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HISTORICAL NEWS & VIEWS: NEURAL CODING

Does predictive coding have a future?
In the 20th century we thought the brain extracted knowledge from sensations. The 21st century witnessed a 
‘strange inversion’, in which the brain became an organ of inference, actively constructing explanations for what’s 
going on ‘out there’, beyond its sensory epithelia. One paper played a key role in this paradigm shift.

Karl Friston

Every decade or so, one reads a paper 
that makes you think “well, that’s quite 
remarkable”. In 1999, Rao and Ballard1 

offered a treatment of visual processing as 
predictive coding. In their view, backward 
connections from higher to lower order 
visual areas try to predict activity in lower 
order areas, while the counter-stream of 
ascending, forward connections convey 
prediction errors, i.e., the ‘newsworthy’ 
information that cannot be predicted. These 
prediction errors drive expectations in 
higher levels toward better explanations for 
lower levels. Using simulations they showed 
that this simple (hierarchical) architecture 
was not only consistent with neuroanatomy 
and physiology but could also account for a 
range of subtle response properties such as 
‘end-stopping’ among other extraclassical 
receptive field effects.

This was a significant achievement in its 
own right; however, the really remarkable 
thing—at least for me—was the following: 
in simulating their little piece of synthetic 
cortex, neuronal dynamics and connectivity 
optimized the same energy or cost function. 
I remember reading the methods section 
several times to convince myself that they 
could explain all of this functional anatomy 
and detailed neurophysiology with just one 
energy function. Surely there was something 
quite profound about this: here was a truly 
normative scheme that could explain both 
fast neuronal dynamics that underwrite 
perceptual synthesis and the slow 
fluctuations in synaptic efficacy that mediate 
perceptual learning with just one imperative: 
to minimize prediction error.

In retrospect, it should not have been 
quite so remarkable (to me). The predictive 
coding scheme described by Rao and 
Ballard has a long pedigree that can be 
traced back to the students of Plato and 
Kant to Helmholtz, whose ideas led to 
epistemological automata, analysis-by-
synthesis, and perception as hypothesis 
testing2. Subsequent formalizations 
within machine learning and information 
theory then led to specific proposals 
for computational architectures in the 

neocortex3,4. The theme that runs through 
this legacy is inference and learning the best 
explanation for our sensorium. In other 
words, the brain is in the game of optimizing 
neuronal dynamics and connectivity to 
maximize the evidence for its model of  
the world5.

So what form does this evidence take? 
For a statistician, it is just Bayesian model 
evidence: the probability of observing 
some data given a model of how those data 
were generated. In machine learning, the 
evidence comprises a variational bound on 
log-evidence. In engineering, it is the cost 
functions associated with Kalman filters. 
For an information theorist, it would be the 
efficiency or minimum description length. 
Finally, in the realm of predictive coding, the 
evidence is taken as the (precision weighted) 
prediction error. Crucially, these are all 
the same thing, which, in my writing, is 
variational free energy6.

Predictive coding offered a compelling 
process theory that lent notions like the 
Bayesian brain7 a mechanistic substance. The 
Bayesian brain captured a growing consensus 
that one could understand the brain as a 
statistical organ, engaging in an abductive 
inference of an ampliative nature. Predictive 
coding articulated plausible neuronal 
processes that were exactly consistent with 
the imperative to optimize Bayesian model 
evidence. Within a decade, the Bayesian 
brain hypothesis and predictive coding 
became dominant models in cognitive 
neuroscience, marking a watershed between 
20th-century thinking about the brain as a 
glorious stimulus–response link and more 
constructivist 21st century perspectives 
that emphasized an active sampling of the 
sensory world. There has been a remarkable 
uptake of these ideas in fields as diverse as 
philosophy5,8, ethology, and psychoanalysis, 
with dedicated meetings and books emerging 
with increasing frequency. But what about 
neuroscience? Has predictive coding told us 
anything we did not know? In what follows, 
I rehearse some recent examples where the 
tenets of predictive coding have pre-empted 
empirical findings.

