earlier discussed studies also

reported omission responses of a varying extent.

Todorovic et al. (2011) and Todorovic and de Lange

(2012) reported higher field strengths after unexpected

than expected silences. However, their effects were

rather small and in Todorovic and de Lange (2012) limited

to late latencies (200–500 ms). More akin to ‘real’ evoked

responses are the omission responses in Wacongne et al.

(2011), who also compared expected with unexpected

omissions and found (contra May and Tiitinen, 2010) sig-

nificant responses only for unexpected omissions, in both

MEG and EEG.

Altogether, evidence from EEG (Bendixen et al., 2009;

SanMiguel et al., 2013a,b; Chennu et al., 2016), MEG

(Wacongne et al., 2011; Todorovic et al., 2011;

Todorovic and de Lange, 2012; Chennu et al., 2016)

and ECoG (Hughes et al., 2001) shows that omissions

can evoke responses that are time-locked to the omitted

stimulus and appear to be generated in auditory cortex

and superior temporal gyrus. Crucially, omission

responses seem to occur only after unexpected omis-

sions (Wacongne et al., 2011; Chennu et al., 2016) –

challenging the suggestion that they could reflect passive

carry-over effects – and only if the omitted sounds are

prospectively predictable (Bendixen et al., 2009) – sug-

gesting a predictive mechanism (cf. Assumption 1). How-

ever, the literature also shows some remarkable

variability. For instance, using MEG, Todorovic et al.

(2011) and Todorovic and de Lange (2012) find small

and late deflections, unlike ‘real’ auditory-evoked fields,

and Chennu et al. (2016) find no omission responses at

all. Using EEG, Chennu et al. (2016) and Bendixen
et al. (2009) find clearer omission responses. However,

they are still quite different from ‘real’ AEPs, or from the

striking responses in SanMiguel et al. (2013a,b) or in

Hughes et al. (2001). Moreover, while the MEG/EEG

omission responses in Raij et al. (1997) and Chennu

et al. (2016) are strongly affected by attention, attention

had no effect on the ECoG omission responses in

Hughes et al. (2001).

Beyond the empirical variability, there is some

theoretical variability in how omission responses are

interpreted. For some authors (e.g. SanMiguel et al.,

2013a,b; Schröger et al., 2015) they are simply expres-

sions of prediction error. This would render omission

responses as perhaps the signature finding of PC, by

showing that evoked responses fundamentally reflect sur-
prise – and are thus even observable in the absence of

sensory input. However, as Wacongne et al. (2012) point

out, this interpretation critically depends on how prediction

error is calculated. If one uses subtraction, implemented

e.g. by a focussed inhibitory pulse that ‘subtracts’ predic-

tions from sensory input, it is difficult to see how omis-

sions could elicit prediction error without allowing

negative firing rates. In that case, omission responses

are perhaps better interpreted as reflecting purely predic-

tion signals, which speaks to their relative weakness and

variability. Due to these ambiguities, it is difficult to directly

interpret the implications of omission responses to (speci-

fic formulations of) predictive coding. Nevertheless, col-

lectively, these studies present highly suggestive,

converging evidence of anticipatory mechanisms, operat-

ing without conscious expectation, in auditory cortex.

Predictability and precision

Results with the MMN paradigm demonstrate that

listeners are sensitive to the violation of a variety of

sound patterns, including very complex regularities. This

has been interpreted as (indirect) evidence for the

brain’s remarkable sensitivity to acoustic patterning.

However, a crucial missing link is an understanding of

the process by which the brain acquires an internal

model of regularities in the environment.

Recently, Barascud et al. (2016; see below for replica-

tion by Southwell et al., 2017) presented direct evidence

of the discovery and representation of acoustic patterns,

using rapid, statistically structured sequences of tone-

pips that transitioned from random to regular, and vice

versa (Fig. 2I). Methodologically, this paradigm consti-

tutes a departure from previous paradigms in two ways:

firstly, the use of very rapid sequences precludes con-

scious discovery of regularity, instead mostly tapping

bottom-up-driven processes. Secondly, regularity was

manipulated independently from repetition, thus decou-

pling the effects of predictability from low-level adaptation.