A recent example is a report from 
Marques et al.9, looking at the functional 
organization of cortical feedback inputs 
to primary visual cortex. In brief, their 
exceptional results “show that feedback [FB] 
inputs show tuning-dependent retinotopic 
specificity. By targeting locations that would 
be activated by stimuli orthogonal to or 
opposite to a cell’s own tuning, feedback 
potentially enhance visual representations in 
time and space.”9 (p. 757).

To understand this particular aspect 
of feedback, we need to consider the role 
of ‘precision-weighted’ prediction errors 
that mediate belief updating. In predictive 
coding, precision corresponds to the best 
estimate of the reliability or inverse variance 
of prediction errors. Heuristically, only 
precise prediction errors matter for belief 
updating, where estimating the precision 
is like estimating the error variance in 
statistics (i.e., a small standard error 
corresponds to high precision). Technically, 
getting the precision right corresponds to 
optimizing the Kalman gain in Bayesian 
or Kalman filters1. Computationally, it 
underlies the optimal mixing of sensory 
streams that differ in their reliability, 
as in multimodal sensory integration7. 
Psychologically, precision-weighting has 
been associated with sensory attention and 
attenuation10. Mechanistically, precision-
weighting is thought to be mediated by 
neuromodulatory mechanisms; for example, 
classical neuromodulators of synchronous 
gain. In short, most of the interesting bits 
of predictive coding are about getting the 
precision right: selecting newsworthy, 
uncertainty-resolving prediction errors.

Precision has played a key role in 
taking predictive coding to the next 
level in cognitive neuroscience: it 
underwrites computational anatomy of 
expectation and attentional selection at 
various levels of hierarchical perception. 
Failures of the neuromodulatory basis 
of precision-weighting have figured 
prominently in explanations for false 
inference and psychopathology11, while the 
electrophysiological and neurochemical 
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correlates of precision engineered, cortical 
gain control (referred to as excitation–
inhibition balance) suddenly acquire  
a clear teleology.

When applied to problems like figure–
ground segregation10, the precision 
of prediction errors— say in primary 
visual cortex—is optimized to produce 
representational sharpening via lateral 
inhibition. This requires the modulatory 
effects of descending predictions of 
precision to extend beyond the classical 
receptive field to produce extraclassical 
receptive field effects. It further requires 
the suppression of representations that do 
not conform to the attended or inferred 

stimulus attribute. See Fig. 1 for a more 
detailed explanation. This representational 
sharpening contextualizes the formation of 
prediction errors per se and requires top-
down retinotopic projections to inhibitory 
interneurons in the classical receptive 
field. In short, predictive coding predicts 
the neuromodulation of cells reporting 
prediction errors (for example, superficial 
pyramidal cells) in orthogonal perceptual 
dimensions or opposite preferences. This is 
exactly the phenomena reported empirically 
in Marques et al.9.

It is sometimes said that predictive 
coding—as a hypothesis for message-
passing in cortical hierarchies—has 

yet to be empirically confirmed. An 
alternative view of the literature speaks 
to an enormous amount of anatomical 
and physiological evidence for predictive 
coding; particularly, in early visual 
processing (see ref. 12 for a list of examples). 
One could take this view further with 
reference to specific predictions that have 
subsequently been confirmed. A nice 
example (number 6 in the list presented in 
ref. 12) is a spectral asymmetry in forward 
and backward message-passing during 
perceptual (visual) synthesis: “[p]rincipal 
cells elaborating predictions (e.g., deep 
pyramidal cells) may show distinct (low-
pass) dynamics, relative to those encoding 
error (e.g., superficial pyramidal cells)”12 
(p. 21). This was subsequently confirmed 
several years later13,14 and is now almost 
a ‘meme’ when characterizing laminar-
specific neurophysiological responses.

The predictive validity of predictive 
coding is not restricted to neurophysiology; 
it also encompasses neuroanatomy: “[a]s an 
example, a neural inference arising from the 
earliest formulations of predictive coding is 
that the source populations of forward and 
backward pathways should be completely 
separate, given their functional distinction; 
this aspect of circuitry—that neurons with 
extrinsically bifurcating axons do not project 
in both directions—has only recently been 
confirmed.”15 (p. 1792).

I introduced the target article by 
noting that perceptual inference (i.e., 
neurodynamics) and learning (i.e., 
neuroplasticity) are in the game of 
optimizing the same thing; namely, model 
evidence or its variational equivalent (i.e., 
free energy). This remains as prescient today 
as it was 20 years ago. To see perception, 
learning, attention, and sensory attenuation 
as working hand-in-hand toward the same 
imperative provides an integrative account 
that may still have an important message. 
There are still swathes of computational 
neuroscience that concern themselves 
almost exclusively with learning and 
ignore the inference problem (for example, 
reinforcement learning). Conversely, vanilla 
predictive processing can often overlook 
the experience-dependent learning that 
accompanies evidence accumulation, as 
well as the Bayesian model selection (a.k.a. 
structure learning) of models per se. This 
polarization may reflect the differences 
in conceptual lineage: predictive coding 
takes its lead from perceptual psychology, 
while reinforcement learning is a legacy of 
behaviorism. This dialectic is also seen in 
machine learning, with deep learning on the 
one hand and problems of data assimilation 
and uncertainty quantification on the other. 
The have been heroic attempts to bridge this 

Fig. 1 | Hierarchical predictive coding: schematics that describe the hierarchical message passing 
implicit in predictive coding based on deep generative models. In this scheme, sensory input is 
conveyed to sensory (for example, primary visual) cortex via ascending prediction errors (for example, 
from the lateral geniculate). Posterior expectations, encoded by the activity of deep pyramidal cells, are 
driven by ascending prediction errors (red arrows). These cells then provide descending predictions 
(black arrows) that inform prediction errors at the lower level. At the same time, they are subject 
to lateral interactions that mediate (empirical) priors. Crucially, prediction errors are modulated by 
predictions of their precision (blue arrows). The predicted precision is based on the sum of squared 
prediction errors. This means we have two sets of ascending and descending counter streams: the first 
dealing with predictions of (first-order) content and the second dealing with (second-order) context; 
namely, the precision of first-order prediction errors. Heuristically, expectations about precision 
release posterior expectations from constraints in the vicinity of an inferred attribute or trajectory, 
and allow them to respond more sensitively to ascending input. This is illustrated on the lower right 
(representational sharpening). The key point here is that prediction errors compete for influence over 
pyramidal cells representing stimulus features (i.e., expectations). If a representation is released from 
top-down constraints, it is disinhibited and becomes more sensitive to ascending prediction error. 
Conversely, if a particular prediction error is afforded greater top-down precision, it effectively pulls the 
predictive expectation toward its prior mean of zero, as illustrated by the red arrows in the lower right 
panel. In this example, the activity of the middle deep pyramidal cell (black triangle on the upper right) 
could encode the expected orientation of a local stimulus (indicated by the Gabor patches on the lower 
right). In terms of extraclassical receptive field effects, this corresponds to representational sharpening. 
For a more detailed description of the implicit belief updating and accompanying neuronal dynamics, see 
ref. 10. Credit: Katie Vicari/Springer Nature
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gap (for example, amortization procedures 
in machine learning that, effectively, learn 
how to infer). However, these attempts do 
not appear to reflect the way that the brain 
has gracefully integrated perception and 
learning within the same computational 
anatomy. This may be important, if we 
aspire to create artificial intelligence along 
neuromimetic lines. In short, perhaps the 
insight afforded by Rao and Ballard1—that 
learning and perception are two sides of 
the same coin—may still have something 
important to tell us. ❐
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SYNAPTIC PLASTICITY

FRETting over postsynaptic PKC signaling
Protein kinases are key regulators of excitatory synapse plasticity. In this issue, using novel optical reporters of protein 
kinase C (PKC) activity, Colgan et al. identify PKCα​ as critical for integrating NMDA receptor and neurotrophin 
signaling to control dendritic spine structural plasticity, synaptic potentiation, and learning and memory.