Behaviorally, Barascud et al. (2016) first observed that

listeners were extremely quick at detecting the emer-

gence of regular patterns, performing on par with an ideal

observer model. Brain responses measured from naı̈ve

listeners were equally rapid. Remarkably, the onset of

regularity manifested as a large-scale increase in sus-

tained amplitude (Fig. 3). Offsets of regularity (transitions

toward randomness), by contrast, were associated with a
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large drop in sustained power. Source reconstruction

identified a network of sources in auditory cortex (AC),

inferior frontal gyrus (IFG) and the hippocampus. AC

and IFG sources are commonly reported in the context

of the MMN and interpreted as supporting the re-entrant

error-minimizing process underlying it (Opitz et al.,

2002; Garrido et al., 2009b; see Section Dynamic Causal

Modeling of MMN).

The finding that emergence (and disappearance) of

regularity in unfolding sound sequences is associated

with large-scale sustained responses is interesting for

various reasons: firstly, it suggests the brain encodes

the state (‘regular’ vs ‘random’) rather than just the

transition (as in e.g. MMN). Secondly, the amplitude

pattern [(regular) > (random)] is not easily interpretable

in terms of simple physical attributes of the signal –

adaptation, for example, would result in the opposite

pattern. Finally, the neural signature of complex

regularity detection (i.e. enhanced responses) is

opposite to that of simpler regularity detection (i.e.

attenuated responses) observed in many previous

experiments, for example using the roving standard

paradigm.

Interestingly, the effect is also opposite to all PC

effects we have been considering so far, in which

predictability is associated with weaker responses.

Barascud et al. (2016) suggested precision-weighting

could underlie this inversion: if regularity is an index of

reliability or precision, PC predicts that regular signals

are up-weighted and prioritized for further processing

(see Section Attention as precision). As many biological

stimuli unfold as regularities over time, it also seems bio-

logically useful to prioritize such signals, for instance for

subsequent auditory object formation or scene analysis.

Evidence in line with this interpretation was

subsequently presented by Sohoglu and Chait (2016b)

who used artificial ‘scenes’ consisting of concurrent

tone-pip streams (modeling acoustic sources) which were

temporally regular or random. Participants were quicker

and more accurate to detect an object appearing in a tem-

porally regular scene, and enjoyed an additional slight

benefit if the object itself was regular. MEG responses

in both passive listeners and listeners actively engaged

in detecting the occasional appearance of a new source

within the scene revealed increased sustained activity in

scenes comprised of regular sources. Over and above

this ‘scene effect’, new source appearance in regular sce-

nes was also associated with increased responses rela-

tive to random scenes – an effect interpreted as

evidence for a mechanism that infers the precision of sen-

sory input and uses this information to up-regulate neural

processing toward more reliable sensory signals.

More clues on the amplifying effect of regularity are

found in Hsu et al. (2015). Subjects listened to sequences

of tones with ascending frequencies in which the final tone

varied. In 75% of trials, the tone complied with the local

regularity (predicted condition). In 12.5% of trials, the last

tone was unexpectedly lower than the first tone, violating

the expectation induced by the ascending sequence

(‘mispredicted’ condition). Finally, in 12.5% of trials, the

sequence was jumbled altogether. The authors found that
while predicted tones elicited a weaker N1 deflection than

mispredicted ones (a well-documented expectation

effect), wholly unpredicted tones elicited an even weaker

N1 still. According to Hsu et al. (2015), this is because

predicted and mispredicted responses express both a

prediction and a (small or large) prediction error, but

unpredicted responses reflect only prediction error and

are therefore weakest. However, as remarked by Ross

and Hansen (2016), it seems at odds with the probabilistic

nature of PC to assume predictions are absent in the

unpredicted condition: rather, what distinguishes the

unpredicted condition is the low predictability of the signal.

The attenuated N1 to wholly unpredictable stimuli might

be understood as inversion of the enhanced response to

predictable stimuli in Barascud et al. (2016) and

Sohoglu and Chait (2016b): the brain might consider the

jumbled tone ladder as noisy and uninformative, hence

down-weighting the response.

In sum, accumulating evidence suggests that, at least

under certain conditions, predictability may enhance,

rather than suppress, neural responses. This result fits

into the PC framework if one considers effects of

precision: sequences of random stimuli may be deemed

uninteresting noise (low precision) and hence down-

weighted, while streams containing a regularity are

considered informative and are hence up-weighted.

However, since precision can explain effects that are

opposite to ‘traditional’ PC effects, invoking it begs the

question when, exactly, predictability is supposed to

suppress neural responses and when it should enhance

them. As we will see, this need for a ‘principled account’

will be a recurring theme in studies that examine the

main manifestation of precision-weighting — i.e. attention.
Attention as precision

Because the world is variable and the brain noisy, a

degree of prediction error is inevitable. Distinguishing

such ‘residue error’ (related to noise) from relevant error

(related to incorrect beliefs or changes in the world)

requires that not all prediction error is treated equally. A

Bayes-optimal approach, successfully applied in

engineering (Kalman, 1960) as well as neuroscience

(Yu, 2014) is to weight errors by their reliability, typically
quantified as the uncertainty of predictions relative to that

of observations, a coefficient known as Kalman gain

(Kalman, 1960; Anderson and Moore, 1979). When the

gain (precision) is high, inputs are up-weighted and will

dominate inference; when it is low, inputs are down-

weighted and predictions dominate inference. Several

authors in the predictive coding field (Rao, 2005;

Spratling, 2008a,b, 2010; Feldman and Friston, 2010;

see also Dayan and Zemel, 1999; Dayan and Yu, 2003;

Yu and Dayan, 2005a,b) have used such optimal handling

of uncertainty as a framework for attention, since it offers

normative principles that can explain selective processing

by motivating why some signals are computationally more

relevant than others.

Uncertainty-weighting affects inference and learning

differently; here, we will focus on perceptual inference
(but see Yu, 2014, for a treatment of Bayesian
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approaches to attention which also covers learning). Dur-

ing inference, reliable inputs are weighted more strongly,

and PC proposes that attending to a feature amounts to

expecting that signals with this feature will be reliable or

informative, and should thus be prioritized for processing

(Feldman and Friston, 2010). Response strength should

therefore always be a function of both the size of the error

and its precision. In other words, every brain response

should be sensitive to attentional modulation. This pro-

posal implies a departure from accounts of MMN that

describe MMN as pre-attentive (Garrido et al., 2009b;

Jääskeläinen et al., 2004; Winkler and Czigler, 1998).

Preliminary support is found in Chennu et al. (2013).

The authors recorded EEG while presenting blocks of

tone sequences to one ear, occasionally replacing the fifth

tone by either a different tone in the same ear (monaural

deviant) or by the same tone in the opposite ear (interau-

ral deviant). Additionally, participants counted deviant

tones (attend tones) or deviant sequences (attend

sequences) or performed a visual task (distraction).

Focussing here on local deviants at MMN latencies, both

monaural and interaural MMN were reduced during dis-

traction compared to attending sequences. Attending

tones, however, instead of amplifying the MMN (by

increasing gain of error-neurons), attenuated it. The

authors suggest their manipulation may have been con-

founded: counting deviant tones did not only focus atten-

tion on tones (just as counting sequences did) but might

have also increased conscious expectation of unexpected

tones, thus decreasing overall surprise.

To circumvent this confound, other studies

manipulated attention and prediction orthogonally.

Auksztulewicz and Friston (2015a) used a roving stan-

dard paradigm in which participants attended to one of

two time-windows (early or late), after which the roving

standard was presented at each window with an indepen-

dent probability of 50%. Participants reported if there was

no stimulus at the attended latency. Only trials where the

tone was presented at both latencies were included, thus

rejecting all possible motor artifacts. A significant interac-

tion effect was found; specifically, MMN was observed in

attended, but not in unattended time-windows. This atten-

tional enhancement of MMN is compatible with precision

weighting. Note, however, that the non-significance of

MMN outside the scope of attention seems to contradict

earlier findings that MMN is not dependent on attention;

note, too, that the effects reported by Auksztulewicz and

Friston (2015a) are relatively late and relatively short –

for instance, the MMN only reached significance between,

190 and 210 ms and the deviance-attention interaction

only between 193 and 197 ms. Both may have been

related to a lack of power after rejecting so many trials.

Another independent manipulation was reported by

Hsu et al. (2014). The authors presented two streams of

tone pairs: in one stream, the frequency of the second

tone in a pair was always two natural keys higher than

the first; in the other stream, the relationship between

the first and second tone was random. Attention was

manipulated by asking participants to report occasional

tones with decreased loudness in one of the streams.

The authors found an interaction of attention and predic-
tion on N1 amplitudes. Specifically, attended/predictable

tones elicited a stronger response than all other tones,

between which differences were non-significant. This

includes attended versus unattended unpredictable

tones, hence the authors concluded that attentional

enhancement of N1 depends on prediction. Note, how-

ever, that this interacting effect between attention and

prediction (attention reversing the effect of prediction) is

at odds with Auksztulewicz and Friston (2015a), who

found the opposite (attention enhancing prediction

effects) 100 ms later.