Mark L. Dell’Acqua and Kevin M. Woolfrey

Scientists have been fascinated for 
decades by how excitatory synapses 
on dendritic spines are remodeled by 

activity—and how this in turn may underlie 
learning and memory—but the details have 
been challenging to pin down. There is little 
doubt that kinase activity is important, but 
the sheer number of synaptic protein kinases 
and the intricacies of their functions pose a 
major challenge to unraveling their specific 
roles in synaptic plasticity. For example, the 
PKC family of kinases was first implicated 
in synaptic plasticity over 30 years ago, yet 
after a flood of papers in the late 1980s, 
this field plateaued, not least because of the 
complexity of PKC signaling. Conventional 
PKCs (α​, β​, γ​) are signaling hubs that 
require binding to intracellular Ca2+ and 
phosphatidylserine and diacylglycerol 
(DAG) at the plasma membrane for 
activation. They modify a variety of 
important synaptic substrates. Before the 
work of Colgan et al.1, featured in this issue 
of Nature Neuroscience, the identity of the 
PKC isozyme primarily responsible for long-
term potentiation (LTP) and its associated 
spine enlargement, or structural LTP 
(sLTP), had remained elusive. By combining 
powerful imaging techniques in organotypic 
slices with behavior and electrophysiology 
across knockout mouse lines, Colgan et al. 
not only profile the activation of each 
conventional PKCα​,β​,γ​ isozyme in dendritic 

spines, but also identify key roles for PKCα​ 
in LTP, dendritic spine sLTP, and learning 
and memory1.

A long-standing question regarding  
the involvement of conventional PKCs in  
LTP is whether each isozyme has unique  
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Fig. 1 | New FRET probes reveal that PKCα is a postsynaptic signal integrator that is uniquely 
responsible for structural long-term potentiation of excitatory synapses on dendritic spines.  
a, FRET-based optical reporters of membrane translocation (iTRACK) and substrate binding (iDOCKS), 
which reflect kinase activation, for each of the three PKC isozymes, PKCα​, β​ and γ​ (PKCx). b, NMDA 
receptor (NMDAR) and autocrine BDNF signaling combine to activate PKCα​ in dendritic spines. Active 
PKCα​ is then targeted to postsynaptic microdomains through interactions with PDZ-domain-containing 
proteins such as PSD-95 and PICK1. AMPAR, AMPA-type glutamate receptor; P, phosphate;  
PIP2, phosphatidylinositol-4,5-bisphosphate; PS, phosphatidylserine.

mailto:k.friston@ucl.ac.uk
https://doi.org/10.1038/s41593-018-0200-7
https://doi.org/10.1098/rstb.2014.0169
http://www.nature.com/natureneuroscience

	Does predictive coding have a future?

	FRETting over postsynaptic PKC signaling

	The diverse culinary habits of microglia

	Disease strays to evolution’s bounds

	Fig. 1 Hierarchical predictive coding: schematics that describe the hierarchical message passing implicit in predictive coding based on deep generative models.
	Fig. 1 New FRET probes reveal that PKCα is a postsynaptic signal integrator that is uniquely responsible for structural long-term potentiation of excitatory synapses on dendritic spines.
	Fig. 1 Epigenetic programming of microglia in different brain regions maintains distinct levels of cell clearance.
	Fig. 1 Evolution of the human structural connectome.

	Does predictive coding have a future?

	FRETting over postsynaptic PKC signaling

	The diverse culinary habits of microglia

	Disease strays to evolution’s bounds

	Fig. 1 Hierarchical predictive coding: schematics that describe the hierarchical message passing implicit in predictive coding based on deep generative models.
	Fig. 1 New FRET probes reveal that PKCα is a postsynaptic signal integrator that is uniquely responsible for structural long-term potentiation of excitatory synapses on dendritic spines.
	Fig. 1 Epigenetic programming of microglia in different brain regions maintains distinct levels of cell clearance.
	Fig. 1 Evolution of the human structural connectome.