A recent EEG study by Garrido et al. (2017) compared

the two accounts explicitly. Participants were presented

Gaussian white noise to both ears and had to detect silent

gaps in one or both ears. Embedded in the noise, task-

irrelevant oddball sequences were presented. The

authors formulated two models of the interplay between

attention and prediction: in the first, attention could

reverse the effect of prediction (Hsu et al., 2014; see also

Kok et al., 2012). In the second model, attention

enhanced responses, predicted and unpredicted alike.

The authors observed a MMN, and found that attention

enhanced it, but contrary to Hsu et al. (2014) they found

no interaction. In line with this observation, Bayesian

model comparison favored the opposition model. Con-

trary to Auksztulewicz and Friston (2015a), but in line with

the MMN literature, MMN was also found in the absence

of attention.

Rather than deliberately directed, attention is

sometimes automatically attracted to a stimulus. Stimuli

with this capacity are called salient (Itti et al., 1998). Pre-

dictive coding accounts for salience by appealing to the

intrinsic precision of stimuli. Intense stimuli, for instance,

can be seen as having a high signal-to-noise ratio due

to sheer signal strength; inversely, regular stimuli would

enjoy high precision by virtue of low variance. Indeed, this
latter effect was proposed by Barascud et al. (2016) to

explain large increases in MEG signals induced by audi-

tory regularities (Fig. 3). Such up-weighting of regular

sounds seems ethologically sensible, as regular patterns

often carry stable, behaviorally relevant information about

the world. The account also has a straightforward empir-

ical consequence – regular stimuli should attract atten-

tion. In vision, a recent study indeed demonstrates this

effect (Zhao et al., 2013).

Southwell et al. (2017) tested this idea in the auditory

domain. Using EEG, the authors first replicated the MEG-

effects observed by Barascud et al. (2016): task-irrelevant

regular sequences (as used by Barascud and colleagues)

induced large increases in sustained EEG amplitude.

Next, the authors tested behaviorally whether the same

regular patterns would capture attention more strongly,

measured as the interference with concurrent tasks.

Remarkably, their results suggested that regularity was

not more distracting (if task-irrelevant) or more salient (if

task-relevant) than random patterns. The fact that neu-
rally, regularity induces marked sustained amplitude

increases, but behaviorally the same patterns are not

more salient, contradicts the attentional gain explanation

proposed by Barascud et al. (2016). Southwell et al.

(2017) suggest that this leaves us with three alternative
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hypotheses: Either the gain in amplitude reflects an

upsurge of (poly-synaptic) inhibition or explaining away

by higher regions, which is not dissociable from excitation

using M/EEG. Alternatively, it may reflect a number of

quite distinct processes. Or finally, it could reflect some

form of precision-weighting which does not manifest as

high-level attentional capture. This last possibility, how-

ever, would imply that under PC attention is an expression

of precision-weighting, but precision-weighting does not

(always) express as attention. While logically possible,

this creates an awkward disconnect between neural

responses and cognition, and calls for a more principled

approach to decide when precision weighting is atten-

tional or not.

Altogether, the depiction of attention as the weighting

of sensory signals by their (expected) precision (Feldman

and Friston, 2010; see also Rao, 2005; Spratling, 2008a,

b) elegantly integrates many known attentional effects

into the realm of prediction. However, the increased

opportunities this creates for post-hoc explanations are

– at least in the auditory domain – not yet met by a propor-

tional increase in rigorous confirmatory results. For

endogenous attention, studies explicitly testing the

account report small and sometimes conflicting effects

(Chennu et al., 2013; Hsu et al., 2014; Auksztulewicz

and Friston, 2015a; Garrido et al., 2017). For exogenous

attention, precision-weighting offers a compelling expla-

nation for the enhancing effect of regularity (Barascud

et al., 2016; Sohoglu and Chait, 2016b; Hsu et al.,

2015; Southwell et al., 2017); however, the direct conse-

quence of this claim (that regularity should be salient)

does not seem to hold (Southwell et al., 2017). More

research is needed to test and potentially revise the

notion of auditory precision-weighting, and to explore dif-

ferences with vision where it may apply more readily (e.g.

Kok et al., 2012; Zhao et al., 2013).

The rhythms of prediction

In systems neuroscience, distinct oscillatory signatures

for feedforward processing (operating mainly via the

gamma band) and feedback processing (using alpha

and beta bands) have been demonstrated in

considerable detail (van Kerkoerle et al., 2014;

Buschman and Miller, 2007). In standard PC, this oscilla-
tory asymmetry is hypothesized to be linked to the func-
tional asymmetry between (upward) errors and

(backward) predictions. In other words, predictions and

errors should have distinct oscillatory signatures (Arnal

and Giraud, 2012; Bastos et al., 2012). However, evi-

dence for this claim has remained indirect (see Arnal

et al., 2011 for a demonstration in speech perception;

van Pelt et al., 2016 in causal cognition).

Recently, Sedley et al. (2016) provided more direct

evidence, using a simple parametric task to generate

auditory stimuli while recording local field potentials using

ECoG. Three human subjects listened to short (300-ms)

sequences of harmonic complexes of which only the fun-

damental frequency varied. In any given trial there was a

7/8 chance that f0 would be sampled from the same

Gaussian population, and a 1/8 chance that it would be

sampled from a new one. Assuming that subjects uncon-
sciously tracked the statistics, the authors used a Bayes-

optimal inversion of their generative algorithm to calculate

trial-by-trial estimates of four key inferential variables:

prediction error, surprise, prediction change and predic-

tion precision (where surprise is the precision-weighted

variant of prediction error). The authors then regressed

these variables against a time-frequency decomposition

of the LFP trace. As expected, the authors found that

gamma was predicted by surprise (more so than by pre-

diction error). Moreover, beta-band modulations were sig-

nificantly predicted by prediction change. Finally, and not

explicitly predicted by PC, the authors found that alpha

band modulations were significantly predicted by the pre-

cision of predictions, although this effect was less pro-

nounced than that in the beta and gamma band.

Among the earlier discussed studies, only Fujioka

et al. (2009) reported effects similarly compatible with

PC. There, an oscillatory stimulus (a beat) induced an

oscillatory modulation of the beta band that was time-

locked to the beat. When a tone was omitted, the immedi-

ate decrease in beta-power was not observed, suggesting

that the rhythmic beta-power modulations may have

reflected an oscillatory expectation. Moreover, omissions

did induce short gamma bursts, characteristic of stimuli

(or surprise). Other studies, however, did not report clear

oscillatory dissociations. Signatures of prediction in the

beta-band, for instance, were absent in Dürschmid et al.

(2016) who reported ECoG recordings to predictable

and unpredictable deviants. The authors made sure they

compared electrodes with similar sensitivity for different

frequency bands, and nevertheless only found effects

seemed in the high-gamma band (>60 Hz) and at low fre-

quencies related to evoked potentials, but hardly in

between.

El Karoui et al. (2015) presented ECoG recordings of

patients performing a local–global paradigm and found a

decrease in sustained beta power after global mis-

matches (which would arguably involve more prediction-

change). However, the global deviants were also the

behavioral target, confounding attention and prediction,

and making interpretation difficult. Finally, Todorovic

et al. (2015) found effects of attention and expectation

only in the beta-band, which decreased in power after

unexpected tones, but only if attention was directed to

another, earlier time window.

To summarize, evidence for distinct oscillatory

signatures of prediction and error processing is limited,

indirect and mixed: only two of six studies revealed

spectral patterns compatible with the predictions of PC.

Methodological differences make it difficult to draw an

unequivocal conclusion on the existence of oscillatory

differences between prediction and error processing.

Given the increasing evidence for laminar differences

between alpha/beta and gamma band dominance (e.g.

Scheeringa et al., 2016), oscillatory differences are a

potential tool to test the standard implementation of PC,

and future studies using parametric methods like Sedley

et al. (2016) may offer much needed confirmatory evi-

dence. However, simply interpreting different bands as

reflecting different variables without employing a paramet-

ric approach to calculate the relevant variables on a trial-
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by-trial basis seems empirically unwarranted given the

highly variable results of studies without such a model-

based approach.

EFFECTIVE CONNECTIVITY – CLUES FROM
DCM

Measurement in neuroscience typically allows for high

spatial or high temporal resolution. Accordingly, many

studies probe the ‘when’ or ‘where’ of neural responses.

However, this provides little insight in how responses

emerge. Causal modeling techniques attempt to

overcome this by estimating changes in causal

influences between sources underlying effects of

interest. One of these techniques – Dynamic Causal

Modelling (Friston et al., 2003) – has been extensively

used to test predictive coding, especially in relation to

the MMN. Since DCM is a theory-driven method which

makes several enabling assumptions, we will briefly reca-

pitulate the ideas behind DCM before discussing the stud-

ies that used it.

DCM for MEG and EEG

DCM is a hypothesis testing framework, which works by

predicting neural responses based on several

hypotheses, and then comparing these predictions to

the data. Predictions are generated by combining a

neuronal and an observational model. In DCM for M/

EEG (Kiebel et al., 2006, 2008), the observational model

is a lead field as used in source reconstruction, which

maps hidden dipoles in the skull to observable deflections

at the scalp. DCM goes beyond this ‘common’ reconstruc-

tion method by using a neuronal model to explicitly model

intracranial current flow. Neuronal models in DCM for M/

EEG (see Moran et al., 2013 for review) are mostly mass
models, which do not capture the complex dynamics

between large numbers of individual neurons (as found

in the skull) but rather the simpler dynamics between

massively synchronized populations of neurons (as mea-

surable at the scalp). Typically, a region is described with

three or four sub-populations of inhibitory and excitatory

neurons (each modeled using an ordinary second-order

differential equation) that operate as a dampened linear

oscillator (David and Friston, 2003; David et al., 2006).

In DCM, hypotheses are embodied as architectures:
cortical sources connected in a specific, directional way.

Responses can be generated by injecting a Gaussian

impulse into one source (e.g. A1), after which the

current flow ensuing from the network is passed through

the lead field to generate observational patterns for the

modality in use (EEG or MEG). Between-trial effects are

modeled as changes in extrinsic or intrinsic connectivity.

Extrinsic connectivity refers to coupling strength

between regions, is modeled by directional coupling

parameters, and can be thought of as inter-regional

synaptic modulation (c.f. learning). Intrinsic connectivity

refers to the strength with which a signal is propagated

within a region. It is adjusted by changing the maximum

firing rate of excitatory populations, and can be thought

of as changing the excitability of a region (c.f.

adaptation). Ultimately, the architecture that can most
readily explain the effect – yielding the best fit with the

least complexity – is deemed most likely.
By virtue of these assumptions, DCM aims to provide

an in silico environment for testing hypotheses about both

the neural architecture underlying experimental data, and

the changes within this architecture that best explain

between-trial effects of interest.
Dynamic Causal modeling of MMN

The first application of DCM to MEG and EEG is

described in Garrido et al. (2007a,b) who modeled the dif-

ference between standard and deviant ERPs from an

oddball paradigm. Garrido et al. (2007a,b) found that the

difference between standard and deviant responses was

best explained by bidirectional connectivity changes

between Heschl’s Gyrus (A1), superior temporal gyrus

(STG) and right inferior frontal gyrus (rIFG). Garrido

et al. (2007b) replicated this basic result at the group-

level and verified that backward modulations were espe-

cially important for explaining ERP differences at later

latencies (200–400 ms).

Having established these foundational results,

Garrido et al. (2008) used DCM to compare theoretical

accounts of MMN. In the study, the authors modeled a

series of responses from the roving standard paradigm

(see Fig. 2), from deviant (first tone) to standard (last

tone). They then compared which MMN–hypothesis could

explain the associated ERP differences – and thus the dif-

ferential MMN – best. Each MMN hypothesis was embod-

ied as a different variation of the frontotemporal

architecture outlined above (see Fig. 4). The adaptation

hypothesis was modeled as a network in which only the

excitability of A1 varied over trials. The model-

adjustment hypothesis (which explains the MMN as a

fronto-temporal memory-adjustment; cf. Näätänen et al.,

1978, 2007) was modeled as a network in which only

the between-region connectivity varied between trials.

Finally, predictive coding was embodied in a model in

which both the excitability of A1 and inter-regional con-

nectivity varied. The idea was that PC incorporates both

adaptation and model adjustment (see also Section Pre-

dictive coding and MMN) – in this view, changes in

excitability of A1 and fronto-temporal coupling are expres-

sions of belief-updating at different hierarchical levels

(intra-regional microcircuitry versus inter-regional network

connectivity). Model comparison showed that the hybrid

PC model explained the ERP differences best. The supe-

riority of hybrid model was later replicated in a study using

the ‘classic’ frequency oddball (Garrido et al., 2009a).
Temporal deviants and top-down predictions

Within the same model space, Phillips et al. (2015) repli-

cated this result using MEG and stimuli that deviated

across various dimensions, such as frequency, intensity,

or duration. To study all these deviant dimensions, the

authors used an optimized oddball paradigm (Näätänen

et al., 2004), in which each block starts with several stan-

dard tones, after which standards start alternating with dif-

ferent deviants – e.g. standard, frequency-deviant,

standard, duration-deviant, standard, etc. First, within



Fig. 4. Graphical specification of connectivity models underlying the MMN as suggested by DCM. Left: connectivity modulations in an asymmetric

frontotemporal network, combined with neuronal excitability modulations in A1, was shown to best explain the MMN across a variety of paradigms

and modalities (Garrido et al., 2008, 2009a; Phillips et al., 2015, 2016; Chennu et al., 2016; Barascud et al., 2016). Right: connectivity model

including left IFG and frontal ‘expectancy inputs’ which was found to best explain MMN responses to temporal irregularities (duration and silent gap)

or omissions (Phillips et al., 2015, 2016; Chennu et al., 2016).
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the model space of Garrido et al. (2008, 2009a), the

model with forward, backward and intrinsic modulations

in A1 was confirmed to ‘win’ for all dimensions. Subse-

quently, the model space was extended to include archi-

tectures with left IFG and models with an additional,

frontal input. Usually, Gaussian impulse functions are

models of sensory inputs, and are only ‘injected’ at pri-

mary sensory regions. By contrast, Phillips et al. (2015)

located a second input at IFG (‘expectancy inputs’; see

Fig. 4). Interestingly, models that included a prefrontal

‘expectation’ input only provided a better fit for temporal

deviants – that is, either tones containing a short silent

gap in the center, or tones that deviated in duration. Mod-

els that included bilateral IFG were more likely across all

stimulus dimensions.

In a follow-up study, Phillips et al. (2016) first repli-

cated these findings by performing the same analysis on

a new MEG recording of 50 subjects. They then extended

the analyses to ECoG data. As explained above, in DCM

for MEG and EEG current flow ensuing from the network

is passed through a lead field to generate observational

patterns specific to M/EEG. As this additional model

may introduce uncertainty, it is important to verify whether

inverting a DCM without observation model (i.e. using sig-

nals directly from cortex) yields similar results. The

authors recruited two patients: one with electrodes over

right IFG and STG, and one with electrodes over left

IFG and STG. The ECoG DCM results matched earlier

DCM results with respect to the relative importance of for-

ward/backward interactions. However, the frontal expec-

tancy input ‘won’ only in the patient with left-lateralized
electrodes. Strikingly, this asymmetry was also found in

the MEG results: temporal deviants were best explained

by models with a left, rather than bilateral, IFG input. This

apparent lateralization is remarkable and calls for a repli-

cation, since earlier studies did not consider left IFG a

‘main MMN generator’ (Opitz et al., 2002; Garrido et al.,

2008, 2009a,b; Chennu et al., 2016). Alternatively, the

effect may be related to differences in electrode locations

of left versus right IFG. This artifact would be propagated

to the MEG results because the coordinates from the

ECoG electrodes were used as source coordinates in

the observation model.

Finally, Chennu et al. (2016) performed a DCM analy-

sis on MEG and EEG data from a local–global paradigm

that included omissions. In two conditions, participants

either counted uncommon sequences (attend-auditory)

or performed an unrelated visual task (attend-visual).

For deviant tones, the ‘classic’ architecture used by

(Garrido et al., 2007a,b, 2008, 2009a) best explained

the data both in the attended and unattended condition.

For the omission responses, by contrast, an architecture

that included bilateral IFG and a frontal expectancy input

(which replaced the thalamic sensory input) best

explained the data, which is compatible with the idea that

omission responses reflect top-down prediction (rather

than prediction error).
Discussion

To summarize, DCM studies show that models which

modulate both A1 excitability and fronto-temporal
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connectivity explain deviant responses in oddball

paradigms (Garrido et al., 2007a,b, 2009a) and variations

thereof (Garrido et al., 2008; Phillips et al., 2015, 2016;

Chennu et al., 2016) better than models that modulate

only A1 excitability or fronto-temporal connectivity. More-

over, responses to tones that deviate temporally, or are

omitted altogether, are best explained by models with

frontal ‘expectation inputs’ which replace (Chennu et al.,

2016) or augment (Phillips et al., 2015, 2016) the thalamic

sensory input.

These patterns of effects are in line with PC by

describing MMN not only via A1 adaptation or long-

range connectivity, but via a mechanism that combines

both. Moreover, an interesting analogy might be drawn

between the need for frontal inputs to explain temporal

deviants in DCM (Phillips et al., 2015, 2016) and the fact

that temporal deviants constitute a key difference

between network-level MMN, which is sensitive to tempo-

ral deviants, and neuron-level SSA, which is not (Khouri

and Nelken, 2015). Although this post-hoc analogy would

require further investigation, the fact that only intracellular

recordings and DCM appear to consistently distinguish

temporal deviants from other deviants illustrates the

potential of the technique to extend beyond traditional

analysis of non-invasive data.

However, the DCM studies have several limitations.

The first issue is that DCM relies on assumptions and

simplifications which are not fully validated. The neural

mass models used in most DCM for M/EEG studies are

even abstracted to such degree that some parameters

don’t have obvious physiological substrates. One

response to this is to develop more complex models

with more biologically meaningful parameters (Moran

et al., 2013); an approach that is showing promising

results (Gilbert et al., 2016). However, this does not yet

address the issue of validation. Although initial studies

have established the face validity of DCM for M/EEG

(Garrido et al., 2007a,b, 2009a,b) and the extensively

replicated MMN results demonstrate predictive validity
(Phillips et al., 2015, 2016; Chennu et al., 2016) much

needs to be done before DCM can be said to have con-

struct validity. Combining different techniques, such as

in Phillips et al. (2016), will be critical in this process. Note

however that Phillips et al. (2016) only partially validated

the observation model, which was arguably the least

controversial.

A second issue is to what extent these results support

predictive coding. Even if we fully accept the network

modulations suggested by DCM, this doesn’t mean that

these changes necessarily reflect predictive coding, or

even a single underlying mechanism. Indeed, it is

difficult to see why changes in A1 excitability and STG-

IFG connectivity should be uniquely characteristic of

predictive coding. This problem is reinforced by the fact

that the discussed studies have mostly used designs in

which expectation and adaptation are confounded,

which makes arbitrating between predictive and non-

predictive interpretations difficult. As such, while the

discussed studies constitute exciting methodological

developments in the analysis of non-invasive
electrophysiological data, their strength as empirical

support for predictive coding theory seems limited.
CONCLUSION

In this review we aimed to provide a comprehensive

empirical evaluation of five key assumptions of

predictive coding theory in the context of auditory

pattern processing. Findings from animal, human and

computational neuroscience provide converging

evidence for the fundamental influence of expectations

on neural responses and specifically the notion of

prediction error as a model of neural responsiveness

(Assumption 2). Studies on unexpectedly omitted stimuli

provide support for the anticipatory, predictive nature of

these expectancy effects (Assumption 1). Moreover, the

dissociation of expectancy effects at different

hierarchical levels in both animal and human literature

seems suggestive of the hierarchical nesting of

predictions, as postulated by predictive coding theory

and implied by Dynamic Causal Modeling results

(Assumption 1), although more experiments are needed

that explicitly manipulate multiple, nested regularities.

As to the remaining three assumptions, the picture is

less clear. Critically, for the existence of separate

prediction and error neurons residing in distinct cortical

layers (Assumption 3), there is currently no evidence in

the auditory domain in line with this idea (but see Bell

et al., 2016; Kok et al., 2016, for recent studies in vision).

The recent development to conceptualize attention as the

weighting of sensory input by sensory precision (Assump-

tion 4) has provided elegant post-hoc explanations for a

broad range of phenomena, but in the auditory modality

these have not yet been supported by rigorous confirma-

tory results. Finally, the dissociation between different fre-

quency bands and computational variables in PC

(Assumption 5) has been demonstrated by one study

which explicitly estimated the variables on a trial-by-trial

basis; studies that did not use such a model-based

approach however mostly failed to find similar associa-

tions. Looking to the future, progress in the field will criti-

cally depend on investigating these assumptions in order

to test and revise or falsify specific implementations of

PC. Doing so will require closer collaboration between

sub-disciplines, in particular between animal and human

research, where methodological and conceptual differ-

ences currently create interpretational difficulties. Finally,

to test crucial theoretical distinctions (e.g. prediction error

versus precision-weighted prediction error) there is an

ongoing need for computationally explicit analyses in both

human and animal neuroscience.

In short, over the past decade a broad range of

findings in auditory neuroscience have pointed to a

fundamental role of expectations and prediction errors in

sensory processing. Going from these findings to the

alternative, overarching framework envisioned by PC,

however, requires a number of theoretical steps

between which the empirical links are currently missing.

Uncovering, revising or potentially refuting these
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‘missing links’ is difficult but feasible, and provides an

exciting neuroscientific challenge for the years to come.
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Schröger E, Bendixen A, Denham SL, Mill RW, Bohm TM, Winkler I

(2014) Predictive regularity representations in violation detection

and auditory stream segregation: From conceptual to
computational models. Brain Topogr. https://doi.org/10.1007/

s10548-013-0334-6.
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Winkler I, Schröger E (2015) Auditory perceptual objects as

generative models: Setting the stage for communication by

sound. Brain Lang 148:1–22. https://doi.org/10.1016/j.

bandl.2015.05.003.

Yabe H, Tervaniemi M, Reinikainen K, Näätänen RN (1997)
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